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1. Introduction

In general, numerical solution of integer lincar programming problems
is connected with considerable difficulties, e.g. in many cases one has
to examine a large number of feasible (or not feasible) solutions to cal-
culate an optimum, the rounding crrors often lead to instabilities
during the solution process. Effective algorithing exist only for special
classes of integer linear programming problems. A fact opposes these
phenomena, namely, the modelling of many practical questions gives
rise to integer linear programming problems. Therefore it is of great
interest to develop methods for effective solution of special integer linear
programming problems. The word “cffective” means here the demands
for an exact, quick, not failing algorithm, requiring not too much numerical
expense,

In the following we present a technigue for the solution of integer
linear programmniing problems which is based on duality investigations.

Duality theorems are applied especiully in linear programming with
high effect. However in the past there were not many authors who dealt
with duality in integer programming. First Balas [1], {2] deseribed o dual-
ity principle in integer programming hut his results hive not been used
to solve integer linear programming problems. There are other duality
principles, e.g. the constructive duality — see Tisher and Shapiro [37],
the surrogate constraint duality — see Glover [4]. Meyer and Fleisher [11]
investigated a very special class of integer programs. A full discussion
of these questions may be found in [10].

[785]
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2. Some duality properties in integer linear programming

Continuning the investigations of Balas, we consider the integer linear
programming problem (all or mixed)
max ¢! Tt 4 ¢* a2,
T
(1) Atzl A2 LD,
2220,
x> 0 integer.

We denote by 4! an m xn; matrix, by 42 an m x (n —n,) matrix, and

! . . .
by z =[ ,_,] an n-dimensional column vector with 2* = (a,, x,, )T
&

ooy By
(#' 2 0 integer means as usual that z;is a nonnegative integer for all j e i,
= {1,2,...,n4}). Let 2% ¢, ¢% b, and the null vectors be of dimensions
as needed. All components of the vectors and elements of the matrices
are real numbers and not necessarily integers.

Now, in general, it is well known that primal-dual formulations for
integer linear programming problems (and also for integer nonlinear
programming problems) exhibit a duality gap. Therefore, our aim is to
formulate a dual problem in a way admitting a proof of a strong duality
theorem. We consider

maxinin ATt + 4T (b —Alat),
x k{3
(2) ATy = 62,
% =0,
x* = 0 integer

with 4 = (%, %, ..., %,)T and we introduce

DrrinrrioN 2.1, The dnal of problem (1) iy problem (2). m

It should be remarked that A°Tw > ¢ contains only continuous
variables. Before we establish a strong duality theorem let us state some
elementary properties of problem (1) and problem (2). First, the following
lemma is easily seen.

LevMA 2.1. The dual of problem (2) is problem (1). m
Furthermore, the following can be shown:
LemMaA 2.2, The dual problem (2) can alternatively be formulated as

maxminu®h — o7y,
L w
ATy~ = ¢,
wz=0,
x> 0 integer,
v unconstrained

(3)

/vl
. — T
where v = [@2]’ O = (Vy, Vg ey Uy ) W
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We now turn to the formulation of

THEOREM 2.1 (strong duality theorem). If the primal problem (1)
1

has an optimal solution x, = [Zﬂ], then there extists u, (==0) such that
D
(255 ) 8 an optimal solution o the dwal problem (2), and
ooy e?Trk = a4 ul (b—Alzd)
holds. m

CoroLLARY 2.1. If the dual problem has an oplimal solution, then
the primal problem does so, and the oplimal values of both objective functions
are equal, m

In the present note we will not give any proof, for proofs and for
more details see papers [7] and [10]. We only mention that one can prove
simple complementary relations.

With regard to weak duality we will introduce the notation:

={r| Ax<b, 2*> 0, &' > 0 integer},
= {u] A*Tu>ct u> 0},
= {zeX| A'x' < b},
U ={uelU| A'u> o1},
2p = maxelx,
T
zp = maxminc Tz 4T (D —A2a?).

Il 11®
We assume the convention that

X =0, U=@9 lead to 2p = —o0, 2p = 00,

and analoguosly

o

X = @: ZP = - OO, zD = — w,
U- == g: ZP = 00’ zn = 00.
Turning now to problem (1) and problem (3) it is consistent with the

above convention to formulate

THEOREM 2.2 (weak duality theorem). If u € U emsis, then #%b—
— 0 Tt < @7, and if ' e X erists, then 'ufl g1 > 5. =

There arc additional weak duality statements but they will not be
pursued in this paper (see [10]). With all these weak duality relations
bounds for the objective functions are given. This is important for
the following algorithm.
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3. A two-step-algorithm for solving integer linear programming problems

Looking at (2) and applying (3) we find, writing ¢ := 2' and ¢ = (¢, 1y, ...
coey t)Yy that

maxminu? (b —a;;) + ¢t

4 u
Afu—w = d,
(4) =0,

w=0,

1, = 0 integer,

where je, 4;=(@ay), i=1..,m, k=1,...,j-1,j+1,..,n,
d = (Cyyiey gy Cuyy ey )Ty w = (wyy wyy vy w,_,)" and a; denotes
the jth column of A.

One can observe that every linear programming problem (4) contains
only one integer parawucter #,. This will be esscutial in developing the
method. Before doing this we remark what follows. Ifacing the problem
(4) for all j e %, wo are given the intervals I;. Integer values tj e I; for
all j e R, are determined by those intervals and by Theorem 2.2, From
problem (1) we get 2, and (1% «?) is a feasible solution to the problem
(1) with ¢ = (#f, 13, ..., , )7, but not necessarily an optimum,

In this case, where a feasible but not optimal solution is found,
we add a scarch-step for the determination of an optimal solution to the
problem (1) (in prineiple, the calculation of all optimal solutions is possible
if there exists more than onc optimal solution).

Now let us outline a two-step-algorithm for solving the integer linear
programming problem (1) as follows. A detailed description of this algo-
rithm may be found in [7] and [10].

Step 1 (““optimal® intervals):

(i) Solve the »y linear programming problems (4) (each one with a single

integer purameter t;).

(ii) Find for all j e M, the intervals I, := [g¢}, g¥] where ¢, g are integers.
pl

Remark. Let @, = [":2] be an optimal solution to the problem (1),
0

then 3 e X [4}, g¥].
jem
(iti) Calenlate ©© = (&, %, ..., )7 and a%.
Lemark, The components of {° and »? form a feasible solution to
the problem (1).

0

Now one can ask: is » = [t 2] optimal?
x
If v is not optimal, then go to step 2 (otherwise stop). In this way
feasible solutions with increasing values of the objective function and
an optimum to the problem (1) will be constructed.
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Step 2 (optimal solution):

(i) h: =1 (I is an iteration index).

(ii) By Theorem 2.2 and according to the definition of I; it follows that
one can determine new (“better”) values #j® for all jeR,:

0 = (ti'(h)’ 2", ey f?z(:'))i

for more details see [7] and {10].

Calculate #*™,
(ili) We have the new feasible solution

and
TP g 2T 20 5 1T g0 4 02T g

holds.
If ™ is not optimal, take 7 := h-+1 and go to (i) (of step 2).
Otherwise stop.

TieoREM 3.1 (finiteness). This two-step-algorithm is finite, ®

To illustrate the method just desaibed let us consider the following
clementary mixed integer lincar programming problems:

Exiayrir 3.1.

(MAX Ty — 32y,
-+ 22, < 3,
2w+ 2w, < 8,
L sz <: 0 ]
Xy, To 2 0,
\ r, integer.

From (4) and (5) we derive
maxminu, (3 44;) + 4. (8 — 31) — #qt, 4+ 14,
[1 w -
(6) 21y + 2tby — Sy —w; = —3,
Tyy by, g,y Ty, Wy 22 0,
1, integer.

gy = 3; finally #] = 3.

For v, = 2 it results from Theorem 2.1 that w® == (3, )7 is an optinl
solution to problem (5) (x° can be shown to be unique).

Problem (5) is solved in step 1 without use of step 2.
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ExAanvrrre 3.2:

max 4, + 52, + %5,
3x;+ 42+ 22, < 11,
L1y Xpy 23 2 0,
x,, ¥, integer.

Applying step 1 one can get the feasible solution 1} =3, # =0,
r, = 1, and the objective function has the value 13. Turning to step 2
and using » = § (from step 1) one can sce that 144% is an upper bound
for the optimal value of the objective function. By use of Theorem 2.1
and with regard to feasibility we obtain £ :=1]+2 and finally 0
r= 1 -2,

Hence, the optimal solution to problem (7) is x, = (1,2, 0)7.

We add some remarks on the two-step-nlgorithm just defined:

1. In prineiple, every all integer or mixed integer linear programming
problem can be solved by this method. The articles [6], {8], [10] contain
some details concerning the solution of 0-1 linear problems.

2. The existence of any feasible solution to the problem (1) is stated
in step 1.

3. Rounding errors influence the solution process only unessentially,

4, The numerical expense can be cstimated Defore starting the al-
gorithm, The method seems to be effective for problems with 2, <n.

5. From a detailed discussion of the algorithm it follows that some
special classes of integer linear programming problems are cffectively
solvable, e.g. problems with nonnegative coefficients only or problems
with m » n (see [7], [9], [10]).

6. In the articles [7], [10] one can find a discussion of relations
between the two-step-algorithm and other methods (e.g. Lagrange-func-
tions, Benders-technique).

7. There cxists an interesting interpretation for industrial manage-
ment for the mixed integer linear programming problem (1) and its dual
problem (2) (see [5], [10]).

4. On some computational experiences

The algorithin deseribed in Scetion 3 and its four modifications (compare
Remark 5 at the end of Section 3) have been programmed. About 80 prob-
lems (examples taken from other authors, constructed test problems,
and problems from industrial management) have heen solved on different
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computers. The problems had no special structure (the greatest dimension
of a problem was (m,n) = (30, 45)). A few known algorithms (e.g. Go-
mory-, Benders-, Balas-methods) have Deen also employed to solve these
problems. In the papers [9], {10] a comparison of all the results is pre-
sented.

Summing up one can state:

1. The two-step-algorithm solved about 95 p.c. of all examples
(this is in contrast to the other applied methods, c.g. the Gomory-methods
solved about 45 p.c. of all examples). For each problem a feasible solution
was found with bounds for the objective function.

2. The storage requireinents can be estimated Defore starting the
computer runs (it can be possible to solve problems of higher dimen-
sions than those described above).

3. The computing time for step 1 depends essentially on the number
fo integer variables. If this number is small then one can ecxpect a small
otmputing time. A linear growth of the computing time with respect
co the number of integer variables can be established.

4. In general, the number of arithmetical operations in step 2 in-
creases linearly with m and x.
For more details sce the articles [9], [10].

It thus turns out that the two-step-algorithm is a useful method for
solving the mentioned classes of integer linear programming problems.
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