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The aim of this brief note is to give a summary of how one sets up the mathematics
of General Relativity as the study of differential geometry on a restricted type of
manifold. The work is based mainly on that of Penrose, Hawking and Geroch
and only an outline of the general theme will be given, more details being available
in the references.

The success of the Minkowski space-time approach to Special Relativity, together
with the principle of equivalence and the principle of covariance, led to a model
of General Relativity Theory which consists of a four dimensional differentiable,
Hausdorff, real manifold M which carries a Lorentz metric (of signature +2) [1].
However, many other properties will be required of the manifold if it is to be a
viable model of space-time and it is these extra conditions which will be discussed
here. The choice of a manifold as an arena in which to put space-time physics reflects
the desire that space-time at the classical (non-quantum) level should be a “con-
tinuum”. The choice of M as real and four dimensional reflects the intuitive concepts
of the three dimensions of locally Euclidean space together with the one dimensional
real line for the time axis. The Hausdorff condition is supposed to follow from
experience.

In order that the field equations (to be discussed later) be defined, the metric
must be at least C2. However, the exact order of differentiability of the metric is
probably not significant and will henceforth assumed to be smooth (C*®). (One
can always consider the manifold to be smooth since any C" manifold with r > 1
admits a smooth subatlas according to Whitney’s theorem [2]). It is therefore im-
portant to establish which manifolds admit Lorentz metrics and to this end, the
following well known theorems are important.

THEOREM 1. Let M be a smooth, connected Hausdorff manifold. Then the following
conditions are equivalent.(*)

(') The connected condition is introduced here because it is required on physical grounds
later. However, Theorem 1 is readily modified if the connected condition is dropped.
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(i) M admits a C® partition of unity.
(ii) M is paracompact.
(iii) M is second countable.
(iv) M admits a C® positive definite Riemannian metric.

The proof of this theorem can be gathered from the standard texts on manifold
theory and differential peometry.

THEOREM 2 [1], [3]. Let M be a smooth, connected, paracompact manifold. Then
the following conditions are equivalent:

(i) M admits a C® one dimensional distribution.

(i1) M admits a C® Lorentz metric.

Now let M be a smooth, connected, paracompact manifold. Then by Theorem
1 above, M admits a C* positive definite metric. If M also admits a C* one dimen-
sional distribution, then a simple construction using the positive definite metric
and the distribution yields a C* Lorentz metric for which the members of the distri-
bution determine timelike vectors in an obvious way [1]. Further, the paracompactness
condition is necessary as well as sufficient, since all smooth, connected, Hausdorff
manifolds which admit a C" Lorentz metric (r > 2) are necessarily paracompact
[4]. |

The problem now is to consider which manifolds admit one dimensional distri-
butions. The following theorems summarise the situation:

TuHeoreM 3 (Hopf) [3], [5). Let M be a smooth, connected, compact Hausdor(f
manifold. Then the following conditions are equivalent:
(3) M admits a C™ nowhere zero vector field.
(i1) M admits a C* one dimensional distribution.
(iii) M admits a C* Lorentz metric.

(iv) The Euler characteristic of M is zero.

THeEOREM 4 (Hirsch [6], Penrose [7]). If M is a smooth, connected, paracompact,
non-compact manifold, then M admits a smooth, nowhere zero vector field. Hence M
admits a smooth Lorentz metric by Theorem 2.

It turns out that there are independent reasons for rejecting compact manifolds
as possible models for space-time (to be discussed later) and so from the above
results, the conditions on M so far, are that it be a smooth, connected, paracompact,
non-compact manifold with a C* Lorentz metric.(?)

One should note here the directional character of a Lorentz metric and con-
sequently how it picks out a null cone at each point, This is reflected in the necessity
of M admitting a one dimensional distribution (or line element field as it is often

(*) Hawking and Ellis [1] also add the condition that M be inextendible, that is M cannot
be isometrically embedded into a “larger” space-time M’ also satisfying the above properties.



LORENTZ MANIFOLDS AND GENERAL RELATIVITY THEORY 49

called). One should note also that certain well known results for positive definite
metrics fail for manifolds with Lorentz metrics. For example, if M has a positive
definite metric g, then if M is compact, it follows that (M, g) is geodesically complete
and that if (M, g) is geodesically complete, then the exponential map at pe M
maps the tangent space at p, T,(M), onto the whole of M. Neither of these results
is true for a Lorentz manifold (M, ¥) where y is a Lorentz metric on M [8].
At each point p € M, the timelike vectors determined by the Lorentz metric
separate into two components in the usual topology on T7,(M). Intuitively one
would like to call one of these components the family of future-pointing timelike
vectors at p and the others the family of past-pointing timelike vectors at p. The
distinguishability of the future direction at p is suggested by local thermodynamical
considerations. However, such a choice would have no physical significance if it
could not be made consistently and smoothly over M. Further, the existence of a
C* one dimensional distribution is not sufficient to ensure that the Lorentz metric
constructed from it allows the above choice to be made. Such a choice is available
when and only when the distribution is spanned by a nowhere zero (necessarily
timelike) C* vector field. In this case the distribution is orientable and the space-
time is called time-orientable. It follows that a space-time is time-orientable if and
only if it admits a global nowhere zero C* timelike vector field. It also follows from
Theorem 4 that all manifolds admitted so far have time-orientable Lorentz metrics
but a given Lorentz metric neced not be time-orientable [9]. If a space time is not
time-orientable, then for each p € M, there exists a closed continuous curve through
p (not homotopic to zero) such that if the future direction of time is “carried” smoothly
around the curve and back to p it is found to be no longer future pointing at p.
(However, if M carries a non time-orientable Lorentz metric, then there exists
a two-fold covering manifold M* which possesses a time-orientable Lorentz metric
locally isometric under the usual projection M* — M to the original one on M.)
Hence if the fundamental group x,(M) of M has no proper subgroups of index
two (in particular if M is simply connected) then every smooth one dimensional
distribution on M is orientable [10]). One therefore imposes the additional condition
that M be time-orientable. Similarly one can discuss space-orientability. To do this,
let M be a Lorentz manifold with a (timelike) one dimensional distribution d. At
each p € M, the three dimensional subspace of T,(M) orthogonal to d admits two
(space) orientations. One calls M space-orientable if one can choose this orientation
consistently and smoothly over M (the definition being independent of the one
dimensional distribution selected). In space-orientable space-times there is a con-
sistent choice of right handedness and one can carry a triad of right handed space
axes consistently and smoothly around any closed curve in M. The comments above
concerning covering manifolds and the fundamental group of M for time-orient-
ability apply in a similar way for space-orientability. (There is a similar notion
of charge-orientability—the ability to define positive charge consistently and smoothly
over M [9]). One should note that although the individual conditions of time- and
space-orientability are dependent on the Lorentz metric, when combined they
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imply that M is orientable in the usual sense, and this is a property of the manifold
M and not of the Lorentz metric. In fact the properties of M being time-orientable,
space-orientable and orientable are such that any two of them imply the third.
Experimental results from elementary particle physics and the result from thermo-
dynamics mentioned ecarlier, together with the C.P.T. theorem from field theory,
suggest that the universe is time- and space-orientable [1], [9], [11]. So this condition
is usually built into the Lorentz metric for a reasonable model of space-time.

The material content of space-time is described by various types of fields on M
upon which physics imposes certain restrictions. These postulates have been fully
discussed by Hawking and Ellis [1] and can be summarised as follows:

(a) If p € M and U is a convex normal neighbourhood of p, then a signal can be
sent in U from p to another point g € U if and only if p and ¢ can be joined by a C*
curve in U whose tangent vector is never zero and is everywhere non-spacelike.
This allows the null cone at p to be determined by observation and the metric at p
to be determined to within a conformal factor., It is now seen why the restriction
that M is connected was imposed. For if M was not connected, two distinct com-
ponents of M would have no communication with each other and neither could
explore the physics of the other.

(b) The material content of the space-time is represented in the field equations
entirely by a symmetric (energy-momentum) tensor 7 with components 7,5 (1 < a, b
< 4) depending on the fields, their covariant derivatives and the metric and is such
that T is zero on some open set U of M if and only if there are no matter fields in U,
and such that T, = 0, where a semi-colon denotes a covariant derivative with
respect to the Lorentz metric.

(c) Einstein’s field equations (3)
(l) Rab'_%-Rgab'i'Agab = BnTab

hold on M. In (1), A is the cosmological constant (*) and R,,, g., and R are,
respectively, the Ricci tensor, the Lorentz metric tensor and the Ricci scalar. One
notes that T2, =

Apart from these postulates one would normally assume that M satisfied the
dominant energy condition [1], namely that if r* are the components of a timelike
vector at p e M, then T,,¢°" > 0 and T%1® are the components of a non-spacelike
vector at p. This ensures the non-negative nature of energy density and the non-
spacelike nature of the local energy flow vector. These conditions restrict the al-
gebraic type of the energy-momentum tensors available [1], [14], [15].

Whereas postulate (a) determines the metric to within a conformal factor,
postulate (b) together with the positive energy density assumption can determine
the metric to within a constant factor (that is to within the units of measurement)

(®) Here we consider only Einstein’s theory of gravitation. For a full review of other theories
see [12].
(*) There is still dispute about the occurrence of A (see {13]).
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by the observation of the timelike geodesics followed by small isolated bodies.

Postulate (a) covers causality and the nature of local signal propagation in
General Relativity. Now one can consider global causality. Allowing the usual
interpretation of “free will” in the universe, one then requires that M admit no
closed timelike curves because of the obvious contradictions this would involve,
However, this condition is not sufficient from the physical viewpoint since a space-
time M with no closed timelike curves might contain “almost closed” timelike
curves such as those discussed in more detail in [1], [8], [16]. Arguments from quantum
theory and the uncertainty principle [1] suggest that the Lorentz metric on M should
be “stable” in its not admitting closed timelike curves. By this is meant that the
Lorentz metric ¥ on M admits no closed timelike curves and that y is conta ined
in a neighbourhood U in the C°® open topology on the bundle L of all C" Lorentz
metrics (r > 1) on M, no member of which admits closed timelike curves [1], [17],
[18). Such a Lorentz metric is called stably causal. It can now be seen why compa ct
manifolds were rejected as realistic models of space-time since a smooth compact
four dimensional manifold admitting a Lorentz metric necessarily also adm its
closed timelike curves [19], [20], [8].

There has been much recent discussion of the topological aspects of General
Relativity. The usual manifold topology on M is a “homogeneous” topology and
reflects the locally R* nature of M rather than its Lorentz metric structure, which
has a directional character. One might therefore consider other topologies for M
which are not homogeneous and from which one can deduce the null cone structure
at each point. Work on this subject has been pioneered by Zeeman [21] who proposed
a topology for Minkowski space with the above mentioned property and which
is the finest topology on M which induces the real line topology on each straight
timelike line and the three dimensional Euclidean topology on each spacelike hyper-
plane. Zeeman called it the fine topology for Minkowski space and in fact it is strictly
finer than the usual topology for Minkowski space. It has the further properties
that its homeomorphism group is that group generated by the inhom ogeneous
Lorentz group together with the dilatations of M and that when M has the fine top-
ology, all strictly order preserving (see [21]) continuous maps [0, 1] = M have piece-
wise linear images, consisting of a finite number of straight timelike line segments,
as one might expect of the world line of a free particle undergoing a finit e number
of collisions. However, the fine topology is somewhat complicated, failing to satisfy
normality, local compactness and first countability. Zeeman’s work has been ex tended
to General Relativity by Gébel [22], [23] and has recently been improved both
from the physical and mathematical (topological) viewpoint by Hawking, King
and McCarthy [24].

In this brief note, many aspects of space-time structure have necessarily been
omitted. For example no mention has been made of spinor structure (see Geroch
[4], [25]) or causal structure (see Penrose and Kronheimer and Penrose [8], [26]).
Many other useful points and references can be found in Hawking and Ellis [1]
and in Sachs and Wu [27].
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