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ON MINIMAX ESTIMATION OF THE PARAMETER
IN THE POLYA URN SCHEME

in 1. Introduction. The minimax estimation procedure is well-known
Mathematical statistics. When no prior information about the dis-
Tibution of the parameter is given, the procedure has its advantages [6]
a4 the minimax estimators may have practical importance. Applying
© Mminimax principle we meet the problem of determining the so-called
eaSt.fa'vomble prior distribution of the parameter. In the present paper
VYe find the least favorable prior distribution by solving an integral equa-
10n, Applying the theorems on the existence of the solution of the so-called
J?ilgment problem, we may establish a general method for the determina-
0 of the prior distribution.
Let us formulate the minimax estimation problem for the parameter
in he Pélya urn scheme. We consider a random variable X distributed
¥ ={o,1, ..., n} according to

in ¢

(1) P{X =%|0 =p} = (:) cz,,(ypccny_)k(yq) . ke,
Whe = : .
Te c(#) =1, ¢;(@) = [] (®+4), y >0, and pe[0,1] (p+g=1) is

t=0

Wknown, The random variable X describes the Pélya urn scheme with
b = Np white balls, ¢ = Ngq black balls, and s = Ny~ white or black
.&lls added each time a white or black ball is drawn. In a fixed sample

8 . . . .
¢ experiment we consider the quadratic loss function

L{f(X), p] = [f(X)—pT,

Vhere £(X) is an estimate of the parameter p e [0, 1].
Now, the risk function is given by

E(f,p) = E,{L[f(X), p]},

;:'lhere E, denotes the expectation with respect to the probability function
(1). 1¢ G(p) is a prior distribution of 6, then the expected risk



226 A. Styszynski

is given by

r(f, @) = [ R(f,p)aG(p).

An estimator f* satisfying the condition
supr(f*, @) = infsupr(f, @)
¢ 5o

is called a minimax estimator. In the sequel we base on the well-known
Hodges-Lehmann result [1]: every Bayes estimate for which the risk is
constant is a minimax one.

We prove that for some finite positive values of y there exists
a minimax estimator of p in the Pélya urn scheme. In the cases y = ©
(binomial) and 9y = —N (hypergeometric) the minimax estimators
under a quadratic loss function were found by Steinhaus [3] and
Trybula [5], respectively.

2. The constant risk estimator. Assume that a linear estimator
f(X) = aX+b of the parameter p in (1) is used. We find that

R(f,p) = [(«m—lf—a?n 1+”a]p2+
1ta

1+na Y
2 —1)+ a2 b*
+[[ b(an —1)-+a*n T ]p—l— ,
“where a =y~
Assuming that E(f, p) is constant and that f(k) € [0,1], k € Z, we
obtain

Leayaa 1. The estimator

L1y
) £u(X) = X+ §Vn(na+1)/(a+1)
"+ Vn(na—}—l)/(a—l—l)

results in a constant risk.

3. The Bayes estimator and prior distribution. Now, let G(p) be
any prior distribution of 6. Since the loss function is quadratic, we can
use the general form of the Bayes estimator f%. We have

[pP{X =Fk|6 = p}dG(p)
(3) fE(E) = , ke<Z.
b[P{X =Lk| 0 =p}dG(p)
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Let g introduce the function
27?1 (1 _ w)?d—l
B(yp, v9)

}¥0tice that the probability function in (1) has the following representa-
tion (see [4]):

ﬁx(?’p’?’Q) = ’ xz e[0,1].

PIX = %10 =g} = () [0 =0y *p.0m, y0)do.

| _NOW, we seek a prior distribution G'(p) such that the estimator in
{3) 18 equal to the constant risk estimator given in (2). This results in the
Itegral equation

1

4 [ B.rp, v0) 36 (D) = B0, @), we[0,1],
0
Where o1 — 2[a 4 V(a+1)(at1/n)].
Let us examine the existence of a solution of equation (4). First,
We write (4) in the form

1
2#(1—2) = [ (1—2)" "G (p),
0

‘ﬁl‘ere % €[0,1] and G is a non-negative measure depending on y. Putting
¢ = z(1L—x)~', we obtain

1
e (L+e7) % = [T dG(p).
0

Introducing p(u) = e % (14-e~%)?"%, we finally have

o) = [e™dF (z),

Whex:e F is a measure with support on [0, ¢] corresponding to the measure
o Now, in order that g(u) be the Laplace-Stieltjes transform of F' we

ould require that y —2¢ = m (see [2]), Where m is a positive integer.
0 that case we obtain m+eo =y—g<y and

W (m
— e ( )e—(l-l-e)'u
o () l; ;

a8 well ag

Hence we have
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LeMMA 2. If y —2p is a positive integer, then equation (4) has a solution
G* given by

_ 9+'l} =(m) B(e+1, e+m—J)

P{o _eft
¥ l B(o, 0), ’

l=0,1,...,m,

where m = y—2op.
Now, we check that the Bayes estimator f¢* given by (3) is a con-
stant risk estimator. From (3) and (1) we obtain

J i1 (¥0) i (v2) 4G (D)
g —k

7o) = 7 [
’ of ¢ (¥D) i (¥9) dG™ (D)

From (4) we infer that

1
0n1(20) [ 6441 (¥P) € (YD) AG™ (D) = €1 () 611 (0) €0 (0)

and

¢n(20) [ 4 (¥D) i (¥0)AG* (D) = ¢, (¥) 01 (0)¢i(0)-

Using the last equalities and the definition of ¢ we have

_ r—20k+ely+n) _ k+3Vn(na+1)/(a+1
v(20+n) n+Vn(na+1)/(a+1)

9 (k) ) _ 5k, ked-

Thus, by Lemmas 1 and 2 we have

THEOREM. If y—2p is a positive constant integer, then the estimator
fo given in (2) is a minimax estimator of the parameter p in the Polya wrn
scheme.

As an example, let us consider the Pélya urn scheme with s =1,
N =17, and n = 2. We find that y = 7 and ¢ = 0.5. The condition of
Lemma 2 is satisfied and m = y—2p = 6.
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