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1. Introduction

In journal bearings the rotating shaft swims in the oil because of the
force gencrated by the hydrodynamical pressure in the oil film, see e.g. [1].
This paper deals with the approximate solution of a free-boundary problem
for this oil pressure '

(1) w = u(w,?)

for a cylindrical bearing of finite length B and the radius B of the shaft,
which rotates with the given frequency ». A motion of the shaft per-
pendicular to its axis is also allowed for. In (1) # and 2z are the coordinates
of the points in the rectangle

(2) 2 = (0,2=R)x (0, B) 3 (x, 2)

representing the mantle surface of the shaft removed into the zz-plane.

There are many contributions to this problem. Some technical ency-
clopaedias, for instance [2], take as basic results those from [3]. But
paper [3] and also its further developments (see e.g. [4]) make use of the
superposition principle for solutions of the nonlinear problem for the
pressure in the oil film under the influence of cavitation effects, which
gives rise to some doubts.(!) Many calculations of the path of the shaft
are also based on the idea of superposition (see e.g. [5] and the literature
there), but even in the case where the bearings are not of cylindrical
form it does not seem clear how to proceed.

(!) Because of the nonlinearity of the problem, such a superposition is not
correct and may only be an approximation, for which the error estimation is absent.

[159)
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Further developments of the hydrodynamical theory of journal
bearings are made in [67, [7], where [6] is essentially based on the asgump-
tion of the existence of a gas-oil mixture throughout the bearing. This
leads to a nonlinear boundary value problem to which a discretization
by finite differences is formally applied. A numerical analysis for this
model would be of interest. Further [6] contains the idea of [8], [9];
but a numerical realization is given only in a special case. Mathematical
models of larger complexity (including temperature) are considered in [7],
but even the method for the determination of the pressure as an essential
part of the model is not free from inaccuracies. Firstly [10] — in the
case where pure rotation of the shaft isconsidered — uses the caleulus
of variational inequalities to show that the problem of hydrostatic pressure
in journal bearings is uniquely solvable and that a further problem con-
sigts in the approximate solution of a variational inequality.

In this paper we use the caleulus of variational inequalities to for-
mulate our problem (in the next section). In Section 3 we consider a differ-
ence method to find approximate solutions. Questions of solving discrete
problems are discussed in Section 4.

2. Statement of the problem

Let » be the frequency of the rotating shaft and
(3) d=d(e,2;t)=d,>0

the oil £ilm thickness at the time ¢, The function d (and the time derivative
d) are of course uniquely determined by the position and by the velocity,
of the shaft, respectively. If the viscosity of the oil is characterized by
a constant parameter #, then from the Navier—Stokes equations we
derive (see e.g. [1] or any other basic literature in this field) the Reynolds

equation

d 0 ] oa od i
L — e — dﬂ_ — . Uil - . .
% P ( am) » (d Bz) 12n(ch - +d) flxz, 2),

for the pressure « in that subdomain 27 < Q where this pressure is greater
than the cavitation pressure u, = const.

In the whole domain £ one has w > u,, whereas in the coincidence
set Q7 = {&| 2 2, u(z) = u,} the Reynolds equation is replaced by
the inequality Lws—f > 0. This, together with the condition of con-

: . . OU —
tinuous normal derivative Tn along the free boundary I, = 2~ nL*,
"

means physically, roughly speaking, that enough oil ig in the bearing. (2)

(*) So that in each subdomain of £ in which f> 0 we have u % u,.
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At the boundary I'of 2 let the values u(z, 2) = u, of the pressure (Dirichlet
conditions) be given. These values mean the outside pressure at z = 0
and z = B and the given pressure along an axial oil groove (3) at # = 0
{and z = 2=R).

So the problem of determining the pressure can be formulated in
the following “classical” way:

(4) Find » e 0(L2)nC()NC*(Q2*) so that
Lu—f>=0, uz=u, (w—u) (Lu—f) =0 in 2,

#%=pyuon I.

As shown e.g. in [11], problem (4) can be reformulated in a generalized
sense a8 a variational inequality:

(5) Find ueK ={v| ve Wy(2), v>u,in £, v = u on I'} so that
a(w,v—u)=(f,v—u) Voek,
where

a(v,w) = [ dPoPwdz, (f,v) = [ foda.

a2

It is known (see e.g. [12]) that (b) has a unique solution.

3. A difference approximation

We apply here a difference method which we have investigated (see the
literature quoted below) and realized also in somewhat more general
situations than in the problem described above.

We use the notation and results of the general theory of the differ-

ence method [13].
We construct a uniform network

R, = {(=;, Z)| @y = thy, % = jhy; 4, ] = 0, &1, +2,...;
N h, = 2nR; N,h, = B; N,,N,> 0 whole}

and define
w=0nR,, y=InR, &@=ouy, h=maxil,h}
and the difference expression

Ay = _(a’yi)ﬂ:_(byé)z in @,

(3) Other cases are not considered here.

1l — Banach Center t, XIII
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where
a(x;, 7)) = 3w, — D, /2, 251),  bl@y, %) = (2, 2,—h, /25 2)

and y;, ¥, ave, respectively, the back and the foreward difference quotients
of the grid function y.
Problem (5) is then approximated by

Ay—f=0, y=u, (Y—u)(dy—f) =0 in o,
(6) y=u on y.
The following holds (see [14], [15], [18], [19]):

(i) The difference scheme (6) has a unique solution .

(ii) The problem (6) is stable with respect to f, i.e., & perturbation
Af of f leads to such a change Ay of y that

Nyl < CIAf ll—y-
Here |-l and |-, denote the diserete W;-norm and the dual norm,
respectively.
(iii} For sufficiently regular solutions of (5) the error function Z(z)
= 4 (%) — 4 (T) (% € @) has the estimation

12}y = O(1").

(iv) The error estimation in (iii) is optimal.
Remark, A partial result concerning the convergence of the free
boundaries is given in [17].

4., Numerical solution of the discrete problem (6)

To solve the discrete problem (6) of inequalities we have applied the
following mixed penalty iteration method:

(Ay+r@)(y—%) =f neo, y=p ony,
7 1 0 Y >u

(D r(y) = Y ¢’ ¢ = const > 0;

| e, YK g,

(Ay* =f in o

(8) (A+r@y™HI)y™ =f+r(y™" Ny, in o, m

L y" =u on y, m=0,

Vv

1;

Let us denote by (o), ¥™(e) the solutions of (7), (8), respectively.
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Then (see [16]):
(v} The problems (7) and (8) are uniquely solvable.

~ (vi) In (7) one has convergence from below, ie., y(g) <y for all
x €, and the estimation

max (y @) —y(e)(@)) < 007y, 0, = !1311'_11 f@)l.

Tew zefd
(vii) The iteration process (8) converges after a finite number of
steps:

LS

y™e) =yle) for m = my(h)
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