COMPUTATIONAL MATHEMATICS
BANACH CJENTER PUBLICATIONS, VOLUME 13
PWN —POLISH SCIENTIFIC PUBLISHERS
WARSAW 1081

ON EMPIRICAL STOCHASTIC REGULARIZATION

BERND HOFMANN

Sektion Mathemaiik, Technische Hochschule Karl-Marz-Stadt, DDR

1. Imtroduction

A class of inverse ‘problems from remote sounding, geophysics and ma-
terial sciences consists in the interpretation of indirect measurements.
An interesting but not directly measurable physical quantity 2 should
be determined by measuring a dependent physical quantity b. Therefore
in the case of linear dependence between z and b a Fredholm integral
equation of the first kind

(1) [ K (v, p)a(p)dp = b(v)

has to be solved. With continuous or square-integrable functions « and b
over finite intervals and a smooth kernel %, the equation (1) is ill-posed
in the sense of Hadamard (see [10]).

In gatellite meteorology the solution of equation (1) provides an
approximate determination of vertical temperature profiles of the at-
mosphere z(p) as a function of the atmospheric pressure p. There the
function b(v) denotes the intensity of thermal radiation with wave-length
v, which can be meagured by a satellite (cf. [4]).

By using a quadrature formula, the integral equation (1) may be
approximated by a linear algebraic system

(2) Ae =b, =xecR" beR™ with A an (m, n)-matrix.

For sufficiently large n the vector z of the discretized problem (2) charac-
terizes the solution function «(p) sufficiently well.

To consider the measurement error in the sequel we examine instead
of (2), the equation

(3) Av+y =2, yeR™ zeR™

[313]
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with the noise ¥ and the rcal measured vector z. By means of suitable
decision functions good approximations #(z) of the solution vector
can be found.

In consequence of the ill-posedness of the integral equation (1), the
matrix 4 in systems (2) and (3) is ill-conditioned. Therefore and because
of meagurement economy the number m of rows will be small in many
problems. In general, a full columun-rank of A cannot be achieved for
such problems.

In the followings we consider ways and properties of numerical
solution of such ill-posed problems if the noise ¥ and the solution have
stochastic nature.

2. Stochastic regularization and ridge regression

We assume that the measured vector 2z has an error ¥ € R™ which is a real-
ization of a centralized random vector »n with the positive definite (m, m)-
covariance-matrix . The vector » € R™ represents a realization of the
random vector £ with the expectation vector E£ = # € R" and the positive
definite (n,n)-covariance-matrix B. Under the condition that & and 7
are stochastic independent random vectors the equation (3) describes
a random coefficient regression model (cf. [7], [9]). Approximations
# (%) are estimations of the vector #. The quality of an estimator # should
be evaluated by the Bayesian rigk

(4) r(2) = B|a(z) —al’

as an cxpected mean square error for the Euclidean norm.

Tor any inhomogeneous linear estimation #(2) = Qz--q with a con-
stant vector ¢ € R® and a constant (n, m)-matrix @ the Bayesian risk
()  r(#) = Trace{(Q4 —I)B(Q4 —I)" +QCQT}+ Q4 —I)T+ gl

can be expressed explicitly. The stochastic regularization method (SR)

(cf. [2], [3], [8], [11])

(6) #ep(?) = F+BAT(ABA” 4C) (2 — A7)
with
(7) 7 (#gn) = Trace(B —~BA* (ABA™ +-C)"'AB)

minimizes (5) relative to ¢ and @ and provides the best such estimation
for any kind of probability distribution when the first and second mo-
ments of £ and 7 are given. The procedure (6) is defined for any dimension
and rank of 4. In practice, the matrix O has about diagonal structure

and small condition number. Therefore (6) is numerically stable in most
important cases.
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It is difficult to apply SR in practice, because the moments Z and B
have to be known exactly. If such information is absent, the ridge regression
method (RR) (cf. [5]) provides an approximation

(8) Ohage () = LAT(ALAT +0)'2

of SR. The quality of this procedure depends on the choice of a symmetric
and positive semidefinite parameter matrix L. For # =0 and L = B
the estimations of SR and RR coincide. As the following lemma shows,
there exists an upper bound for the Bayesian risk of ridge regression,
which does not depend on L.

LEMMA. Let T = 0. Then for any symmetric and positive semidefinite
matriz L the Bayesian risk (4) of a ridge regression estimation (8) ¢8 bounded
by the inequality

(9) P (whage) < Trace {B+ (4707 4)*}.

Here the right-hand side is the matriz trace of the covariance mairiz B and
the pseudo-inverse of the matriz ATC'A.

Proof (see [6]).

3. Empirical stochastic regularization

Tor the temperature profile determination the matrices 4 and C are
available, whereas # and B have to be estimated from additional data.
These additional data have empirieal character. A sample o1, ..., a" of
a random vector & is obtained by direct temperature measurements from
balloon ascents. The optimality of SR is essentially based on the knowl-
edge of ¥ and B. Therefore it is important to get good estimations for
these two moments from the given sample.
The sample moments

. 1,
(10) % =F211m
and
N 1 - i =N ) =N\T
(11) B =ﬁ12(m —7¥) (2 — &)

are unbiased and consistent cstimations for z and B (ef. [1], [9]). A useful
modification of SR is found, if in formula (6) the moments ¥ and B are
replaced by the sample moments (10) and (11).

The procedure

(12) wNen(2) = Z¥ +BYVAT(ABVAT +0)7! (2 —AZ"Y)
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will be called empirical stochastic regularization (ESR). For large sample
size N the following theorem ensurcs the efficiency of ESR.

THEOREM. The empirical siochastic regqularization 18 asymplotically
optimal, i.e. the limit condition
(13) lim rg(zfsn) = {(Zsn)
N—oo
holds. Here rg(aNen) denotes the expectation value of r(ahsn) relative io
the probability distribution of the sample @', ..., @".

'Proof (see [6]).

The asymptotic optimality of ESR is based on the preceding lemma,
i.e. on the existence of a common upper bound for ridge regression rigk.
A convergence theorem of Lebesgue (cf. [1]) allows to prove the theorem.

4. A Monte-Carlo simulation experiment

A computer simulation experiment helps to obtain information of the
error behaviour rp(#3gr) 25 a function of the sample size N. Under the
condition that & is normally distributed the sample a%,..., 2" may be
generated by means of pseudo-random numbers. Thus the sample mo-
ments and, using formula (5), the risk »(zdsg) are computable for the
generated sample. Twenty examples of samples have been generated
on the computer ES 1040 for any considered size N (56 << N < 3200).
The average values of »(zlsy) serve as an approximation of #,(23sg).

In the experiment climatological data for tomperature profile de-
termination provide the matrices 4, B and ¢ with m =8 and « = 20.
Tables of numerical results of that simulation are published in the paper
[6]. The experiment shows that, in general, for sufficiently large values
of N, i.e. for N > n, the error of ESR may be expressed by the empirical
formula

1
(14) rg (Then) = "(msn)'l‘—ﬁ' ‘%(4, B, 0).

The value x can be calculated by simulation for any special 4, B and C.
In most cases the weak dependence x(%) will be neglected. Thus the for-
mula (14) allows one to find minimal values of ¥, such that the risk
rp{@hsr) is bounded by a given value 7 > r(zgp).
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