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ON ROBUST ESTIMATION
IN THE SIMPLEST EXPONENTIAL MODEL

1. Imtroduction. Consider the statistical model
M, = (R, &%, {P;,: 2 >0}),

Where R, is the positive half-line, #', is the family of Borel subsets of R',,
and P, , is the exponential distribution with probability density function
(pdf) fi1(®) = A7'exp(—2/2) and the cumulative distribution function
(cdf) denoted by I, ,. The problem consists in estimating A.

As in [3], suppose that the model has been conceived as an approxi-
Ination only and actually the underlying distribution is P,, with pdf

frip(@) = (AL'(L41/p))~"exp(— (/1))

Tather than P,,, the shape parameter p being unknown. The extension
of M, will be formally described by the mapping x from {P,,: 2 > 0} into
the family of all probability measures on (R., #%), defined as

7(Py) = {Pap: 0 <P <Py}

for some ?; and p, (0 < p; <1< p, < 2.16). Now the problem is to con-
Struct an estimate of A in the model M 1 Which would be robust under the
®xtension #. We shall be interested in robustness with respect to two
Properties of estimates: bias and mean square error.

As in [3], for an estimate T define

bp(d) = sup (E;,T—21)— inf (E,,T—12),
DISP<Dy DISP<D9
Where E, T is the expectation of T under the distribution P, .. Let § be
another estimate of 1. We define T as more bias-robust (b-robust for short)
than 8 if by(2) < bg(A) for all 2 > 0 with strict inequality for at least one
Value of 1. We define T as the most b-robust in a class T of estimates if T
13 I_IIOre b-robust than any 8 € 7. The following two classes of estimates
Which are unbiased in the original model M, are of special interest: given
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a sample size n, let

g—n = {Tn(a) = Zaj_Xj:n: aj GRI’ j = 1, ”'7%;E1.1Tn(a) = Z}’
j=1

Ta = {Tn(a) = Zajxj:n: GyeR,,j=1,...,n; B Ty(a) = l}’

j=1
where X,., < X,., <...<X,., are order statistics. The condition
E; T,(a) =4 forall 1>0

is obviously equivalent to the condition

n
(1.1) D, =1,
j=1
where €im = El,lxjm'

The most b-robust estimate of 1 in the class ;" under the extension =
has been constructed in [3], and a generalization to some other extensions
has been presented in [1].

Keeping in mind the bias of an estimate T as its property under con-

sideration we define the infinitesimal bias-robustness (¢b-robustness for short)
of T ag

d
ﬂwu>=|kgwmmf—m]

p=1

Our aim is to construct the most ib-robust estimates in J; and in
T, 1.e. an estimate T such that ibp(4) < ibg(4) for all § € T} (respectively,
7,). The results will be presented in Section 2. Observe that

ian(a) (1) = lbn(a) I 2 9

where b,(a) = [(d/dp)E, ,T,(a)],~;-

The mean square error of an estimate T defined as E; ,(T'—1)* is
another property of importance for applications. Define the infinitesimal
mean-square-error robustmess (iv-robustness for short) of T as

d
[ 2ert-7]

p=1

ivp(d) =

Observe that
(1.2) iVy @A) = w,(a)[ 42,

where w,(a) = [(d/dp)E, ,(T,(a) —1)}],.,. The most iv-robust estimates
in 7} and in 7, will be presented in Section 3.
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We close the Introduction with the following two remarks:

1. Weare interested in robust estimates in s all samples (non-asymp-
totic theory). The numerical results for scme small values of the sample
Size n will be given. The algorithms of computations for any finite n will
become clear.

2. The results depend heavily on the kind of extension of the original
model. We shall illustrate the fact considering along with = the extension

W*(Pz,l) = {P;.‘,p:pl < p <P}y
Where P; , is the distribution with pdf
(/2 (p))a"~" oxp(— /),

l.e. the gamma distribution. Under a non-infinitesimal approach Barto-
S8zewicz [1] showed that the most b-robust estimate in )} under =* is
Xpw/1+1/2+ ... +1/n) while that under = is nX,,. Some numerical
results for the extension =* will be presented simultaneously with those
for x.

We use the following short notation:
6j:n.(p) = El,pszny ez‘j:n(p) = El.pXi:an:n7
Vij:n(p) = Covl,p(xi:rn Xj:n)’

d d
My, = [% ejm(p)]p_17 mzjn = [%— 6ij:n(p)]p=1'

The symbols €iny €ijmy and V., stand for e;,(1), €;,(1), and V,(1),
respectively. The starred symbols, e.g., P;,, E;,, m},, have analogous
neanings under the extension z*.

Auxiliary technical results are presented in Section 4.

2. Infinitesimal bias-robust estimate and minimum variance infini-
tesimal bias-robust estimate in 7, and in 7. It is well known that the
Sample mean

1§ 2 minimum variance unbiased estimate for 1 in M,. Under the distribu-
tion P, we have

- _ 1'(2/p)
E, X, = =
. I'(1/p)
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50 that the infinitesimal robustness of X, under the extension x is of the

form
C e (rejp)
len()») == l’ [djp (I"(l_/p) 1)]p=1

where y = 0.577216 is Euler’s constant.
Consider an estimate

= (2—9)4 = 1.4231,

n

T,(a) = ) 0;X;,, @;>0.

j=1

According to a result in [3], for every p, and p, (0 < p, <1 < p, < 2.16)
we have

n
n[El,pl-Xl:n_El,pz'Xl:n] < 2 aj [El,pl-Xj:n_El,pZXj:n]
j=1
for any positive a = (a,, a,, ..., a,) satisfying (1.1). Dividing the above

inequality by p,—p, and passing to the limits as p,—1 and p,—»1 we
obtain

d
—NMy, S [dp El,an(a)]

p=1

for all T,(a) €7;;. By (4.2) the left-hand side value is positive so that

d
[@ El,an(oo]

p=1

[y, | < ’

and we get the following result:
The statistic nX,., is the most ib-robust estimate of A in the class T ;.
By (4.10) the ib-robustness of nJX,., is described as follows:

logn
n—1)"

ibyx,_(2) = /1(1 —A+

Some numerical results are given in Table 1. The variance of the esti-
mate 7,(a) in the original model M, is given by the obvious formula

Var,;, T, (a) = > Y aaV

R H

where V., can be easily computed by (4.1), and is tabulated along with
the ib-robustness b, of n.X,.,. For comparison, similar results for the sample
mean X, and for infinitesimal robustness under the extension =* are also
presented. In the latter case, by a result given in [1], the most ib-robust
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estimate of 4 in 7 is X,.,/(1+1/2+ ... +1/n). The symbols in Table 1
!lave the following meanings: b, = b, (a) for the most ib-robust estimate
In 7} under z, v, is the variance of this estimate, b, = b,(1/n, ..., 1/n)
(sample mean), 7, = Var,,X,, and

o = ( S/ S

TABLE 1

n w-extension n*-extension

by, Vn by, Uy, sz '”:, l B; Up,
2 1.116 1 1.423 1/2 0.871 0.556 1 1/2
3 0972 1 1.423 1/3 0.816 0.405 1 1/3
4 0.885 1 1.423 1/4 0.757 0.328 1 1/4
5 0.828 1 1.423 1/5 [0.724 0281 1 1/5
00 0.423 1 1.423 0 0 1 0

.To construet the most ib-robust estimate of 4 in the class 7, we have
o find a = (a;, ay, ..., a,) Which minimizes (see (4.11))

)7mn
=1

[ba(a)] = lﬁ‘a-m- |

Under the condition (1.1). Observe that, by (4.1) and (4.10),

det [ml:n mz:n] 1 ( IOg ('n — 1) logn

— — 0
€1n  C2n n—1 n—2 n—l);é ’

%0 that for # > 2 the system of two linear equations

n n

(2'1) Zajmj:n =0, Za.‘iej:n =1

j=1 j=1

li ‘onsistent and if a = (a;, a,, ..., a,) is a solution of (2.1), then bz (@) (4)
i:fi(ili?;n;i T, (a) is an absolutely ib-robust estimate. For n > 3 there exist
ib-robe y any o’s satisfying (2.1) and we can choose the “best” absolutely
in ust .e&ftlma,te. We choose the estimate T, (a) with minimal variance
ar © original model M,. To this end we have to find a minimizing
117, (a) under the conditions (2.1). The Lagrange-multiplier technique

4
Zastos, Mat. 138.3
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(with multipliers 21, and 21,) gives us the following system of linear equa-
tions:

n
2 V‘iimaj + m’z‘:nll +ez‘:nlz =0, 1= 1,.. oy N,

j=1
(2.2) ) )
Zajmj:n = 0, Zajej:n = 10

Some numerical results for n = 2, 3, and 4, along with analogous
results for the n*-extension, are presented in Table 2.

TABLE 2
m-extension m*-extension

a; 7.466 —3.383

n=2 a —1.818 1.794
v, 11.249 3.851

a, 4.739 —2.836

ne3g % 2.038 —0.005
= ag —1.242 1.064
Vg 5.105 1.763

a 3.566 —2.568

ay 2.068 —0.426

n=4 a 0.825 0.307
a, —0.956 0.747

v, 3.228 1.116

Studying the data of Tables 1 and 2 we have the impression that “the
prize” for better bias-robustness of an estimate is an enlargement of it®
variance. To reconcile both tendencies one with another, in the next
section we study the problem of iv-robust estimates.

Considering the system of linear equations (2.2) it is easy to sce that

Var,,T,(a) = —1, and applying Cramer’s formulas we obtain
1 1
Var, ,T = —
ar, ;7',(a) nl—4, )

where

An = [ Zn k (mn—k+1:n - mn—k:n)]z/n 2 Icz(mn—k-i-l:n - mn—k:n)2 .

k=1 k=1
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Studying the following values of 4, and 4;:

'nl2 3 4 5 6 7

4, 10.955 0.936 0.921 0.912 0.909 0.900
4, |o0.870 0.810 0.776  0.753  0.736 0.735

We may conjecture that Var,,T,(a) = O(n~') and Var,,T,(a*) = O(n™")
but we failed in proving any general result as yet.

3. Infinitesimal mean-square-error-robust estimates in 7, and in 7.
To find the most iv-robust estimates in 7, we have to minimize |w,(e)|
m (1.2) under the condition (1.1). There are two possibilities:

1° the quadratie form

18 non-negative (non-positive) definite and the minimum (maximum)
of w,(a) on the subspace (1.1) is positive (negative);

) 2° the above quadratic form is non-negative (non-positive) and the
Minimum (maximum) of w, () on (1.1) is negative (positive) or the quad-
Tatic form under consideration is not definite.

In the former case the iv-estimate is given by the solution of the
Problem

n
w,(a) = min (resp. max), Zajejm =1.
j=1

In the latter casc there exist a’s such that

n
w,(a) =0 and Za-’ief’" =1

i=1

?1? d we can choose that one which minimizes the variance of the estimate

the original model.

are It appears that under the extemsion n the matrices (mi,-m),-,jﬂ“mn

are neg?dzlve definite, under the extension n* the matrices (m;,);;—1,..,n

un, Positive definite, at least for n = 2, 3, 4, 5, the maximum of w,(a)
der (1.1 i negative in the former case, and the minimum of w,(a) is

g(:sﬁf iv; in the latter one. Some numerical results are presented in
e L]
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TABLE 3
iv-robust estimates T}, (a) in ,, under
m-extension | a*-extension
a, 0.771 0.060
ay 0.410 0.647
n =2 —1.870 0.443
vy 0.516 0.532
@, —1.923 0.500
a, 0.653 —0.034
a, 0.394 0.141
w3 9 0.248 0.487
1w, —~1.226 0.279
vy 0.350 0.376
By —1.281 0.333
a 0.607 —0.061
a, 0.358 0.048
ag 0.253 0.150
n=4 aq 0.175 0.396
0, —0.909 —0.202
v 0.267 0.288
, —0.961 0.250
a 0.557 —0.070
as 0.340 0.010
as 0.243 0.073
n=5 a, 0.185 0.145
ay 0.135 0.335
we —0.723 0.158
Vg 0.215 0.234
, —0.769 0.200

wy, = Wy (a) for the most iv-robust estimate,
v, — the variance of this estimate,
Wy = wy(1/n,..., 1/n).

The numerical results show that under the z-extension the most
iv-robust estimate in 7, is identical with the most iv-robust estimate
in 7}, at least for n = 2, 3, 4, 5. This is not the case under the n*-extension.

4. Technical results. Simple caloulations (see, e.g., [2], Chapter
VIIL.9) give us

o1
@D e = D
k=1

where ¢Aj denotes the smaller of two numbers ¢ and j.

i A

1 2
o = 35—

k=1
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The family of exponential-power distributions {P,,:0 < p < 2.16}
is monotonic: if 0 <p < ¢ < 2.16, then F, ,(2) < F, (») for all z > 0.
It follows that

(4.2) e, (p) is strictly decreasing in p € (0, 2.16).

To compute

d
m, = [% Cin (p )]

we use the formulas

a
and My, = [% Cijin (p)]
p—l

p=1

1

n: —1 gy . gim1(1 _ $\n—i

e‘i:n(p)=mmo Frp(@) = (A —1)""dt
(4.3) "
€ij:n (D) :

T -DIG—i—Dim—g)
1 1

x f du f dv- P} (u) Fl (0) -0~ (0 — )i ==1 (1 —o)n—

0

changing the order of integration and differentiation. To justify the pro-
cedure we have to prove the uniform integrability of the following families
of functions for some p, and p, such that 0 < p, <1 < p, < 2.16:

a
(4.4) {Fl_.zla(m) &;Fl_,zla(w) <SP Pz}a
(4.5) [iF—l(m) <<
. ldp Lp\X): D1 S P Poyy
-1 a o
(4.6) Fl,p(m)—@lpl,p(y):.pl <SP <Py
a -1
(4.7) -&;Fl,p(w).Fl,p(y):pl <P <Py

The functions in (4.4) and (4.5) are defined on the interval 0 <z < 1
and those in (4.6) and (4.7) on the set {(z,¥): 0 <z <y < 1}. The proof
is as follows.
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Differentiation (with respect to p) of the identity

. e
—_— e —t")dt = o
Fivim | Y
gives us
(4.8)
d Tip® (L4+1/p)
EEF;},(.%) = exp {[F ()]} f [tplogt—w—z—p]exp(—t”)dt
0
= —exp{[Fi,;(x)]"} f [t”logt—w(l—;lm—)]exp(—t")dt,
Fig
where

d
t) = —logI'(t
p(1) = —logI'(1
is Buler’s y-function. For any p we have
d
ap Tin(0) =0
The integral

f [t”logt - 2(1—;21/—?)] exp(—1iP)dt

0

is equal to zero for y = 0, is decreasing for y € (0, y,), where ¥, is the
unique solution of the equation

p(1+41/p)

t*logt = y

and is increasing up to zero for y €(y,,1). It follows that

d
W @) <0 for all z>0.

We have also

—F(®)>—o as 1.

dp
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Using (4.8) and introducing a new variable y = F,(x), for any d e (0, 1)

we have
. d
(4.9) f [F;;(m@lmp( >]dw
00 00 1 1, _ y)
_ f dyf dt-y[t”logt_ p( +2 /.T))] exp(—1t?) .
O P I'l+1/p)
F10)

Let ¢, be the (unique) solution of the equation

1
tP1logt = ﬂ—}l——/@

1
The right-hand side value is positive, and hence ¢; > 1. It follows that for

all t>ft1 and p € [Py, p.]
1+1
YAFLPY) - oy $LHLIP)
P

2

tP2logt —

1+1
> tP1logt — p( ‘;2 [P1) >0
1

Let 6,€(0,1) be a number such that Fj,(é)>?. Then Fi (4
= Fi;.(8) for p e[p,, p,]- By (4.9), observing that

Ir'a+i1/p,)<I'l4+1/p,) and exp(—t*)<exp(—1t"),

we obtain
[lrsog ol
S w(1+1/p2)] exp ( —t71)
< dy | at-y|tPelogt — .
f vf y[ % % AT+1/p)
7, 0,01 v
The integral
- w(1+1/p2)] exp( —t71)
dy | dt-y|tr2logt—
ofyyf y[ ¢ 3 I(1+1/p,)
o) 1
p(1+ 1/172)] exp ( —t*1)
= dt d-[t”zlo t—
of f o M % Ta+1/p)
vl e e L ey Bl ey L (S |
= -r ——-r 1+
2p11‘(1+1/p2)[ (m ¥ 2 P \p 2,
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is finite so that for every ¢ > 0 there exists d, = d,(e, p1, p,) such that for
0 > 6, we have

-]

f dyf dt-y[tpzlogt_ 1:"(1-;—)21 /pz)];z(:fi;;::) -,

-1 v
Fl,pz('-")

Let ¢’ = max{d,, 6,}. If 6 > ¢’, then

1
d
![F;;(m)%ﬁ’;;(w)]dw < e,

which proves the uniform integrability of (4.4). The uniform integrability
of (4.5) follows from the fact that for  large enough we have
d

“@I"— »(0)| <

d
Fi () 7Fl‘,1‘,(w) .

To prove the uniform integrability of (4.6) it is enough to show that
for each £ >0 there exists &' = ¢'(e, py, p2) €(0,1) such that

1 1

a
f( f '@Fl_,zla(y)d?/)ﬁ'f,;,(m)dm <e

0 max{d,z}

for 6 > &' and for all p € [p,, p.]. By the inequalities

da
%Fﬂ;(?/) <0,
fFlp(w fFlpl(w)dx = E,, X,
we have

Il

- a
[ 4 Fawa) Fw

0 max{6,xr}
1
= f( Fl";(y),dy) Fip(w)ydew
0 max{d,z}
fFlpa:)da; ‘—F y)ldy E,ple‘ ()| do

and the uniform integrability of (4.6) follows from that of (4.5).
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The uniform integrability of (4.7) can be proved similarly by observing
that

1

/

0

Fr, ()| d

dp

1 2 2\ 1 1
- 7 1+_) (1+_)__ (1+_)E X
pI'(1+1/p) ( I Ad p) 7 p]

Wwhich is bounded on the interval [p,, p.].
Differentiating (4.3) we obtain

1

n! d - i—=1¢1 _ s\n—12
(4.10) m,-m_(i_l)!(n_i)!J[dme(t)] #-1(1 — ey

N (z—l)qiﬂ (n—1i)! Z(_l)k( )A(”(n—i—]—k),

Where

1

AN = f[%ﬁ" ()] (1—t)dt, 1=0,1,...,n—1.

By the same reasoning we obtain

— - @) —4
My = 1,_1), z),Z( 1)k( )A)(” i+k),

Where

1

A1) = f(% [F;,;,(t)]z)]m1 1—ttdt, 1=0,1,...,n—1,

0
and

-1 j—i-1

mz.jm=(%_1)| _1__1)' Y ;2 )r+q( )(j—;—l)

XA(j—it—q+r—1, n—j+q),

X
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where

Ak ) = f i f g (2 P3P (a—ota—y),

ky1=0,1,...,n-—1,
Observe that

1 1 1
— ® — (0
Al = G4 (Z)+[(Z+1)2 (k+1)2]A i+
1 1 1
— —_ (2) 7.
+2[l—|—1 k—l—l]A (k+1-+1)

so that, given an extension =, it is enough to tabulate the values of A®(l),
s =1,2.
Under the extension = we have

1
F, (1) = wofexp(—m”)dw

and

d 1 3
Lran] —1-y-2 [ wloguevan.
[dp f,l,p()]p=1 1—y 13 (wlogu)e " du

log1/(1—¢)

Hence, after some simple calculations, we get

y—2 ifl =0,
AN = _
() l_ (A—y)itlogl+1) .0
1(1+1)
and
—4(1—y)—5 if 1 =0,
(1) —[ 2 (31+1)log(l+1)
2 __le@—pi— if 1>1
T

Analogous results for the =*-extension are

1 it 1 =0,
log(l+1)
1(1+1)

A*(‘)(l) —_

fl>1
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and
3 ifl =0,
AW =1 2 (21+1)log(l+1)—1] ifI>1
Fat ) 2T Dleg(t+1)—1] =
The simple formulas
d n
(4.11) bn(a) = l"d—‘ El,an(a)] = Zajmj:n
‘ /4 p=1 i=1
and

n n
Zzaiajmij:n_2bn(a)

d
’wn(a) = [@El’p(Tn(G)—l)z] =
. =1 t=1 =1

€nable us to construct the most ib-robust and iv-robust estimates.
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