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1. Imtroduction

We consider transfer systems X which convert input values z;, ¢ =1, ..., %,
into output values y;, 7 =1, ..., l. Each y,; is a function of & = (z,, ...
...y @,)T and certain quantities eharacterizing the structure of X. By system
tdentificalion we mean determination of the structure of an actual system
& from its behaviour, viz. by means of ¥;,-measurements for certain input
vectors @ € X. This will be effected within a system class &, the choice
of which has the character of a recognition hypothesis. Within the same
framework the problem of system design or synthesis is to be solved,
which consists in determining a system which best performs a prescribed
behaviour on an input set X. In this case the chosen system class © repre-
sents the technical conditions for a device realizing the input-ouput rela-
tion. One is mainly interested in the three questions:

(i) Can the problem be solved within S?
(i1) Is the solution uniquely determined within G*%

(i) Can an efficient algorithm be found for constructing solutions®

A simple example shall be given for illustration. As input-ouput
system X' consider the planc three-bar linkage shown in Figure 1. The
structure of X' is constituted by the lengths of the bars and the distance
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between the fixed points A4; and A4,, viz. by the values a, b, ¢ (see Fig. 1),
The rotation angle ¢ is to be taken as input; outputs be the Cartesian
coordinates y, and ¥, of M.

Fig. 1

Given & and the structure parameters a,b, ¢, one derives

. l/ b2 —a?—c242accosd
9, = esingd e
a? -+ c?—2accos

2_ g2 219 ry
Ys = (“—ccosﬂ-)]/ b2 —a®— ¢* 4 2accos -
a*4-c¢*—2acccsd

(1)

The system identification within the three-parameter class Sz of plane
three-bars requires the determination of a, b, ¢ using the information
contained in a trajectorial segment of M, viz. the coordinate data of its
points. A technically relevant synthesis problem mighi refer to the con-
struction of 2 mechanism conduneting I approximately along a straight
line segment. If the identification problem within Spp can be solved,
the solution is not uniquely determined. There are three mechanisms of
the kind considered, all generating the same three-bar curve. This follows
from a theorem due to Roberts concerning a more general type of three-
bars, where the bar B;B, is substituted by a triangle B, B,M (cf. Fig. 2).
In Figure 2 one draws the parallelograms A,B,MC, and 4,B,MD, and
constructs over the sides ¢, and 1D, two triangles similar to B; Byl
Finally the parallelogram M D,4,(C, is drawn. It is easy to show that
during any motion of the linkage corresponding to Figure 2 (which is
a system with one degree of frecdom) the point A4, remains in the same
position, Therefore this point can be fizxed and one gets the three-bars
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A A, BBy, A, A3 Dy, Dy, A, A4,C,0,, all generating the same trajectory.
This subject has been treated by Roberts [1] and Cayley [2].

Tig. 2

From a general point of view one may observe thé following meth-
odological trends in dealing with system identification and design:

(i) The identification problem is reduced to an inverse problem
for a differential equation (ei. Section 2).

(i) When lcoking for a solution within a preseribed m-parametric
system class

(2) S, ={Y(a):acd}, A<R™

onc is concerned with a problem of classical approximation theory, as
the following considerations will make evident.

Just like in the example above, ¥ = (¥;, ..., ¥,)T is represented by
a function

(3) y =F(x,a) = F,(x),

depending on a vector parameter a and the input vector . The function
I is assumed to be known from a theory about the system class
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&, . The measurements or the desired behaviour shall be given as the
function

(4) f: X->R!,
where X denotes a certain set of input vectors. Then the identification

or synthesis requires the determination of a parameter vector a* e 4
such that the merit function

(5) Z(a):= | f—F,l
constructed with a suitably chosen norm [ || attaing minimum at @ = a*:
(6) Z(a*) = min Z(a);

asA

in other words, one has to determine the best approximation of f within
the family of funections

(7) {F,: acA)}.

In general, minimization of the function Z may be achieved by applying
search procedures of nonlinear optimization. We refrain from a detailed
description of these methods, which — as far as universally employable —
often prove rather inefficient on account of their loose connection with
the inherent properties of the problem.

An immediate approach to the best approximation is offered by
the usc of criteria characterizing F,, for special problems (6). Many practical
tasks require, for instance, uniform approximation; then Chebyshev’s
theorem can be viewed as such a criterion (cf, Section 3).

In the case where the system behaviour is described by differential
equations containing the parameter vector @, 2 can be detected within
© 4 by means of quasilinearization. This is an iterative technique de-
veloped by Bellman, Kalaba and others (cf. Section 4).

In Section § we discuss methods of pattern recognition applied to
the components of the output y = F,(x) with regard to relevant shape
phenomena. They are usnally employed together with a discretization
of the parameter space A by a finite set 4. Recently effective algorithms
have been developed, some of them based upon linguistic methods, for
a complete scanning of the graphs F, corresponding to A.

We shall consider these methods mainly with regard to the propa-
gation of electromagnetic waves in stratified media (cf. [3], [4], [5]).
In this context, a medium will be called stratified, if the refractive index
is constant on each plane orthogonal to a fixed spatial direction. Choosing
this one as z-axis of the Cartesian coordinate system, the structure of
such a laycred medium is essentially determined by the refractive index
profile 2 =n(2). In order to influence the energy flow and
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polarization of electromagnetic waves, our interest concentrates on sys-
tems X as represented in Figure 3, where a layered medium extending
in 0<2<d is placed between two homogeneous media of refractive
indices 7, and 7, respectively. Throughout this paper n,, n(2), n, are
agsumed bto be real valued, viz. the stratified medium non absorbing,

nA

Py |

Fig. 3

Consider a plane electromagnetic wave incident upon the ¥, 2-plane under
the angle #,; due to the influence of the layered medium the wave will
be split into a reflected one and a transmitted one.

The wavelength A and/or the angle of incidence #, are the input
values of the transfer system 2'; one might take as outputs the reflec-
tivity or transmittance, viz. the part of incoming energy transported by
the reflected and the transmitted wave, respectively. The design or identi-
fication is then concerned with the determination of a refractive index
profile.

2. An inverse problem for the wave equation and
the Schrodinger equation

The problem stated at the end of Section 1 is regarded for the special
case of a normally incident TE-wave (clectric vector perpendicular to
the plane of incidence), where the inhomogencous medium described
by n(z) extends over the half space 2 > 0. Then, in 2 > 0, the z-component
cf the electric vector may be written as

(1) E, = TUlz, k)™, k=2n/l=uw]c,

(A wavelength, ¢ light speed in the vacuum), where U is a solution of the
wave equation

2
2) @y +En2(z) U =0.
dz?
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Usually this equation is to be solved for a given function »(z). An inverge
p-oblem related to (2) requires the determination of n(z) from the spectral
characteristic of a functicnal of U corresponding to an observable physical
quantity. In most cases this is the reflecticn coefficient r = #(k), as e.g.
in the following congiderations. » is defined as the ratio of the x-compo-
nents of the electric vector of the reflected and incident wave, respectively,
at the interface 2z = 0. An approximate solution for the inverse problem
will be constructed, assuming # to be a continuously differentiable funec-
tion for z = 0, n, = n(0) being the refractive index in # < 0. The solution
of (2), which represents the field induced by the incident wave, is given
in 2> 0 Dy the Bremmer series

(3) Uz, k) = ZUj(z k)

j=0

(cf. [6], [7]). One arrives at this result by a decomposition of the field
in 2> 0 into partial waves; U,(z, k) denotes the amplitude composed
of all contributions from waves undergoing exactly j reflections at inter-
faces lying in z > 0. Introducing the optical thickness

-3

(4) z =g(2) = fn(s)ds

. 0
one gets
(50) Usw, k) = ]/ 240) s

()

. ~ik(z—s d'/_

_(5b) Uyy(@, k) = }/ﬂ(m ngj (s, k)e -8 P ds,
(50) Upyrl, k) = ) g ikle=2) dc'z/:’ as.

It can be shown that the Bremmer geries converges towards a solution
of the wave equation (2), if

n(z) =za>0 for all 2> 0,

6 [~ ]
®) J‘ ' (2)|dz = b, b < 2a.
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One obtaing for the first derivative of the Bremmer scries the formula

au ,
(7) o = kn()(W-T),
where
(8) V= 30y W=y Uy
j=u j=0

The series V and W satisfy the integral equations

1 [dvn
— —ik({z—s R
(9) Vi, k) = U°(m”"+vmuf 7 Wis, K)o~ ds;
(10) Wz, k) = -1 F a/n V(s, kye~ -2 gg
’ Vo(z) ; ds ’ '

From (7) one derives for the y-component of the magnetic vector (magnetic
permeability 4 = 1) the formula

(11) H, =n(V~TW)e.

Let A and B be the amplitude quantities of the incident and reflected
wave, respectively. Then, by the continuity of the tangent component
of the electric and magnetic vector at the interface # = 0, one gets

(12) A+B = T(0,k) =1+W(0, k),
(13) A—B =1-W(0, k).

From this follows

(14) r(k) = W(0, k) = — ]/q:.(()) Uf d;;n Viw, k) e *dax.
In particular, (14) implies

(13) r(—k) = (k).

Taking the first term in the series defining V one gets from (14) the approxi-
mate equality

=)

1 d
— (Inn)e~ k= qp.

(16) rk) = — 7] @
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Applying Fourier transformation to the real and imaginary part of this
-equation we geb

00 d
(17) 2 [ rwer=ar = l_dEln"(_w) for #.< 0,
, - .
for x> 0;

[}
that means,

(18) ]/ Ziz = exp ( f I'(s ds) =0,

‘where

(19) T (s) "—‘Elﬂ' f r(kye~**dk.

‘There cxists a well known correspondence between the wave equation
-and the Schrodinger equation, With a solution U of (2) we define the
‘function

{20) Wz, k) = Vn(2) U, k),

-depending on the optical thickness (4) and the wave number %. Then
¥ satisfies the Schrodinger equation

) dauv

=~ +V(@)¥ =¥

with the scattering potential

1
}/'n(w) dx?

(22) V(z) = l/n(cc

Thus one obtains from the approximate solution (18) of the inverse problem
associated with the wave equation the formula

(23) V(iz) = —2 d—‘i F(22) + 472 (27).

‘This approximate solution of the inverse problem for the Schridinger
equation hag been determined by Moses [8] via the Gelfand-Levitan
integral equation. In [9] (18) has been deduced using the relation (23),
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3. Chebyshev methods in system design

From its beginning the development of approximation theory has been
associated with the application to system design. The fundamentals of
uniform approximation have been laid by P. L. Chebyshev in the second
half of the 19'® century when he was concerned with the design of bar-
linkages realizing certain prescribed trajectories (ef. [10], [11]). The
basic idea shall be illustrated by the previously regarded three-bar linkage
of Figure 1. Eliminating the input # in (1.1) one derives for the trajectory
of the point M the algebraic equation

1)+ @r+y) {295 (r+20%)  +3(r? - da(y; — b)) = 0,
where
@) E=9l, r=yi-ator—b
The synthesis aimgs at the construction of a mechanism that forces the
point M to move along a path parallel to the £-axis. Let {a, ] be the
corresponding interval for £ and H the ordinate of the points of the parallel
segment. According to the degired behaviour of the three-bar, the poly-
nomial

Py(l) = {3+ (2r +HY) 4 (2H (rg+ 20%) +0%) {+
(3) +H? (r} + 4a® (H? —b?)),

rg = H:*—a*+ ¢®—b?,

is required to realize the least possible deviation from zero on the in-

terval [a,f], i.e. P, is to coincide with the transformed Chebyshev
polynomial

(4 T,(¢) = (8 —a)? TS(ZC—(ﬂﬂ-a)

P f—a ) =4+ 0.0+ 20

with the coefficients

pala, f) = —g(a+h),
(3) pila, B) = 5 (a+3p)(8 +3a),

Pole, f) = — r(a+p)(a®+§° +1dap),
derived from the Chebyshev polynomial of degree three

(6) T,(t) = 49— 3.
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The maximum deviation from zero of the polynomial (4) on [a, 8] is
given by

(7) L = (B—a)*/2°,

Comparing the coefficients in (3) and (4) one obtaing
2rp+H? = — 3(a-+f),

(8) v+ 2H2 (17 +20%) = 35 (a+36) (B +3a),

(ry + 402 (H?— %) H? = — 57 (a+ ) (a2 + f2+14af).

Elimination of a, § gives the so-called basic equation

(9) 27py = P99 —203),

from which restrictions for the construction of the required system can
be derived. Substituting the left-hand sides of (8) for the p, into (9) one
gets

(a2 -+ b%—c2)?

2 — .
(10) - 18a2%(2¢%+ b%—2a?)

Thus H is characterized as a function of the system parameters a, ), c,
and it becomes evident that the problem has no solution if

11 VA= o
(11) 2¢*+ Dbt —2a? )

On account of symmetry, the case o = 0 i3 of particular interest;
there (8) takes the form

21y +H? = — %ﬂ’
(12) i+ 2H? (rg+26?) = 5 B2,
H? (ry + 402 (H2~b2)) = —L g0,

Approximation of the straight line v = H is to be cffected on an interval

of the &-axis of length I = 28, and, considering (7), the maximum devi-
ation from zero of the polynomial P, is

3 16
(13) =2 _ .
32 2048

Let L and H be prescribed; then one has to compute 8 from (13), and

the synthesis problem will be solved by successively determining rg, a,b
from (12) and finally ¢ from (3b).
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The above exemplified method using Chebyshev’s polynomials can
be applied likewise to various other system clagses. The application may
be extended to linear combinations of Chebyshev systems (cf. [10]).

For further illustration of the method we consider the design of
achromatic systems, consisting of a stack of § homogeneous dielectric
layers with equal optieal thickness

(b; geometrical thickness, #; refractive index of the jth layer); we
assume normal incidence and given refractive indices n, and ng,; = o, of
the enclosing media, i.c. we suppose that the refractive index profile
represented in IFigure 3 is a spocial step function. Then in (1.2) we have
m = §, and the parameters g; are given by the refractive indices #; of
the layers. The output be the reciprocal transmittance T-! depending
from the so-called phase angle ¢ which is related to the input A according
to '

(15). p = 277: 4.

Onc can show that 7 '(p) is the trigonometric polynomial

S .
(16) T\ (p) = D Bjcos2jp

j=0

whose coefficients are rational functions in the refractive indices n,, ..., 1g
or Fresnel’s interface coefficients

n —MN
17 . o= _-i__l'_—j ] - 1 s ‘S’ 1
(17) 75 s, y J yroey 911,

respectively. Numerous algorithms have been developed for the com-
putation of the B; (cf. [12], [13]). (16) can be fransformed into the al-
gebraic polynomial

S
(18) T1() = D) 440
j=0
in
(19) { = coslgp.

The construction of an achromatic system then implies the deter-
mination of #,,...,ng such that 7' is approximately constant over
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a certain interval [a, 8] of the {-axis. The approximation problem (1.6)
is to be solved with regard to

(20) F =0
(21) T =H, a<i<$.

Practical congiderations require uniform approximation. Following the
game way as in three-bar design, one has to compare the polynomial
T_I(C)'_H As‘_ C’S 1 Al -AO_H

———r et = S .
(22) A, ¥t — A, + A, ¢+ 4,

with the transformed Chebyshev polynomial

N —a)® 2¢—
23) ryity = 822 Tﬂ_( et )

== CS‘*‘Ps—l(a: B) L +pole, B).

By means of the differential equation for the Chebyshev polynomials
one gets a recursion formula for the p,; explicitly, one derives the follow-
ing expressions:

—

8—1
(24) p, = (—1)°" f(y)(“;ﬁ) .

5 p—ay (') o
*% (_1)1-2_21-( ) (S 1)() j=0,1,..., 8—1;

in particular, for a = 0 one gets

S) (_ﬂ_)M (28 —3)(28 —5) ... (2§ +1)
il\2 (28 —2)(28 —3) ... (§+3)) °

Comparing the coefficients in (22) and (23) provides as equations for
thin-film synthesis

@ab)  p = (1

.A.O_H
.A.S _po(a, ﬂ)’
A, _
(25) A-_s _.pl(a'7 ﬂ)’
As
2 —pS—l(aﬂ IB)
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Systems with refractive indices satisfying the equations (25) for certain
values H, a, # shall be called “Chebyshev stacks”. They are characterized
by their realizing best approximation of the H-plateau on a frequency
interval corresponding to a < ¢ < f, as compared with any other system
of the class described. The maximum deviation L from H is given by

26) L—MIA["(F?— )¥|Bgl = 2(8—a)5 |ryr |ﬁ !
( = T8 sl = a)”|Bg| = 2 1S+1j11_r§.

As regards elimination of the unknown parameters a, g on the right-hand
side of (25), the following should be noted: Using two of the equations.
(25), one can eliminate ¢ and 8 in the others Thus one obtains from (25)
a system of §—2 basic equations

gi(nyy .oy fig) =0,
en e e e

gs—a(N1; ooy ng) = 0.

As in the case of the three-bar design, the assumption ¢ = 0 is of par-
ticular interest on account of symmetry. Eliminating 8 in (25) one obtains
S8 —1 basic equations, g is related to the maximal deviation (26) over
the achromaticity interval according to

L 1/8
S 2 =)

As an example we consider the synthesis of a two-layer antireflection
system. For thig purpose, let H ==1.01 and L = 0.01 be prescribed.
A numerical solution of (25), observing the relation (28), yields

(29) n, = 118878, m, = 1.26450.

Figure 4 shows the transmittance of this system in the ¢-plot.

Th

0.98—--—- el — —-

0.96 !
0 ?.ﬂ 3':/2 b ?

Fig. 4



304 H. KAISER AND H.-CH, EAISER

Further investigations are directed towards general theorems on
Chebyshev stacks providing restrictions for the construction and the
characteristics of the systems’ performance.

4. Quasilinearization

In this section it is assumed that the behaviour of the system is described
by an initial value problem which containg as parameters the structure
quantities a;, ..., a,:

{1a) w =gz, w,a), 0<Lz<Ld,
(1Db) w(d) = ¢(a),
W1 g1 61
{1c) w=\|:1|, g=|:|, e=]|:
Wy, 9r. er,

The variables w,, ..., u;, I < L, are related to observable outputs provided
by meagsurements (or prescribed valnes)

(2) Q = (Ql? rery Ql)Ti

which constitute the function fin (1.4). Quasilinearization is an iterative
technique for the identification of the parameter vector @ corresponding
to the measurements (2). In each step onc has to solve an approximation
problem within the solution space of a system of linear differential equa-
tions related to (1). The procedure presents a certain analogy to Newton’s
method for the solution of nonlinear equations. It is based on the follow-
ing transformation of the initial wvalue problem (1): The parameter
vector @ which realizes best approximation to the measurements (2)
is preliminarily regarded as a solution of the initial value problem

(3) a =0, a(d)=a.
Together with (1) onc obtains the enlarged initial value problem

(4) W =G, W), W) =Cla),

(5) W(g) — ‘71;0((:))J, G(z, W) = [g(zj :';-’7 G)-}’ C‘(a) _ [C(G)J.
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The parameter adjustment is effected by constructing a sequence W*(z),
k =1,2,..., for which W¥*(0) converges, tending towards Q at the first
1 positions.

The first step is the choice of an initial parameter vector a® and
the determination of the solution of (4) subject to the initial condition
W(d) = C(a®) associated with a®. Starting with " one obtains W**! by
solving the following problems:

(a) Linearization of the differcntial equation (4) at the point W%

(6) W' = Gz, WH+J(z, W) (W—WF),
where

T
M 7 -0y = (557)

is the Jacobian of G.
(b) Determination of the general solution

(8) W(z) =P()+H(z)b

of (6), where P is a solution of the inhomogeneous equation with the in-
itial condition

(9) P(d) =0,
and H is an (L +m) x (L4 m) matrix whose columns H,, ..., Hy,,, form

a fundamental system for the homogeneous equation corresponding to
the initial condition

(1.0) H(d) = unit matrix.
Then holds
b,
(11) Wd) =b = :
bL+m

(¢) Adjustment of the b, contained in the general solution (8) of (6)
to the measurements Q. Let v, p, h; be the vectors composed of the
first I components of W, P, H;, respectively. Then the term

Li+m

(12) |@—p0)— 3 bi(0) |

=1

20 — Banach Center t. XIII



306 H. KAISER AND H.-CH, KAISER

is to be minimized. Because of

bL+1
(13) a=| :
bL-{-m

one has to take into account the constraint (ef. (11), (5))

by
(14) l::l = w(d) = ¢(bri1y ey brym)-
‘ b

Thus the problem is reduced to minimizing the objective function

(18) Z(a) =Z(bgy1s-++) brim)

L m
= @—pO0) = 3 elbrsrs os brgm) B(0) = 3 bz ihss(0)].

i=1 =1
If a* is a solution of the stated minimum problem, i.e.
(16) Za)<Z(a) for all ae4,

then W**! is determined within (8) by

a7 b* = [c(a*)].

a*

Assuming the initial condition (1b) to be independent from a, one is con-
fronted with a problem of linear approximation. In this cage the vector

L
(18) S:=Q—p(0)— Dle:hy(0)

is to be approximated with respect to a nmorm |-|, chosen in the space
R, by a linear combination

(19) Dlaihy,(0).

fexl
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When dealing with least square approximation, a* satisfies the normal
equations. For their solution it is advisable to orthonormalize the vectors
he 1 (0)y ...y By (0); & factorization algorithm due to Rutishauser [14]
proves effective here (cf. [15]). Regarding the convergence of the process,
numerical experiments show that the situation is analogous to that occur-
ring in application of Newton’s method, namely, either convergence
is achieved rapidly or divergence soon becomes evident, A theoretical
investigation of the convergence can be found in [16].

Applying quasilinearization to the design and identification of in-
terference coatings we assume that the refractive index profile is im-
bedded in an m-parameter function family

(20) N, ={n(:,a): acd, n(- a)e([0,d]>R)}.

The observable quantities are related to the reflection cocfficient. Differ-
ential equations for the latter can be derived in a classical way [5] or
by means of Bellman’s invariant imbedding principle (cf. [7]). Figure b
shows the refractive index profile of the layered medium under consider-
ation. The quantity

is the reflection coefficient at the interface z = # with respect to the re-
fractive index profile shown in Figure 6, obtained from the original one
in Figure b by truncation and continuation over z << 2 with a constant
refractive index #(2). We assume 7 to be a continuously differentiable
function.

nlz)

Alx)

Ny

ab—— £
|:!
L-)
‘3
L)

NY
o
x

Fig. 6 Fig. 6
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The function » = r(z) is a solution of the differential equation

dn
d Ao () .
(21a) == (z) = ) (L—12(x)) + ik n(s)*

n(x)  n(z) 2 \n(x) B n(x)
subject to the initial condition

_—
(21D) r(d) = :—EH

Usging a recursion formula of Vlassov (cf. [3], [4]) one can show that the
reflection coefficient » of the system in Figure 5 is given by

_ r1+7r(0) ro— 1y —7(0)
14+mr(0)7 1 me+R(0)

=)

(22)

In most cases the values which are given as data for identification are
the values Ry, ..., R, of the reflectivity B = [r|? at wavelengths 4y, ..., 4.
From (21) we derive an initial value problem concerning the functiong

o;(z) = o(4;, ),

(23)
(Dj(w) = q"’(]‘ja x),

j=1.4,1

thus arriving at the problem which is to be handled with quasilinear-
ization.

The following choices of the function i prove to be of particular
interest:

(24) (@) = N,
(25) (@) = n(z),

In [17] numerical experiments concerning the assumption (25) are re-
ported. In case of (24) the initial conditicn (21b) ig independent from
the parameters a;; that means, the approximation problem (15), (16) is

a linear one. A more detailed digcussion including numerical experiments
is given in [15].
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5. Pattern recognition methods

For the sake of simplicity we consider a one-dimengional output y = F, ().
Methods in system design, dealt with in this section presuppose an appro-
priate discretization of the parameter set 4 by a finite set A, sufficiently
“denge” in 4, and they are based upon & direct investigation of the graphs
of Fg,ac A, with regard to relevant shape phenomena. Depending from
the number of elements in 4 the computation time for a complete scanning
may increase considerably; and therefore, in digitized waveform analy-
gis effective methods of pattern recogmition are wurgently required.
Recently techniques from formal language theory have been successfully
incorporated; they are based upon a decomposition of the waveform
into so-called pattern primitives. Substituting symbols for the latter,
one gets the features of the waveform represented as a string of charac-
ters, i.e. a word of a certain pattern language L. Thus the investigation
of the shape of the waveform can be effected by parsing a word of the
pattern langunage in connection with a grammar G generating 7. (cf. [18],
[19]).

Regardless of a subsequent use of linguistic methods, many concepts
of digitized waveform analysis include feature generation, most usually
effected by segmented best approximation, and frequently by piecewise
straight line approximation. It may be useful to admit discontinuities
at the breakpoints (ef. [20], [21], [22], [23]).

Generally, segmented best approximation is constructed respecting
one of the following constraints:

(i) Given the number M of segments. Determination of an optimal
segmentation such that the maximum of the approximation errors —
relative to the best approximation in each segment — is as small as
possible.

(ii) Given a tolerance &. Determination of a segmentation with the
fewest segments such that the error — relative to the best approxima-
tion — over each of them does not exceed s.

When dealing with the detection of special phenomena, e.g. peaks
or plateaus, ad-hoc algorithms prove efficient (cf. [24], [25]).

In application to thin-film synthesis we consider the following system
class: owing to technological demands, multilayer systems with a given
number 8 of layers and a fixed sequence

(1) ol [Ny [e] ... [Mig[[ 7y

of refractive indices are regarded; system parameters are the optical
thicknesses 4,,..., 4¢ of the layers. The considered discretization &3
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contains all systems with
(2&) Aj=asz, j=1,...,S,
(2Db) G1y ...y Gg integers, a;+ay+...+ag=20r,

where P is a fixed integer measuring the fineness of the discretization
and P4 is the total optical thickness of the stack. G; comprises (1‘;:})
systems Output is to be the reciprocal transmittance T'-'(p), which ig
given by a trigonometric polynomial of degree P, the coefficients being
rational expressions in 4y, ..., ng (¢f. Section 3). In order to determine
achromatic systems, a continuous version of the algorithm [25] was
employed. Algorithmms for a complete scanning of S; have been devel-
oped in [12]. A detailed description and results can be found in [26].
The above described thickness optimization can be related to the
Chebyslhiev methods (cf. Section 3), originally conceived for an optimal
adjustment of the refractive indices, thereby permitting a considerably
faster dctection of achromatic plateaus. This increase in efficiency is
caused by the intensive utilization of the theoretical insight into the
analytic strueture of the output quantity. A comprchensive report in-
clnding comparative complexity considerations is in preparation.
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