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1. Introduction

Bifurcation theory is a study of the branching of solutions of nonlinear
equations. Typical applications of bifurcation theory are in elastic and
hydrodynamic stability, However, in experiments and in real applica-
tions, the sharp transitions of bifurcation rarely occur. Small imperfec-
tions, impurities or other inhomogeneities tend to distort these transi-
tions. To analyze mathematically the perturbation of bifurcations caused
by imperfections and other impurities the classical bifurcation theory
is modified by introducing an ddditional small perturbation parameter
which characterizes the magnitudes of these inhomogeneities.

The principal methods for analyzing such perturbed problems are
due to Koiter [4], Keener and Keller [3], Chow ef al. [1], Matkowsky
and Reiss [b], Potier-Ferry (6] and Weber [8]. The approach used here
i§ akin to that of Weber [8] and is based on a transformation of the given
problem into an appropriate boundary value problem possessing isolated
golutions. Thus, the numerical treatment using standard methods is poss-
ible. However the mnonisolated solutions are calculated contrary to We-
ber [8] in dependence of the perturbation parameter. The ansatz used
for singular solutions is a generalization of the representation found by
Hermann [2].

The advantage of our ansatz consists in the possibility to determine,
for a fixed value of the perturbation parameter, the nonisolated solution
as well as a solution branch through this singular solution simultaneously.
For this purpose an expanded boundary value problem is build up.
Initial value methods in shooting techniques with automatic stepsize
control are now applicable.

Numerical results illustrating the method are given in the last
section.
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2. Formulation of the problem

Oonsider the nonlinear two point boundary value problem given by

(2.1a) Ly =f(4,7,9), a<ti<b,
(2.1Db) Byl =0,
where

Iyt =y’ —-A@y(D), 6<i<b,
Bly] = B,y(a)+B,y(b), By, B, cR™",
(2.2) yeCpla,b), Ae0C,,le,b]l, rank[B,B,] =n,
feC*(RxRxQ,R"), 0efRQcR" isan open domain,
f(2,0,0)=0 VieR, f(A,z,0) #0V 1 0.

J is an eigenvalue parameter; r represents a real perturbation parameter
characterizing the magnitude of the inhomogeneities of the given problem.

We refer to (2.1) as the perturbed problem and (2.1) with v =0
a8 the corresponding bifurcation problem.

By L, we denote the linear differential operator L —f,(4,, 0, 0) with
domain 2(L,) = {y € C}[a, b]| B[y] = 0}.

Assume that

(2.3) dimA"(Lo) =1, A (Ly) = span{pe}, ool = 1.

Tt is well known that the nullspace 4 (L;) — the adjoint I; of L, defined
in the usual way (cf. [7]) — is one dimensional

(2.4) dimA (Lg) =1, A (Lg) = span {y.}, el = 1.
Moreover, Fredholm’s alternative is valid:

(2.5) '%(Ln) = L/V(L:)'L;

where

8t ={yeC,la,b]| w,2) =0 VzeS8 c C,la,b]}
and

b
Gy = [y0F2)dt  Vy,zeC,la,b]l.

a

We require that f satisfies two conditions:

(2.6) (1) 4 = {yos fale) 0, 0)gpp #0,
(2.7) () b =<y, fr(d,0,0)) #0.
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3. Nonisolated solutions

The quadruple (4, z,y,¢) is called monisolated or singular solution of
(2.1) in correspondence to [3], if the following equations are fulfilled:

(3.1) Ly—f(,v,9) =0, Bly]=0,
L‘P_fy(l, 7,¥)9 =0, Bp] =0, g # 0,

(2.3) and (2.6) insure for = = 0 that (,,0) is a bifurcation point, i.e.
a family of nontrivial solutions of (2.1) is branching from the trivial
golution. Therefore (4,, 0,0, ¢,) represents a nonigolated solution at the
bifurcation point. We look for a curve of nonisolated solutions of (2.1)
depending on the perturbation parameter r and containing the special
branching solution (44, 0, 0, @,).

Let the second bifurcation coefficient a, be defined as (cf. [2]):

(3.2) ay = <'§U0;fyy(ﬂ'01 0, O)‘Pﬁ)-
3.1. The Case a, #* 0. For a, 40, i.e.
(3.3) {Pos fyy(4oy 0, 0)gp> #0,

we nse the ansatz for nonisolated solutions

a
y(2) = — —= poz+ [K(2)po+ w1 +0(2)
2
Mz) = Aot2+4,(2)2% @(2) = gt g2+ yp(2)2®
(3.4) o
2t = afzr, signt = sign(d'a,),

1

v(2) € #(Lo)y  w(2) € A (Lo)*

u, i8 defined in (3.4) as (unique) solution of the linear boundary value
problem

1a

Lu, = —“——fyz‘Po"l‘ fD 5 2

fuu‘pu’
(3.5) )
Blu,] =0, <9’0, %y =0

and g, is defined as (unique) solution of the linear boundary value problem
a
Loy = fuva— — %
2

(3.6)
Blp] =0, <gpo,ps> =0.
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The superscript zero denotes the corresponding funclion evaluated at
A=2y 1=0,y=0,eg f) =f,(4,0,0). Using Taylor’s theorem and
properties (2.2), we obtain for f(4, 7, y) and f,(, 7, y) expansions of the
form

(3.7) Fy 7, 4) = PPy +fr+Fouy(A—A) + oy v+

1 1
-+ ?fgyyz +f227(;' - ’10) +—é_f3yyy3 +

o Py G Rl 7, )
and
3.8)  fy(A Ty 9) = PSR Ao) ot LSy oy (A — Ao+
+ 3 0¥+ 3o (A— A0 +Ry (4, 7, ).
The remainders &, and R, are of the form:
{3.9) B, =04 and R, =0(z).
Ingerting ansatz (3.4) into (3.1) and employing the abbreviation

(810) w(e) = ==L ot [E (#)go-+ude+o ()2
2
vield

(3.1128) Lov(2) = fya {K (2)po+ 11+ (2)2 + A (2)w ()} +

2

1 0
2ba2 ffyrw(z)‘l‘

+ if;;y { _Zﬂ Pty + [uf —2 'a—l%j’v(z) +2u, 0 (2)2 +
2 Gy s

(e —K(z)wﬁ] 2+ 2K (2) gow (7] } +

44
Sha

ail+2(=)2} + — fwyw (2)8 4

3 ol @0 @)+ Ral3e), ), 3102)

= Py (v(2), A (), K(2); 2)
and

(311b) Loy(s) =[ (AF

+ 4, +v(2)2} +

o) + al(z)f;;ww(z)wr%fﬁw,w(z)w
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1 0
+;fw LA+
2 RalAe) e ,y(z))]-[%+¢1z+w(z)z2]+

+ [fgﬂ._ *a'i f;;]u‘Po] [+ (2)2]

_Ql(” 2), K(2), y(2); 2 )

We construct an eqmvalent boundary wvalue problem of dimension
N =2n-+4 to solve the problem (3.11) with conventional numerical
methods, e.g. with shooting methods

Lyv(z) = Py(v(2), 4,(2), K(2);2), B[v(z)] =0,
Low(2) = Q1 (v(2), A1(2), E(2), p(2);2), Blp(2)] =0,
(3.12) A(z)Y =0, K(2) =0,
=g v(2) =0, p(a) =m(b) =0,
—y p(2) =0, pa(a) = pa(b) =0,
We can now formulate the ﬁain result of this section.

THEOREM 3.1. Let L, f and A, salisfy conditions (2.2), (2.3), (2.6),
(2.7) and (3.3). Then there is a positive constant t, such that for each v with
It < 7, and signt = sign(b-a,) there exists an isolated soluiion ('v (2), y(#),
K (2), As(2), pa(2), ps(2)) of the boundary value problem (3.12).

It is possible to construct a continuous family of nonisclated solutions
of (2.1) with ansatz (3.4) containing the special singular solution (44, 0, 0, o).

Proof. For 2—0 problem (3.12) is reduced to

00(0) 4 A, ( ) — fyA‘PD+K( {'z_i‘ ffqu)g —fB;.‘Po}
2
& a

a4y 0
= fyathy — 'é—b'—gfm% s fﬁy%’url- 2b-a, fa—
oy a,
6 aa fym/ 2.0‘ fﬂu%y

2

Ly (0) — 2:(0) 90 —E (0) f 5

a’ 1 al
= - fm% +fwu1‘Pn : f;}yltpﬁ'l“ Eéf:w’?g—’-

2:b-a

1 ay
+ foa®otlae— — Ty ®oP1s
2
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2,(0) =0, K(0) =0,
p—eav(0) =0, u,—g;p(0) =0,
B[»(0)] =0, B[y(0)]=0,
pr(a) = pi(b) =0,  wy(a) = us(b) = 0.

Let (v° y°, K A}, ul, u2) be a solution of the homogeneous problem (3.13).
Then clearly

(3.13)

a a
Lo’”““l*}-?_lfztf)l%‘}‘KO I_lfitf]y‘?g ~f®op = 0,
1279 la’z
Lofl’o—‘ﬂgﬁa% —K"fﬁyqjﬁ =0,
=0, E'=0, W—gfo°=0, p'—giy’ =0,

B[v] =0, B['1=0, pa)=pwu®d) =0, uila)=pus(d) =0.
Since
Lyv® € R(Ly), Lypedk(L,) and R(L,) = #{(LHH*
it follows that

a a
0 = oo Lt = = (o 502 oot 1022 =),
2 2

0 = (g Lyyp®) = Yo, J‘?fq?rlglﬂ _If0f3y¢g>'

The first equation in (3.14) implies

(3.14)

2 =0,
We thus obtain

0 = (yoy Loyp® = Ku("/’u;fﬂ;ﬂpb = K°-a,.
Supposition (3.3) yields
Ko =0,
Now, because of assumption (2.3) we get
v =01pp and v° =Chpy; C,,0,eR.
Using the problems

#T“"P?vo =0, .’-5(1)(0’) = lu"(l](b) =0,

|
=
e= =
=
g
i
=

pa ~gy 9’ =0, pla) =
we can see that ¢, =0 and €, = 0, i.e.

=0 =0, u =0, pr = 0.
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Let % denote the differential operator defining the homogeneous
equation (3.13). This problem has only the trivial solution. Hence, the
nullspace of #* i§ one dimensional, i.e. #(&) = C,[a, b] and ¥ is inver-
tible. .
Finally, from the implicit function theorem, we obtain the state-
ments of Theorem 3.1. m

3.2. The Case a, = 0. Consider now vanishing of the second bifur-
cation coefficient

(3.15) @y = Py, fyy(4oy 0, 0)g> = 0.
Let 4, be (unique) solufion of the linear boundary value problem
(3.16) Loﬂ'l = ‘%fsu‘?’%’ Bl4,] = 0, {@o Uy = 0.

Define 0, € R as
[ ] a’l
3("{’07f3y'&1990+ %fﬁuy(pb

(3.17) C,

on the condition that

(3.18) (o f:/)y'ﬁﬂ’o + %ﬁw?’b #0.
Furthermore we assume
(3.19) ¢,>0.

The following ansatz is applicable to the determination of nonisolated
solutions in dependence of the perturbation parameter 7:

y(2) = ‘/E;‘Poz‘l‘ [O, ty +K (2)@o]2* + [z + 2 1/(_7_2 K (2),]2° +

+ [v(2) + K (2)2 13y ]2,
3.20) “ﬁ = ho+ 22+ Ay (2) 2,
0(2) = 9o +2VCyliz+ [y 12K (2) 122 + p(2)2,
o = —%75_7 vie) e ML)ty ple) € H (L)

u, i defined in (3.20) as (unique) solution of the linear boundary value
problem

2 Ve, _ — . —
Lothy = — 3—;—"’11‘24— VCofo g+ 0, VOS2, i po+ CoV O3S, 04

{3.21)
B[u,] =0, (@oy gy =0
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and ¢, is defined as (unique) solution of the linear boundary value problem

09’2 .fy/lcp(l","?’a (fyy”l‘;‘)n‘}‘%fyw%)
(3.22)

Blg,] = 0, {Poy ps) = 0.

Using Taylor’s theorem and the properties (2.2), we obtain for f(1, 7, y)
and f,(4, v,y) expansions of the form

(3.23)  f(Ay7,y) =Sy +fiv+ iy (A—Ao)+fiye+ $fpy2+
+ 3 ¥+ 3Tyt (A — Ao) + 55 ¥+ RBa(4, 7, )
and
(3.24)  f(h o) =L+ A—h) vty +fny (A—24) +
+ 3o ¥’ + 3oy’ + Ba (4 7 9).
The remainders B, and R, are of the form
(3.25) R, —0(#) and R, = 0(".
Inserting ansatz (3.20) into (3.1) and employing the abbreviations
wy (2) =V Oapy +[0, 1+ E(2) pol 2+ 13 +2V 0, K (2) ] % +
+ [v(2) +K (2)? 4, ]2,
(8.268) w,(z) = Cathy+ [t +2 l/-(—/'; K (2)u,]2+[v(2) +K (2)24,]22,
wy(2) = 9o+2V 0y a2+ [pa + 2K (2) #,]% +  (2) 27,
wy(2) = 2V 0, i+ [pa+ 2K (2) i Jo+ p(2) 22
yield
(3.27a) Lyv(z) = K(2) {f{s00+ 30 5,00ty + 3Cof @} + A1(2) l/(]'—zf,,“;%—l-
+ o {wa (2) + 3, () [ws (2) + K () g2} -
10 5 ws (2)2 -+ V Coapy 15+ [v(2) +E ()2 1y ] 2) -+
+E (2) @ (w,(2) —0,s) ) +
4 Fp (30 ws (2) +3 V Cago (wa(2) + K (2) po)22 +
+ (w3 (2) +E (2) o) 222} —
V0_a1

2
_E fy: 1(#) + — fyyz{1+]* (2) z}wl(z
+if° wi(5f 4+ B

24 yyyy 1 z4 a

= Pz('v(z)a A(2), K(2); z)
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and
(3.270)  Loy(2) = h(2)f5p0+6V 05 K (2) {10,000y +350, 03 +
2V 00,
+[_ 3;“ Tyt Toy (s + [0(2) + K (2)2 8,12} +

+ o {1+ Ay (2) 2} wy (2) +

1 .
+ 9 fgw {2 ‘/Oa‘Powa(z) + [w,(2) +K (2)po]*2} +

1 1
+ g T 61 o5 Ben)+

+ [ L+ (@) 2} £, Cofla +355,, (Ot +
+2V 0, K (2)p32} 1w, (2) +
+ 135 (V Copo 2+ 9 (2)2] +E (2) 0y [ 05 -+
+ 2K () ity + v (2) ]2}
= Q:(v(2), M(2), K(2), v(2); 7).

Again we construct an equivalent boundary value problem to solve
equations (3.27)

Ly v(2) =P2(’U(z),ﬂ'1(z)aK(z)§z)y B[v(2)] = 0,
Loyy(2) = Q,(v(2), A,(2), K (2), w(2); 2), Blw(2)] =0,
(3.28) Wz =0, K(z =0,
m—gio(E) =0, m(a)= (k) =0,
w— @ p(2) =0, pa(a) = ua(b) = 0.
We have now the following

THEOREM 3.2. Let L, f and 2, satisfy conditions (2.2), (2.3), (2.6), (2.7}
and (3.15). Then there is a positive constant v, such that for each v with
7| < 7, there exists an isolated solution (v(2), p(z), K(2), A,(2), pi(2), 2 (2))
of the boundary value problem (3.28).

It 45 possible to construct a continuouns family of nonisolated solutions
of (2.1) with ansatz (3.20) containing the spevial singular soluiion (1,, 0, 0, @,).

Proof. For 2—0 problem (3.28) is reduced to:
Lyv(0) —K(0) {fSA‘Po + 302f3u‘P0"~‘1 + %sz;/’w‘?’g} — A:(0) V@f& @o

~ — 1 .
= oSty +f3u {1/02 UsPo 1 9 C u?} +
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1 . 0 a 1
+ 5 Ggfguy’“'l?’% - —— f wePot — 02f3y1¢§+ o4 Cifaguw‘Pg;

Lgp(0) —H (0)6 ]/(72 {faum% ﬁl + %fitf)ﬂu‘Pg} - ﬂl(O)fﬁa%

= 2 l/azal fyr% +fm/ {'“'2%'[“202 l/0'2 ’“1 + 1/02%%}-!‘
(3.29) +2 ]/Gef;,)z Uy + '/Oszmi.qgg +20, I/szf,'wﬁﬂpg +40. }/Ozfvoyw‘Pg,
111(0)' =0, K(0) =0,
0(0) =0, p—gyp(0) =0,
B[’v( )1=0, B[p(0)] =0,
pa(@) = py(b) =0,  pa(a) = pe(b) = 0.

Let (v° v K% A%, u?, u3) be a solution of the homogeneous problem
(3.29).

Then

Lyv® — KO {fp o+ 30,1, @0 thy + %Ozfgw‘;”g} — Va;fﬁz% =0,

Loy® —K°6 V0o (£, po s + 4 S0 wi} — Bipape = 0,
A =0, EY=0, p—¢iv®=0, u—ogfy®=0,
B[] =0, B[p]1=0, ui(a)=pu(d) =0, pm(a)=p(d) =0,
Since
Lov e #(L,), Lyy'e®(L,) and R(L,) = & (LH+
it follows that
0 = (yqy Lyv® = {3, K° {f:?;.%+302f3y%’ﬁ1+%Ozfqgw?’g}‘l"
{3.30) + XV Caffapeds
0 = (o, Lop®> = (3o, K6 Ve, {Fw®otia+ 310y, 20} + M 000 -
The first equation in (3.30) implies
Al =0.
Therefore we obtain
0 = (ypy Loy® = K VO_a("Po:fgu%%‘l‘ ‘fogw‘l’b .
Supposition (3.18) yields
K =0.
‘We conclude in correspondence to the proof of Theorem 3.1 that

W=0, =0 =0 um=0.
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Again, let ¥ denote the differential operator defining the homogeneous
equation (3.29). This equation has only the trivial solution. Hence, the
nullspace of #* is one dimensional, i.e. #(%) = C,[a, b] and & is invert-
ible. '

We obtain the statements of Theorem 3.2 by the implicit function
theorem. m

4. Solution branches through nonisolated solutions

We are now interested in the determination of solution branches of (2.1)
passing through nonisolated solutions (2, z, ¥, ). Let 7 =7 fixed. The
following boundary value problem is treated

(4.1a) Ly = f(2,%,9), agt<bh,
(4.1b) Bly] = 0.

We denote by #, 4, § the components of the singular solution at
T =T,

Let L, be the linear differential operator L—f,(%, %, ) with domain
2(L,) = 2(L).

Agssume that

(4.2) dimA# (L)) =1, W (L;) =span{p}.

Then, the nullspace of the adjoint operator is also one dimensional
dimA (I}) =1, & (L}) = span {p}.

We seek for solutions A, ¥ of (4.1) in the form (ef. {8])

(43)  y(e) =F+ep+tw(e), wle)e N (L)', Ae) = 1+s2p(e).

Using Taylor’s theorem and properties (2.2), we obtain for the right-
hand side of (4.1) the expansion

(44) F, 7,9 =14, 5 9+5E 7 D—-9+6HG =, 9 (A-D+
+ '&fw(za TJ g) (y__g)z +R5(11 ?: 'y)
The remainder R, satisfies
R, = O(e?).
Inserting ansatz (4.3) into (4.1) yields
- 1
(4.5) L,w(e) =fA(I; 7, 7)e(e)+ %fw(}') T, %) (‘_p+5w(5))a+"8? R
= R(w(e), e(e); ¢)
Blw(e)] =0, <(g,w(e)) = 0.

26 — Banach Center t, XIII
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Again, we construct an equivalent boundary value problem of dimension
N =n+2 to solve (4.5)

Lyw(e) = B(w(e), e(e); ),
(4.6) e(e) =0,
py—7Tw(e) =0,  py(a) = pa(d) = 0.
We can formulate for problem (4.6) the following theorem:
TeEsoREM 4.1. Let L, f and 2, satisfy conditions (2.2}, (4.2) and

(4.7) ¢ =g, fi(1,7,§)) #0.

Then there is a posilive constant e, such that for each & with |g] < ey there
exists an isolated solution (w(s), o(e), ps(e)) of the boundary value problem
(4.1).

It is possible 1o construct a continuous family of solutions of (2.1) at
v =T with ansatz (4.3) conlaining the singular solution (4,7, 7, ®).

Proof. For ¢é~0 problem (4.6) is reduced to

Lyw(0)—e(0)fi(Z,%, 7) = %fw(zy T, 9)P%
(4.8) B[w(0)] =0,

pa—FTw(0) =0, ps(a) = m(b) =0,

Because of assumption (4.7) the homogeneous equation (4.8) has oniy
the trivial solution. .

Theorem 4.1 now follows, as in the proof of Theorem 3.1 [3.2], from
the application of the implicit function theorem. m

There are two possibilities to realize the numerical implementation
of problem (4.6). The first one consists in a separate treatment of (3.12)
[(3.28)] and. (4.6). Here, we have to work on the same set of net points
in both problems, because the right-hand side of (4.6) is known only on
these points. Therefore, initial value methods with automatic stepsize
control are not applicable.

The other possibility permits the use of actual software for initial
value problems, i.e. methods with error control per unit step. For this
purpose an expanded boundary value problem is build up from (3.12)
[(3.28)] and (4.6):

Lyv(z) = Py (v(2), 4, (2), K(2);2), Blv(2)] =0,
Low(2) = Quay(v(2), A1(2), E(2), p(2);2), Bly(2)] =0,
Lyw(e) = R{w(e), ele); 0(2), 41(2), K(2), y(2); &,2), Blw(e)] =0,
L) =0, K@) =0, g =0,
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m—go(e) =0, wu(a) =p(b) =0,
pr—orp(2) =0, py(a) = pe(d) = 0,
(49)  m—[pot+eizt+p(2)2) w(e) =0, py(a) = p(d) = 0,
43— [90+2V Ca 2+ {a + 2K (2) g} 2 + p (2) 217w (e) == O,
ps(@) = py (b) = 0].

We have solved system (4.9) with parallel shooting techniques in our
sample calculations.

5. A numerical example

We report some calculations with the problem:
¥+ Asiny = rcosnt,
y'(0) =y'(1) =0,

describing the buckling of a thin rod under compression. The numerical
technique used is the multiple shooting method. The interval [0, 1] is
divided into 4 segments. The resulting initial value problems are solved
by a Runge-Kutta method of order 6 with automatic stepsize control.

1. Bifurcation point: 4, = n?,

Eigenfunction: g,(t) = V2 cosnt,

2. Bifurcation coefficient: a, = 0,

(6.1)

Constant C, (3.17): €, = : > 0,
3wt
Function #, (3.18): 4,(t) =0,
Function %, (3.21): u,(l) = — -gé—:;—g—’; cos 3,
Function ¢, (3.22): @y(t) = — 4 cos 3t
' 24n? ’

Computational Results:

Table 1. Nonisolated solution at ¢ = 0.001

¢ y () e (%)
0 7.39636 1068 E-2 1.41409 2505 E0
0.25 5.23031 5649 E-2 1.00008 5600 EO
0.50 3.27999 2534 E-17 1.268464 5065 E-15
0.76 —5.23031 5640 E.2 —1.00008 5600 EO
1 —17.39636 1068 E.2 —~1.41409 2505 EO

A = 9.88988 5799 E0
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Table 2. Nonisolated solution at T = 0.01

t y(t) 40
0 1.569036 0029 E-1 1.41365 0965 EO
0.25 1.12485 3166 E-1 1.00039 7816 EO
0.50 4.33462 9350 E-16 1.70914 4806 E-14
0.76 —1.12485 3146 E-1 —1.00039 7816 E0
1 -1.50038 0029 E-1 —1.413865 0965 EO

A = 9.96394 7471 EO
Table 3. Nonisolated solution at v = 0.1

¢ y(t) @(t)
0 3.38527 2348 k-1 1.41158 7155 EO
0.25 2.40381 8474 E-1 1.00185 7138 EO
0.50 1.72338 0703 E-14 3.52714 5346 E-13
0.76 ~2.40381 8474 E-1 —1.00185 7138 EO
1 —3.39527 2348 E-1 —~1.41158 7155 IO

A = 1.03119 2106 El
Table 4. Solution branch through the nonisolated solution
given in Table 1: s = 0.001

: y ()
0 7.53777 0086 E-2
0.25 5.33032 4374 E-2
0.50 1,07886 6266 E-15 A = 9.88989 3123 EO
0.756 —5.33032 4374 E-2
1 —7.63777 0086 E-2

Table 5. Solution branch through the nonisolated solution

given in Table 1: ¢ = 0.01

; y(t)
0 8.81042 8953 E-2
0.25 6.23041 B656 -2
0.50 ~1.58074 7573 E-15 4 = 9.80004 8108 EO
0.75 —6.23041 8656 E-2

—B8.81042 8953 E.2




PERTURBED BIFURCATION IN BOUNDARY VALUE PROBLEMS 405

Table 6. Solution branch through the nonisolated solution
given in Table 1: ¢ = 0.1

t y ()
0 2.156334 9142 E-1
0.25 1.52338 5446 E-1
0.60 1.17966 2369 E-12 A = 0.93171 5618 EO
0.75 —1.52338 54456 E-1
1 —2.15334 9142 E-1

All computations were performed on an EQ 1040 computer in double
precision arithmetic carrying 16 significant digits.
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