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0. Introduction

Solve:
Az = b,

A e (™™ a given complex m Xn matrix, b € (™ a given veetor, » € 0"
solution vector.

Familiar cases:

A square and nongingular o:

2 = A~'b unique solution.

A rectangular and column regular [] (in general, an overdetermined
(linear independent columns) system of equationg)

x = (ATA)"'A*b unique least-squares solution

(4* = AT the conjugate transpose or adjoint of A).
Method of least squares: Az—b =r =0 (residue)

m

Z |7~i|2 = r*r = | Aw —b||*~>min !

{e=al zeC?

(II-1 means the Euclidean vector norm).

Investigate the cases:

A rectangular and row regular O (underdetermined system)
(linear independent rows)

A square and singular

A rectangular and rank deficient

QUESTION: Are analogous representations of the solutions # = Mb or
x = Mb-}+Py, y arbitrary, possible? M, Pt}

}rank(A) =r{A) < min{m, n).

[499]
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ANswER: M generalized inverse, P projector (representable by a gen-
eralized inverse).

1. Penrose definition (derivation)

Wanted: “generalized inverge” A+ which satisfies 3 requirements:

1. A* golves a congistent linear system of equations Az = by
@ = A*b,

2. A7 yields an approximate solution of an inconsistent linear system
of equations in the least squares senge by o = A'H,

3. (A*t)* = A, analogous to (4~')"! = 4.

1.1. Aw = b consistent (has a solution), i.c., b e B(A) = {y e O™| Ax

= ¢, & € 0"} column space of A or range of A. » = A*D shall be solution
of Az =b=> AA*b =b (condition of consistency). Since b € B(4), and
hence b = Az, z € 0", it follows AA* Az = Az, # arbitrary (depends only
on b)

> JATA = 4.

1.2, Az = b inconsistent (has no solution)
@ = A*d shall be solution of |4z —b| = min, ie.,

(4ATb—bli< |l Av—b|| VYzel", bel™

By rewriting Az —b = AAYb—b+A(x—ATb) we obtain
AATD—b|| < |[AATb—b+Ay|| Vb and ¥y = o —A*D,
and by using the abbrevidtions v = A4*b—b and » = Ay it follows
llull < [l + ]|
or because of |ju|? = u*u
S (4 +0)*(w0) = wru+orot+uro - o*u.
Because of v*u = 4*v we obtain the inequality
0 <42 Re(u*v).

Since v*v = ||p|2 > 0 and w*v = (AATH —b)* Ay = b*(AT*4%A —A)y de-
pends on arbitrary vectors b and y, this inequality is equivalent to the
requirement «#*v = 0 or

A+*A*A = 4.
However, this requirement and the two equations
AATA = A,

(AA+)* = 44+
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are equivalent. For by substituting the second in the first equation we
obtain A+*4¥A = A. Conversely, from this follows by multiplying on
the right by A™ that

AA"‘ =44_+*A*A.A.+ —_ (AA+)*AA+
is Hermitian and hence

A = AT"A%A = (AA+)*4 = AA*A.

1.3. Equivalence to the Penrose equations.

THEOREM 1. The requirements for At and the four equations (P1),...
ooy (P4) are equivalent:

AA*4 =4  (F1) AA*A =4 (P1)
(AA*)* = AA+ (F2)} o |ATAA*+ = 4+ (P2)
(AT =4  (F3) (AAH)* = 44+ (P3)

(A*A)* = ATA  (P4)

Proof. If we replace A by At in (F1) and (I2) and consider (F3)
we obtain the equations (P2) and (P4). Convergely, the equations (P1),...
very (P4) are symmetric in A and A7, that means they define

AT as the generalized inverse of A and

A ap the gencralized inverse of A%, but that means 4 = (41"

DerFINITION 1 (Penrose [35]). The n X m matrix A% is called Moore—
Penrose inverse of the m X n matriz A if A™ satisfies the four conditions

AATA =4 (P1)
AtAAT =47 (P2)
(44T = A4+  (P3)
(ATA)* =AtA (P4)
(Penrose equations).
Remarks. 1. In the original definition of Penrose A% is called “gen-

eralized inverse”,
2. Every matrix 4 has a unique matrix A* (Penrose [35]).

2. Other equivalent definitions of the Moore-Penrose inverse

DEFINITION 2. A* is called Moore—Penrose inverse of A if A*d is
the least-squares solution of Az = b with minimal Euclidean norm.

THEOREM 2. The Definitions 1 and 2 are equivalent.

Proof. According to 1.2 z = Gb is a solution of the minimum problem
ldz —b|] = min if and only if 4G4 = 4 (P1) and (4G)* = 4G (P3).
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The general least-squares solution is
(*) o =@b+(I-GA)z, =2 arbitrary,

(% is & least-squares solution because A (I —G'4)z = 0; every least-squares
gsolution G4b can be represented in the form (*) by choosing 2z = G b —@b;
cf. 6.6). According to Definition 2 @ = A* must satisfy the inequality

I6b] < G+ (I—GA)2ll Vb, 2.

By using the abbreviations 4 = @b and v = (I -G4)z this inequality,
analogous to Section 1.2, leads to the requirement

wp = b @I —GA)z = BHE* —G"G4)z = 0, Vb, 2,
hence G* = G*G4. But it holds the equivalence

G* =G*G4 GAG =@ (P2)
(or @ = 4*6*G) T |(GA) =G4 (P4),

for by substituting (P4) in (P2) we obtain A*G¢*G¢ = G, and conversely,
from this it follows by multiplying on the right by 4 that G4 = A*G*G4
= (G4)* G4 is Hermitian and thus we have G = A*G¢*G¢ = (G4)*G = G4G.
Thus ¢ = A¥,

DEFINITION 3 (Moore [29]). A* is called Moore—Penrose inverse of
A if '

(1) AATA = A,

(2) the rows of A™ are linear combinations of the rows of A%,

(3) the columnsg of A* are linear combinations of the columns of A4”.

Remark. (2) means A7 = YA* and (3) means A+ = A*Z for suitable
Y and Z.

DEFINITION 4 (Ben-Israel, Charnes [4]). A™ is called Moore—Penrose
tnverse of A if

(1) AA* = Pgy), Pgy: orthogonal projector on R(4),

(2) ATA = Ppy4), Pgiy+): orthogonal projector on R(4).

Remark. Pp 4y can be defined by the following properties:
PR( 4 is idempotent, i.e., P 4 = Px A) (but unnecessary),
R(A) = Pp) (Hermman) Py d = A4, 7(Pgq) =1(4).

3. Some properties of the Moore-Penrose inverse
(1) (4t)* = A (from Theorem 1);
(2) (4*)*F = (A*)", short: A*F = A+*;
(3) (44"t = A4+, (A*A)Y = ATA+™,
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(4) A* = (A*4)T4* = 4% (44"t
= AYAT*AY = ATAY*A+  (cf. Def. 3);
(P2) & (P3)  (P2) & (P4)

(5) A% = A®AA+ = ATAAY
(P1) & (P3) (P1) & (P4)

(8) (AA+)t = AA*, (ATA)* = A+4;

(_7) The matrices .A.A.+ .= 'PR(A)’ A+.A =.PR(A.), I-'".A..A.+ = PN(AU),
I—A*A = Py, are Hermitian and idempotent (orthogonal projectors);

(8) A% AA* A*A, A%, AA* and A*4 have the same rank like A,
moreover r(A) = trace(4AA™) = trace(A*TA).

4, Moore-Penrose inverses of some special matrices

(1) A nonsingular: A+ = 4A~' ordinary inverse;

(2) 4 e C™*™ of full rank:
A column regular (I, #(4) = n:

At = A7 = (A%A)714"* left invergse, ATA = I,;
A row regular 3, r(4) = m:
AT = Az! = A¥(AA*7 right inverse, AAT = I ;
(8) Zero matrix: 0% = 07;

(4) Secalar a:a* = {:(L)/a 11:5 Z z g’,
(6) Diagonal matrix:
D = diag(dy, ds, ..., d,), Dt = diag({df,df,...,a");
(6) (0-4)t = (1/c)A* (¢ # O scalar), especially (—A)* = —A™;
(7) 4 Hermitian (4 = A4*), then A+ Hermitian and AA* = A%4;

(8) A Hermitian and idempotent (4 = A% A® = A4, ie., A ortho-
gonal projector), then AT = 4;

Ww* w*
2’

(9) w column vector (# 0), then u* = e

P v

vto ol

»* Tow vector (% 0), then vt = j
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(L0) A = wo* (i.e. r(4) =1), then

* *
.A.+ = A = Jf' 7
(wu)(v*o)  llul vl

A*
= trace(A°4) (this is true for every matrix of rank 1);
1
(11) A m xn matrix with a; =1 Vi, j, then 4+ = AT,
! m-n ’

(12) 4 = [ﬁ] and BC* =0, then A* = (B¥, 0%), especially: [f]+

= (BT, 0);

+
(13) A = (B, €) with B*0 = 0, then A+ = [ng], especially: (B, 0)*

B+
7]
+
(14) A = [’5 g], then At = [f g+];

(18) A = BC, B column regular, ¢ row regular, then
At = 0*Bt = C*(00")"Y(B*B)"'B*
(the reverse order law ig not true in generall);

(16) A = UBV", where U, V have orthonormal columns (especially
U, V unitary matrices), then

At = VB*T*

9. Classification of gemeralized inverses

In addition to the unique golution X = A™* of the four Penrose equations
AXA =A (P1) (AX)* = AX (P3)
XAX =X (P2) (XA = XA (P4)

also matrices X are of interest which satisfy only part of these equations,
but at least (P1). In general, they are no longer determined uniquely.
We obtain 8 classes of generalized inverses, e.g. the class of all AM or
(1, 4)-inverses:

(AW} = {X| AXA = A4, (X4)* = XA},

For the (1)-inverse instead of A! we use the symbol .4~ introduced by
Rao [39].
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Clasgification
Satisfied .
Penrose equations Symbol Terminology (Rao [40])
(P1) A- generalized inverse
(P1), (P2) AL reflexive inverse
(P1), (P3) A3 least-squares inverss
(P1), (P4) ALA minimum norm inverse
(P1), (P2), (P3) A28 reflexive least-squares inverse
(P1), (P2), (P4) AL24 reflexive minimum norm inverse
(PL), (P3), (P4) Als3:4 —
(P1), (P2), (P3), (P4) A+ Moore—Penrose inverse
(pseudoinverse)

Tnclusions: {A+} € {4} = {42} < {4~} ete.
Intersection of classes, e.g, {4t} = {A"}n {4122,

6. Applications of generalized inverses to the solution of linear systems
of equations (Zielke [53])

6.1. Condition of consistency (solvability of Az = b).

3 equivalent conditions:

(1) r(4) =r(4,b) (r(4) = dimR(4) = r),

(2) b e R(4),

(3) AA™b = b (see also 1.1).

Proof. r(Ad) =r(4,b)=>R(A) =R(4,b) >=beR(4A) =b = Aw
~ AA~b = AA~Azx — Aw —b = (4,b) = (4, AA~b) = E(4, b)
= R(A(I, A~b)) = B(4), since R(4) = R(4, D) it holds even the equality
R(A,b) = R(4) =r(4,b) =r(4).

6.2. Solution of the homogeneous system Az = 0 (always solvable).
For any matrix 4 € C™*" we denote by N(4) = {# € 0"| Ao = 0} the
null gpace of 4. It holds N(4) = R(4*)*, i.e. N(4) is the orthogonal
complement of R(A*) and conversely; for if A*y =2 and 4da = 0 then
2¥p = y*Ax = 0 =2 |, ie. all ze R(A*) and @ e N(4) are orthogonal
to each other.

General solution of Az = 0:

&, € N(4) = B(4M)4,
() &y, = Bygyy, Y eC"" arbitrary, Byay basis of N(4).

For the representation of a, by means of generalized inverses we
consider I,—A~A. We show that R(I,—A"A4) = R(Byy) = N(4).
Firstly, A(I,—A~A) =0 = R(I,—A~A) = N(A). Secondly, from Az
=0=> A~Azx =0,ie.0—A Az =axor (I[,—A"A)g =x=>zeR(I,—A"A)
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Ve e N(A) = N(4) = R(I,—A~A). Thus in (+) By, can be replaced
by I,—A~A, and we obtain the general solution of the homogeneous system

@, = (I,—A"A)y, yeC" arbitrary, A~ arbitrary (1)-inverse of A,

Remark. I, —A~A is a (in general, nonorthogonal or oblique) pro-
jector from C™ on N(4).

6.3. Solution of the consistent inhomogeneous system A® = b. General
solution
¥ = 21+ Ty,

@, = x,(b) special solution, e.g. ®; = A~b (which follows from the condi-
tion of consistency AA~b =1Db) or

2 =A"b+(I,—A"A)y, vy 0" arbitrary.

1
Special cage: wunderdetermined row reqular system: m

r{d) = m < n, always solvable, because a right inverse exists and (since
AAZG' = I) therefore AAZ'd = b is true.
General solution:

x = Ag'b+(I,—Az'A)y, y e (" arbitrary.
Special right inverse: 4Az' = A%(44*)™.

6.4, Minimum norm solution (normal solution). Unique solution of
the inhomogeneous system with minimal TFuclidean norm: [o| = min.
We choose the particular solution Az=d

ZeN(AL = R(A"‘),
then
lell* = NIZ]*+ llesl* 2 |Z]I%

that is, # is the solution of minimum norm. One obtains Z by orthogonal
projecting any particnlar solution onto R(4*):

X = By = -PR(A")wl-
Since Priys = A4 = AMA and 44w, = A"b, wo get the result

o = AV,  AM arbitrary (1, 4)-inversc of A.

6.5. Least-squares solution.

TamorEM 3. The following conditions characterizing z as least-squares
solution of the inconsistent system Aw = b are equivalent.
(1) Nz —b|) = min,

xeCh
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b

(3) A*Aw = A }conmstent.

(Gaussian transformation)
Proof. (1) <> (2): Oonsider the expressgion
(%) |4z —b|]* = [(A2 —Ppgayb) — (I —Pg4) b2
‘Obviously,
(Az~Ppuyb) e B(4) and (I —Pgy)beR(4)*

because of b*(I -—Pg4))* A2 = b*(I —Pp,y) A2 = 0. Using the generalized
Pythagorean proposition (*) can be written in the form

[ 4w —b|* = 4w —Pp 4]+ (I —Preay) Bl

‘Obviously, this expression takes its smallest value if and only if
.Aﬂ’.? = 'PR(_A.)b'

(2) «(3): From (2) it follows with (P1), (P3) and 4** = 4** by
multiplying on the left by A*

A*Anw = APy b = AAAYD = AA*A*D = A",

i.e. (3).

Conversely, multiplying (3) on the left by A+* gives

AT A% Az = AT* A%
or with (P3)
AAY Ay = Ag = AAYD = Pgyb,

i.e. (2).

The general least-squares solution is obtained, for instance, by solving
the consistent system Az = Py b, namely
or

@ =AYb+ (I, —A"A)y,

y € C" arbitrary, and A® arbitrary (1, 3)-inverse of A, because A~Pry
=A"AAT = A", for A~ AAT gatisfies (P1) and (P3).

Special case: overdetermined column regular system: []m»
¥(4) = n < m. From (3) follows the unique solution "

@ = (A¥A)7T4*D.

(A%4)7'4* = A7' is a special left inverse of 4, because of A7'A = 1.

6.6. Best approximate solution (minimal least-squares solution, pseudo
normal solution). Unique least-squares solution of minimum Euclidean
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norm, that is, the solution of the minimum problem
lo]] = min with K = {#| |4z —b| = min},
zeK zeQ™

Similarly to the minimnm norm solution we obtain the best approximate
solution by orthogonal projecting a least-squares solution on R(4%):

Bpeas = Pran [A20 4+ (I, —A7A)y]

=ATAAYYD = ATA(A-AAY)b = ATAA4YD,
hence
Lot = A*p.

In principle: all cases can be covered by
£t = ATb—(I,—A*TA)y, vy eO" arbitrary.

y = 0 gives the & of smallest norm. But in general the computational
amount will be smaller if instead of A* the appropriate generalized in-
verses A, AV® or A are used.

7. Computation of generalized inverses and numerical solution
of linear equations by transforming inte normal form

7.1. Generalized inverses.

ProoEDURE. Transforming the given matrix into a simpler form
and representing the generalized inverses by means of the transformation
matrices.

THEOREM 4. Let the matriz A € O™*" of rank r < min (m, n) be trans-
formed imto the normal form

ria[t

by the nonsingular matrices P = [§1] and @ = (Q,, Q,), where P, indicates
2

the first r rows of P and Q, the first v columns of @. Then, the generalized
inverses of A have the following general represeniotions in which X, Y and
Z are arbitrary matrices of suitable size.

I

(1) A~ =¢ [1; éx P (Rohde [42]),
) I

(@) AV =@ [1; ix] P (Rohde [42])

= ¢ [ﬁ,] 1, X)P,
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_ 4
(3) ek lepz]l’,
w [ I X
@) a4 =a|_gio 7|7
& a8 _ g [—:TY —hP 2}]19 (Morris, Odell [31])
1+ 2

I
5| @ -2y,

ol
{6) A’»“—Q[ X x ]P=Q[ L ](I,,X)P

Qﬂ Ql _Q;Ql —Q;-QI
1,3,4 __ Ir _PIP;
" e 0| _glo, 5 )7
8) A =@ [_ é;q Q:QP }P;;] P (Morris, Odell [31])

I
= T I, — HP.
0| _gio | @ -rE0I

Proof (see Zielke [49], [52]).
Remarks. 1. Because of
At = ATAA; (AT, A7 arbitrary (1)-inverses)

ol e[ Jonwofl, Er -ofg]

1

the gencralized inverses A%, 4?3 AY** and A* can be written in this
product form with arbitrary or specified Y,, X,.
2. Since P, and @, have full rank, it holds

Pf =Pi(P.P;)7,  Qf =(Q:9.)77¢:.

3. If A is a full-rpnk matrix, then, in the case
A column regular [] :

T =AY = A = AV =¢Q(I,, X)P, X arbitrary,
= AV = AN = AT = Q(L,, —P,P)P.

A row regular O3 :

A= =AM = A = AV = ¢ [{{7"] P, Y arbitrary,

I
A1,4 — A1,2,4 — A1.3.4 — A.+ _ [ m ].P
Q '—Q2+ Q1
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4. Also transformations into other normal forms and by other matrices
(e.g. orthogonal (unitary) matrices) are possible and usual.

CororLARY. If X, Y and Z in Theorem 4 are replaced by zero matrices,
then we obtain the particular gemeralized imverses

I 0
-Al— =Q[Or O]P=Q1P11

I, —P.PF
T el LT R XA 2 5

I 0
—Q ¢ 0
Moreover, A% oan be wrilten in the product form

At = (1,—Q.QNQ P, (1, —PTP,).

A= |2 = @.-e.ene.r.

7.2, Linear equations.

THEOREM b. Let A € O"*" of rank r be transformed into the normal

form PAQ =[’g’ g] as in Theorem 4. Then, for the solution of linear

equations Ax = b we yield the following resulls:

Condition of consistency (necessary amd sufficient for the solvability
of Az = b)

(1) P.b = 0.

General solution of the homogeneous system Az =0

(2) x =0y, yel0" " arbitrary.

General solution of the consistent imhomogeneous system Ax = b
(3) = Pb+Q.y, ye0" T arbitrary.

Minimum norm solution (solution of the minimum problem |jw|| = min)
a o — (1, Qu@7) 0 Psb. -

General least-squares solution (general solution of the minimum problem
|4z —b|| = min)

zeC?
(5) = QP (I, —PyP)b-+Q,y, yeC* " arbitrary.
Best approrimate solution (solution of the minimum problem

lz|| = min with K = {z| |4z —b| = min}).

ek zeC™

(6) # = (I, — @297 ) Q1. Py (I, ~Pf Py)b.
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Proof. According to Section 6 and Corollary to Theorem 4.

. I, 0]
-1 »
(1) With 4 =P [0 o)

can be written in the form

P! [I" O] Q10 K O] Pbh = p-1 [I’ 0] Pb =10

0 0 [0 0 00
or
I, 07 [P, P, P,
b = =
[o o] (2] = (]2 -2
that is
P,b =
I, 0
@ G—a=dyy = (1.-0 [ 0]pp—1[ o] )
I
~(mey of o)
I, 0
— -1_ r ~1
=(efy 1, Jo-efy o]e)r
= Q [0 I ]Q‘ly, y € " arbitrary,
2
(@, @a[, o 2] ]
n r %a
with [zl] =z = Q7'y, 2 eC" arbitrary,
%2
= Q,2,, 2,e0"" arbitrary.
(3) to (6) are obviously true.
For other transformations into block forms see Zielke [54].
7.3. Numerical example. Solve 3 linear systems Aw® = b, where
1 0 1 0 1 1
Ad=115 o Y=lop ¥ =2} P2
0 11+4s 0 2 1

Transforming into normal form PAQ = [g’ g] by elementary row or

@~ the condition of consistency AA~b =5

column operations: interchanging, multiplication by a nonzero scalar,
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addition of a multiple of a row (column) to another. Determination of
P and ¢ (not unique) according to the scheme

I.0
P|I, A Q:bPOO
|2, | | 0
Transformation steps:
1 i o0 1 1., 10001 0 11|3.{ 1 o0o0O01o01
1 -1 1 o0 2. 1100/0 1 1i4.{ 1 100011
1 1 -1 0 |T|-1010/0 —1 —-1|] 0 110000
1l 0 11+e 00010 11+e —1 —1 0100
1 1 1
1 1 1
i 1 | 1
b i 00010 O 1 000(10 O
6 1 10001 0(7.0 1 100(01 0
=10 110/00 0| T|—-1 —-1L01{00 e
—1 —-101(00 ¢ 0 11000 O
10 —1 10 -1
01 —1 01 -1
o0 1 00 1
1 o000(10 O
8 1 10001 O
=>| =1 —1 1
— 0 —00 1
& € &
0 11000 O
10 —1
01 —1
00 1
1.: Add the 1st row to the 2nd row.
2.: Add (—1) times the 1st row to the 3rd row.
3.: Add the 2nd row to the 3rd row.
4.: Add (—1) times the 2nd row to the 4th row.
b6.: Add (—1) times the 1st column to the 3rd column.
6.: Add (—1) times the 2nd column to the 3rd column.
7.: Interchange the 3rd and the 4th row.

If & lies within the scope of the rounding errors, set ¢ = 0. Then
the numerical rank is 2,
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8.: If ¢ lies significantly above the rounding error level, then e.g.,
multiply the 3rd row by 1/e and hence the numerical rank is 3.

Results, If ¢ = 0 in the given matrix 4, we obtain after the 6th step

1 000
1 100 10 -1
P = [,Pl] = | e | @ = (@, @) = |01 l -1}
2 0 110 00} 1
-1 101

thus r(4) = 2. In this case the following results are obtained.

Condition of consistency P,b = 0: because of

0 2
_Pgb(l) — [O]’ sz(z) = [._1]

it is satistied for b = b, but not for b = b,
Solution of the homogeneous system Az = 0:

—1
2 =0,y = [—1]@/, y € C"" (scalar).
1

Solution of the inhomogeneous consistent system Ap = p®:

1 -1 1-y
g =@ P bV +Qy =2+ 1|y =|2—-¥].
0 1 y

Minimum norm solution:

0
& = (I, — @05 ) : P10 = [1:| with  QF = 3(—1, —1,1).
1

Least-squares soluiion of Ax = b

1 —1 1—y
@ =Q1P1(Im'_P;P2)b(2)+Q2?/ = [1 +l—1 y=11—y

0 1 ¥
with
-1 -2
1 2 -1
+‘—— .
b= B 3 1
1 2

33 — Banach Center t. XIII
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Best approzimate solution:

1 1
® = (I,—@.0F)@: P (L,,—Pf P )b = —|1].
3 12

Moreover, we obtain the particular generalized imverse (even (1, 2)-
inverse)

10 _[ro]oo .
A =02, =[o1] [0 = [11]oo] = [~ O]
1100 | 0 0
00 0l00
and the Moore—Penrose tnverse
1[4 -3 31
At = — |1 3 —3 4). P
16 0 05

In the case ¢ # 0 we obtain, also for ¢ with a small absolute value (and
just for these values), completely different results. This shows already
A7 which reads for ¢ # 0:

1 -1
1+— — 0 W
10 —1 1 0 0 0
_ 1 1 00 1 1
00 1 0 — &
£ g g 1 1 1
0o —
| & £ & |

From this comparison we learn that the elements of generalized inverses
do not continuously depend on the elements of the given matrix if the
rank changes.

7.4. Minimum rank. In general, an exact determination of the rank
of (nearly) rank deficient matrices is not possible in a finite arithmetic.
In order to avoid an incorrect increase of the rank by rounding errors
one uses the so-called minimum rank.

DerFINITION 5. 7,(A) is called minimum rank (or numerical rank,
pseudo rank) of the matrix 4 with respect to a tolerance & and a norm
I “; if

r.(4) = min r(4d-+4+44)
lA4]l/l]|4ll<e

for a sufficiently large &> 0.
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‘Because a slight increase of ¢ can decrease the minimum rank we
need an upper bound on ¢ so that for such ¢ 7,(A) < »(4) does not occur.
By using the spectral norm |||, = (max. eigenvalue of A*A)'* a proper
choice of ¢ is & << 1/cond,(A4), where cond,(4) = ||4],- 14, is the con-
dition number of 4. But since the condition number is mostly unkown,
a proper choice of ¢ is difficult, but not if the singular value decompo-
gition of & matrix is used for determining the rank. See also Golub, Klema,
Stewart [19]. In order to determine the minimum rank by transform-
ation into normal form we have to check whether the pivots are smaller
than a tolerance § which depends on the number of digits of the computer
and the condition number. This procedure is practicable, although it
can fail in sophisticated counter-examples, c¢f. Peters, Wilkinson [37].

In our computations, which were done on a R 300 computer (8 deci-
mal digits), and for the test matrices used the following orders of §/||4]| = ¢
proved to be feasible:

¢ between 10~% and 10~° for matrices with condition numbers up
to about 103 (“well-conditioned”),

¢ about 107® for matrices with larger condition numbers (“ill-con-
ditioned”).

We used the Frobenius norm |4y = V'Y 3 |ayl* It is advisable for

]

matrices which are not known to be well-conditioned to check the correct-
ness of the computations (and hence the correct determination of the
rank) by inserting the computed A* into the Penrose equations.

8. Solution of the matrix equation 4 XB = (

THEOREM 6. For the solution of the matriz equation AXB = U the
following results hold, in which Y is an arbitrary matriz of suitable size,
Condition of consistency (necessary and sufficient for the solvability
of AXB = ():
(1) C = AA-CB™B.

General solution of the homogeneous sysiem AXDB = 0:
(2) X =Y-A"AYBB".

Qeneral solution of the consistent inhomogencous system AXB = O:
(3) X =A4"CB +Y—-A"AYBB".

Minimum norm solution (solution of |X|z = min ):

(4) X = AMCBY,
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General leasi-squares solution (solution of |[AXB —0O| = min):
X
(8) X =AY 0BY“ 4+ Y —-A-AYBB™.

Best approzimate solution (solution of | X[y = min, I{ = {X| |AXB—
—C|p = min}): Xel
x
(6) X = A*CB™.
Remark. (1), (2), (3) are due to Penrose [35], (4) to Hearon [24)],
(8) to Zielke [53], (6) to Penrose [36]. In order to solve AXB = ¢ nu-
merically the matrices A and B can be transformed into normal form

and then the generalized inverses required can be computed according
to Theorem 4.

9. Computation of column spaces, null spaces and projectors

A further application of the transformation into normal form.
TEEOREM 7. Let A € O™ of rank v be transformed into the -normal

form PAQ = [g" g] by the nonsingular matrices P = [f;l] and Q@ = (Q,,0Q,)
2

a8 i Theorem 4, Then we obtain: the bases

(1) Bpay = AQ, basis for the column space of A (r linear independent
columns of A),

(2)  Byy = Q. basis for the null space of A (z =@,y 1is the general
solution of the homog. system Az = 0),

(8)  Bpuaw = (Pr14)%
(4) BN(A') = P:i
the orthogonal projeciors

(B) Pp) = AQ:(4Q,)T orthogonal projector on R(A)

= AQ,[(4Q,)" 40,177 (4Q,)" (r < mf2)
= I —Pyiawy (r = m/2)
(6) -PN(A) = Q7 = Qz(Q;Qz)—IQ; (r = n/f2)
= I, ~Ppgs, (r < nf2)
(7)  Pryey = (PrA)'P1A = (P, A)* [P 4(P,4)']'P, A (r < nf2)
= L, —Pxay» (r=n/2)
(8) Py = PP, = Py(P,P;)"'P, (r = m/[2)
= Im _'PR(.A) (9' < m/2)

Proof, See Zielke [49).
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Remark. The inequalities » < m[2 etc. refers only to the smallest
computational amount, but not to a limitation of the validity.

10. Other methods for computing generalized inverses

Main method: Full-rank factorization (Egerviry [16], Greville [23]).

TaEOREM 8. Any mairiz A e 0™*" of rank r can be expressed as a
product

A = B0, where Be(0™ agnd ¢ e
are full-rank matrices, both of rank r. Then
Ar = 0*BTY  with Ot = (0* (00", Bt = (B*B)"'B".

PROCEDURES:
1. LU decomposition (Kublanowskaja [26], Peters, Wilkinson [37])

N\ \_[ L: lower trapezoidal, with units on the
A=LU= | | principal diagonal,
U: upper trapezoidal,
Uomputation of L and U by means of Gauss elimination.

Note: Usually, the decomposition is performed along with some
form of pivoting (interchanging rows and/or columns), that means, in
reality we start from a matrix A and obtain the factorization

T AT, = A = 1T,
where T, and T, are permutation matrices, Then
At = ULt = 0N U UM N LAD)LA

First, compute X from L*LX = L*, Y from UU*Y = X, then AT = U'Y
&Dd A-I_ = T2A+T1.

2. Orthogonal decomposilion

A =QR,

Q: orthonormal columns, i.e. §*Q = I,, R: upper trapezoidal.

Computation of @ and R by means of Householder transformation

(Korganoff, Pavel-Parvu [25] or modified Gram-Schmidt orthogonaliza-
tion (Osborne [34]) or Givens method (Kublanowskaja [26]). Then,

At = R*(RR")™'Q".
3. Singular value decomposition (Golub, Kahan [18])
r

A =TUSV* = D o0},

=1
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S = diag(oy, ..., 0,), 0; = VA,{AYA) > 0 singular values of 4,

U = (Ugysery %)y V =(V1y...,%) with orthonormal columns u,, v
(singular vectors, the eigenvectors of AA* and A*4, respectively, corre-
sponding to the eigenvalues 4, 7 0 of 4*A (or AA4¥%).

Then
r
1
AT =TV8IU* = y — vu;.
P U’i
1=l
Note. If the computer yields § = diag(oy, ..., 0y), 0612 ... > g, then
A has minimal rank #,(4) = r relative to ||, if and only if
Op41 Op 1
i - B =
oy £< o, cond,(4)’

compare Golub, Klema, Stewart [19]. That means, all the singular values
oy 4 =1r+1, ..., %, for which ¢; < g0, holds must be set equal to zero.
A reasonable choice of ¢ is £ = # where % is the relative machine precision
n = 0.8B~**! (¢ number of digits, B base of the number system).

4. Block decomposition (Noble [33]). Obviously, any matrix of known
rank » < min(m, %) can be partitioned into the block form

A

- [j“ jn], A4, € C"" nonsingular,
21 22

by interchanging rows and columns if necessary. Then, because of A,,
= .A.21.A1_11.A.12’ it hOldS

A _ _ At 0
A = [_A:] AnI(An: A12)7 -A'l = [O H 0],

+ + -A11 *
4 =(-A117A12) -A-u -A21

- [ A:;] (Agg A3+ A3 A1) Ay (A% Ay A5 Aa) 7 (4T, 43).

The general forms of the other generalized inverses can be found
in Zielke [49], [52].
5. Transformation into Hermite normal form

gr éf], P nonsingular, T permutation matrix.

PAT =[
Computation of P, T, K by Gauss elimination. Then

At = T[I’*] (I, +EE*(I,, —P,P})P (Zielke [49], [52])-
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The equation
(I, +EE*™' = I,—K(I, ,+K*K)"'K*

can be used to reduce the computational amount if » is relatively large
or small. We propose to use the left-hand side if » < 7, otherwise the
right-hand side. In this way and by a suitable choice of the succession
of matrix multiplications it is possible to achieve for large m =n =»
the minimal computational amount of about »® multiplications.

6. Generalized ileration of Schules (Ben-Israel [2], [3], Ben-Israel,
Cohen [5]). Starting from

1

2
X. = agd" 0 -_— O —
o =ofdy Usa<oEay B T4y

the sequence
(*) Xy = X+ X (I-AX,), k=0,1,...

converges to AT as k—oo. Practically, the algorithm needs at least
2log,[cond,(4)] iterations (e.g. cond,(4) = 10% = k> 20).

Disadvantage of the method: not self-correcting, numerically diver-
gent, not suitable for iterative refinement of an approximation to A¥.

Remark. Any approximation X, to 4+ can be adapted to the space
conditions X = YA* = A*Z (see Definition 3) by orthogonal projecting
PriamXoPruy = ATAX,AA*. But the exact 4™ is unknown.

An approximation X, which exactly satisfies the space conditions
can be obtained without knowing A+ by using the Penrose equations
(P3) AAt = A™™A"* and (P4) ATA = A"A** and then replacing A+
by X,

(%%) X, =A"XI X, X3 A"

The iterative method () with X, as initial approximation converges
to At if X, is a sufficiently close approximation to A% and cond(4) is
not too large. In order to improve the accuracy compared with that
obtained by a good direct method the iterative process must be per-
formed in double precision arithmetic. This process is self-correcting if the
{oblique) projection (*#) is repeated after some iterations (Zielke [50]).
See also Shinozaki, Sibuya, Tanabe [43], [44].

11. Test matrices and numerical results

More than 30 methods for computing A* were tested by test matrices
whose condition numbers can be changed by a real or complex par-
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ameter a. Three of the simplest matrices are the following:

“1 6 a—la 2a 2 24 9 —da
Y a+ a alz A+_1 0 1 0 1 9
1= 6 & a= » A =7 _2a-2 0 —2a-2 0 dal

atl a a a 0 1 0 1 9

a+l atla a+l
o o] 1] 10 108 | 10° | 10¢
condp(4,) 3.5 | 14 | 80,2 | T.8144 | 78,46 | 7.8,,8

at+l a a a+l
a+2 a+1 a+1 a+42
Ay, =|a+3 a+2 a+2 a+43 |,
a+l a+l a a42
a a a—1 a4l

120444 20 —12¢—4 —6a—27 6a—3 |

n 1 | —12a—56 —20 12a-+16 64133 —6a—3
? T 0| —12¢-12 0 12¢4+12 6a-9 -—6a-—21})’
12a 0 —12a —6a+16  6a-+15 |

a., | 0| 1| 10
condp(4,)| 11 | 21 | 3.7,,2

rank(4,) =3 3
(d,) ] 29,04 | 2.8,,6 | 2.8,,8

102 ‘ 103 104

— a a+1l a+2 a+3 a 7

a a+2 a+3 a+b5 a+1
a+1 a+2 a+3 a+4 a2
a+2 a+3 a+4 a+b a3
a+3 a+4 a+5 al-6 a+4b
la+d a+b a4+6 a6 a7

4 -1 -8 7 -5 3
—8 2 +13 —8a—28 6a417 ~2¢—3 2a-+1
Af =3 | 10 —22a—-11 8a-+18 —6a—9 2¢—1 —2a-+1],
—2 3 —2 1 1 -1
4 —2 12 —10 6 2
a | 0 1 10 102 | 103
condp(4y) | 13402 | 20562 | 18,43 | 11365 | 1.04,7

Numerical resulis. For each tested method and each of the test matrices
the “minimum number of correct decimal digits”, i.e. the quantity

]

rank(4,) = 4,

ﬁij — 4

Jii

—log,,(maximum relative error) = —logw[ max
0470
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b2E

wag determined, where g, is the computed value of the element gy of
At = (gﬁ) If g; = 0 then the maximum absolute error was used. Of

course, gi: = Gij

Abbreviaitons:

— rank false,

GREV
Iter
SVD
GIV

- rank correct
Lim At = lim (4*4 4 ¢I)~4*

a=>4-0
Greville’s method (successive bordering of columns)

Tterative method of Ben-Israel
Singular value decomposition
Givens’ method

Vi, § means full precision.

MGS Modified Gram—Schmidt orthogonalization

HOUS Householder’s method
LU LU decomposition (Gauss elimination)
HT Transformation into Hermite normal form
Table. Number of correet decimal digits (8 decimal digits mantisaa)
a || Lim |{GREV | Iter SYD GIV | MGS |HOUS | LU HT
0 3.52 7.48 7.40 6.69 6.80 7.70 7.09 8.66 7.00
1] 8.86| 6.26 6.80 6.45 6.80 | 6.92 6.69 | 5.80 | '7.00
A 10 | 0.86| 1.92 2.67 4.88 4.056 | 5.40 460 | 5.74 | 6.68
100 | 0.01 - - 3.14 | 1.38 1.49 3.031 470 | 5.95
1000 | — — - 1.24 0.86 | 3.00 | 8.00
0 2.93 6.27 5.66 6.00 5.83 6.48 0.15 6.15 6.64
1| 2.00| 4.29 4.40 5.92 | 5.92 6.22 6.00 | b5.92 | 6.22
A, 10 1.20| 0.79 | 2.91 4.07 | 4.94 | 4.21 474 | 3.41 | 5.49
100 | 0.09 - - 1.64 | 2.96 1.68 1.01 | 3.49 | 3.41
1000 | ~ - - 0.69 1.57 2.04 | 2.04 |
0 1.63| 3.38 3.50 | 4.38 | 5.43 | 4.97 543 | 524 | 5.72
1| 0.98| 8.54| 3.75 3.60 | 4.27 4.67 499 | 5.15 | 5.25
Ay 10| 0.56| 0O.58 0.62 4.11 3.96 | 3.25 3.38 | 4.14 | 4,14
100 | — — — 062 | 212 o0.88 0.74 | 1.34 | 1.33
1000 || ~ - -
Sum | 17.73 | 34.51 | 87.71 | 53.34 | 55.15 | 556.44 | 55.70 | 64.78 | 69.87
Op (n3) 2 1.5 | 2k 7-8 5 3.5 3.5 3.5 1
Precision [ VCTY poor good good or
poor very good

Remarks. 1. Op(n?):

number of multiplications for m =#n =7 >» 1,
only of order »3 A real, k; number of iterations.
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9. The transformation into normal form (3n® op.) yields results similar
to LU decomposition,
3. Concerning the rank test, SVD is the most reliable method.

12, Final remarks

12.1. Short historical notes. The theory of generalized inverses of
matrices has been developed during the past 25 years caused by two
papers by R. Penrose [35], [36] (generalized inverse A*) who showed
that the least squares solution of the inconsistent system Az = b with
the smallest Euclidean norm is given by o« = A*b.

Already previously, E.H. Moore [29], [30] (general reciprocal)
obtained fundamental results on generalized inverses, probably much
-earlier, about in 1906, see Ben-Israel, Greville [6], p. 5.

Extension to generalized inverses of linear operators in Hilbert
space by Y.Y. Tseng [46]-[48] a student of Moore.

The concept of a generalized inverse was already mentioned by
I. Fredholm [17] (pseundoinverse of a linear integral operator).

Further main contributions to generalized inverses of matrices were
made, among others, by:

A, Bjerhammar [7], [8] (different types of generalized inverses,
application to linear systems),

T. N. BE. Greville [22], [23] (fundamental papers),

C. R. Rao [39], [40] (classification of generalized inverses),

A. Ben-Igrael, A, Charnes [4] (state of the art in generalized in-
verses).

Generalized inverses solve linear algebraic systems. But there are
-other generalizations of inverses, for instance the Drazin inverse (Drazin
[156], see also Campbell, Meyer [13]) which can solve systems of linear
-differential and difference equations. But how to compute the Drazin
inverse?

12.2. References to books and algorithms:

Korganoff, Pavel-Parvu [25] (earliest book on generalized inverses,
extensive bibliography, detailed treatment of numerical methods),

Boullion, Odell [11] (proceedings of a symposium, comprehensive bibli-
ography),

Boullion, Odell [12] (textbook, containing exerciges and 362 references),

Pringle, Rayner [38] (accurately written monograph with statistics
applications),

Rao, Mitra [41] (full-length monograph, concise style, several applications
of generalized inverses, especially in statistics),
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Albert [1] (textbock with applications in statistics, restricted to the
Moore—Penrose inverse, numerons problems with solutions in a separate
booklet),

Bjerhammar [9] (generalized inverses are treated only to a shorter extent,
the terminology used is not up to date),

Ben-Israel, Greville [6] (a comprehensive and very well readable book
with more than 450 exercises, containing a chapter on generalized
inverses of linear operators in Hilbert spaces),

Kuhnert [27] (short introduction to the solution of linear equations by
means of the Moore-Penrose inverse, regularization methods are also
considered),

Nashed [32] (proceedings of an advanced seminar, collection of excellent
survey papers, containing the most comprehensive annotated bibli-
ography on generalized inverses and applieations, 1776 references),

‘Groetsch [21] (representation and approximation of generalized inverses
of linear operators in Hilbert spaces),

‘Campbell, Meyer [13] (well-written unified treatment of generalized
inverses including the theory and applications of Drazin inverses).

In addition, two books are mentioned which use generalized inverses
in connection with the numerical solution of linear equations:
Stewart [45] (introduction to matrix computation, textbook),
Lawson, Hanson [28] (detailed numerical treatment of least-squares
problems).

Algorithms. Some algorithms and computer codes for computing
least-squares solutions and Moore—Penrose inverses of matrices of arbit-
rary rank, which are well elaborated and tested and highly recommended
in the literature, can be found in:

Bjorck [10] (modified Gram-Schmidt orthogonalization, ALGOL proce-
dures),

‘Golub, Reinsch [20] (singular value decomposition, ALGOL procedures),

Lawson, Hanson [28] (Householder transformation, singular value de-
composition, FORTRAN codes),

Dongarra, Bunch, Moler, Stewart [14] (Householder transformation
singular value decomposition, FORTRAN subroutines).
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