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Introduction

'The method of contractor directions presented in monograph [1] and
subsequently developed in a number of investigations (see [4]-[7]) has
proved an extremely useful and powerful tool in the study of nonlinear
operator equations in Banach spaces. However, for many problems in
analysis the class of Banach spaces is insufficient and a broader class
is needed. Having an inverse function theorem for such spaces is ex-
tremely important. The theorems of Nash [11] and Moser [10] are very
significant steps in this direction. Since thenr many versions and apph-
cations have appeared, for example, Rabinowitz [12], Schwartz [13],
Jacobovitz [9], Zehnder [14], to mention a few. In locally convex vector
spaces, the solvability problem for nonlinear operators with closed range
is discussed by Browder [7]. For Banach spaces, the problem is investi-
gated in [1], where more references are given. A generalization of Moser’s
result is contained in [2]. Recently, Hamilton [8] in his very interesting
paper, introduced a very important class of operators in Fréchet spaces,
called tame maps, and proved an inverse function theorem. He uses
smoothing operators as a basic tool for the convergence proof.

The diagonal method of contractor directions presented here is
a further development of the method of contractor directions for Banach
spaces. Its extension to locally convex spaces endowed with an increasing
sequence of seminorms does not require the existence of smoothing oper-
ators. Instead, different kind of growth conditions are imposed on the
operators in question. The class of nonlinear operators under investi-
gation is rather general. ITn case of Fréchet spaces inverse function the-
orems are given whichresult from local existence and convergence theorems
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proved for algorithms constructed for the diagonal method of contractor
directions. A further development along with applications to tame oper-
ators will appear separately. However, Hamilton’s result for tame maps
is not covered.

1. The diagonal method of contractor directions

Let X be a vector space endowed with an increasing sequence of semi-
norms

2zl < ol < ..., for all ze X.

Let ¥ be another vector gpace of the same type, i.e., with the sequence
of seminorms

Iyl < Myl < ..., for all ye Y.

Let P: D(P) « X—Y be a nonlinear mapping, X and Y being com-
plete in the usual sense.

We define for P at 2 € D(P) a family of sets I',(P, ») forn = 0,1, ...,
as follows.

DEFINITION 1.1. I (P, n) = Y is a set of contractor directions at z € D (P)
Jor P of order n if there exists a constant 0 < ¢ < 1 with the foliowing
property. If y € I (P, n), then there exist a positive 0 < ¢ = (2, y) <1
and an element h € X such that

(1.1) [[Pz+eh)—Po—ey|, < gellyll; for all 0 <7< n, where
x+¢eh e D(P).
It follows from this definition that I' (P, », q) = I',(P, n) depends on ¢.

Since g does not depend on @ € D(P), we use the notation I (P, ) instead
of I' (P, n, q).

LemmA 1.1, The closure in the seminorm | |, of the set I' (P, n,q)
18 contained in I (P,n,q) ¢f q<g< 1. If I,(P,n) is dense (in || |l,) in
some neighborhood Vo = [y: |yll, <b] of 0 in XY then I (P,n) = Y.

Proof. Let y € I',(P, n)and ¢ < § < 1. If v € X is such that v —y|; < »,
then

|P (@ + eh) —Px — ev||;

)

L |1P(@ - eh) —Px — eyll; + elly — oll; < gellyll; -+ e
< ge(l;+n)+en < Gelol;, for 0Kig<n
if

7 < min (7—¢) [l /(1 +q).
oign

Since [, (P, n) is dense in V,, by assumption, it follows from the above
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that I (Pyn) = V,. If ¥y € Y is arbitrary, then fy e V, for some positive
f <1 and consequently, I' (P, n) = Y.

Denote by B the class of increasing continuous functions B such
that

B(0) =0 and B(s)>0 for s> 0;

fs‘lB(s)ds < oo for some positive a.
0
LEMMA 1.2 [1]. Let the positive sequence {a,} be defined as follows:

ppr = (1 —gey)a, form=0,1,...,

where 0 < g<1 and 0 <, <1 for n =0,1,
Let B be some function from class B. Then the series 2 e, B(ay,) @
convergent, and we have n=0

[=+] a
(1.2) D&, Bla,)<q? [s7'B(s)ds  with a = e%a,,
n=0 0

and the remainder then salisfies

oo D'n
(1.3) D eBla)< g [ sT'B(s)ds,

i=n b
where

b, —aoexp(q(l——t ), b =acexp(g(1-T)),

:5

gy =0, 1, = &g, and T =Zs,;.
i=0 el
Moreover, a,—>0 as n—>oo if and only if T = oo.
Let {I,(P, n)} be a family of sets of contractor directions at # € D(P)
for P: D(P) « X—Y such that —Pz e I' (P, n) for all n = p, where p > 0
is an arbitrary fixed integer, and for all x e U,, U, = D(P)n8(x,, 7},
where 8(x,, #) = [#: [0 —,]| < 7]i8 a neighborhood of the given =, € D(P).
Then we can construct a sequence of elements z, € Ugforn =0, 1,...,and
a sequence {g,} with 0 <e¢,<1 for n =0,1,... as follows. #, = 2,+
+&ghy, where ¢, and h, satisfy relation (1. 1) Wlth T =1y, £ =&, Y
= —Pur,, and ¢ = p. Suppose that z; has been defined for 0<<i < n.
Then we find 0 < ¢, <1 and 7, € X such that

(14) ”P(a‘n_l" & n) (1 - sn)Pmn“i < q sn“-P.wn,”'i for all P < ¢ < Ty
where z,+e,h, € U,, 0 < ¢ <1 being a global constant. Then we put

(1.6) By = T+ 84k,
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LemmA 1.3. Given k > p, consider the sequence {a,} such that
(1.6) ay = |[PZligspr  Ontr (1"(1 q)e n)a Jor n> k.
Then we have
(1.7) WPz, hrp < @, for all n=k4p.

Proof. It results from (1.4) that

”l%vn+1"k+p (1' 1 Q)En)nlapn"k+p = an+1

for all n > k4 p, by virtue of (1.6). Hence, by induction, relation (1.7)
follows.

LemMMA 1.4. Suppose, in addition 1o the hypotheses of Lemma 1.3,
that the element h, defined in relation (1.4) satisfies the following inequal-
ities
(1.8) ol < BellPylsppy)  with By e B,

for all n>k-+p(k), k =0,1,..., where p(k) > 0 are arbitrary iniegers,
p(0) =p.
Then with B, = |1P%lly4.pu) 6XP (1—g)(1 —tkﬂ,(k))), we have

00

i
(1.9) 2 e, Mk, 0 < (L—gq)™! f s"'B,(8)ds for all kK= 0,1, ...,
b

n=k+p(k)
where
n—1 a;
to=0, t,= e T=N¢& b=IPylumexp{l—q@-T)
im0 om0

and in particular,

en

(110) Y el <(l—g™ f s7'By(s)ds, a = 6P|,

n=0

Proof. By virtue of (1.8), the estimate of the series in (1.9) follows
from Lemma 1.2 with B, a,, ¢ replaced by B, [P@pllkip), (1 — g), respect-
ively, and from Lemma 1.3, where p should be replaced by p(k).

Levya 1.56. Under the hypotheses of Lemma 1.4, the sequence {m,}
(n =0,1,...) defined by (1.5) lies in U, = D(P)n8S(z,,r), where

(1.11) r = (1-¢)" fs"B(s ds, a =€ " Puxyl,,

and

P
(1.12) el < Noglh+ (L —g)~" [ s7'B(s)ds,

0
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where
Br = "Pmk"k+p(k)ex1) ((1—41) (1“tk+p(k)))’ o =0,
and
n—1
"’n = 2 &1y
i=0
or
Pr
(1.13) lenlle < Mol + (L — )" [ s~'B(s)ds,
0
where

Moreover, {x,} ¢s a Cauchy sequence.

Proof. The estimate (1.12) follows from the estimate (1.9) of Lemma.
1.4, and therefore relation (1.13) holds. Relations (1.11) and (1.10) yield
that the sequence {z,} lies in U,. Relation (1.9) implies that {z,} is a
Cauchy sequence.

For given x,, h, = h,(2,), 0 < ¢< 1, put

(1.14) Pi(e) &ny hy) = |P(w, + ehy) — (1 — &) P, e,
(1.15) D;(1, ,, hy) < ql\Pw,ll;  for all p <i<<m,

where p = p(0) is the same as above. We asgume that there exist a posi-
tive function f and a constant 0 < ¢ < 1 which have the following prop-
erties:

(1.16) f(s,)—>0 implies s,—0 as n—0,

where {s,} is a positive sequence. If condition (1.15) is not satisfied, then
there exists a positive ¢, <1 such that

(117)  F@IP@l) < Plens By ba) < qI1Pll;  for all p<i<m.

By using this assumption, the following iterative procedure can be
defined. If condition (1.15) is satisfied then we put

(1.18) Ty = Tpt+hy.
If condition (1.15) is not satisfied, then we put
(1.19) Bpyq = Xy 80y

TurEorREM 1.1. Suppose that the following conditions are fulfilled for
P: D(p) c X—Y. Relations (1.16) and (1.7) hold for the sequence {z,}
(m =0,1,...) defined by (1.18) and (1.19). In addiiion, assume that for
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each t > p, we have
(1.20) D,(eny @y hy) >0 whenever e,—0,

where the sequence {h,} satisfies relation (1.8) for all » = 0,1, ...
Then the sequence {z,} lies in U, = D(P)n8(m,, r) with r defined by
(1.11) and converges to a solution x of equation Pz = 0.

Proof. By virtue of (1.17) relation (1.4) is always satisfied for {z,}.
By Lemma 1.5, {x,} < U,. First suppose that the sequence {e,} con-
verges to 0. Then the convergence of {||Px,|;} to 0 a8 n—oo holds for
each 4 3> p, by virtue of (1.20), (1.17) and (1.186). If {¢,} is not convergent

to 0, then )' &, = oo, and by Lemma 1.2, {a,} converges to 0. It results
n=0

from relation (1.7) of Lemma 1.3 that {|P=,|,} converges to 0 for each
1 = p. This completes the proof.

Let us observe that if X is a Banach space, then we can put f(s) = fs,
where 0 < f < 1 is arbitrary.

2. The first algorithm for the diagonal method of contractor directions

Let P: D(P) « X—XY bea continuous nonlinear mapping and U, = D(P)n
N8, where 8 = 8(x,, 7) = [®: |l# —m)lp < #]. Suppose that the following
hypotheses are satisfied.

The first and second Fréchet derivatives P’'(z) and P''{x) exist and
are continuous at all € U, and have the following properties:

(i) For each xeU,, there exists an element A(2z) such that
P'(z)h(x) = ~Px.

(i) For each k =0,1,..., there exist a function B,eB and an
integer p(k) =0, p(0) = p > 0 such that

(2.1) 1 (@)l < By (IP2lkrpgy)  for k =0,1,...

We are now in a position to define the algorithm. Given %, e D(P)
and hy, = hy(2,) satisfying relation (i) and (2.1) with p(0) =p > 0, and
a global constant 0 < ¢ <1, we define ¢, as follows:

&y = P,/ max [P (@, thy) (hy, ho)llpy
0<t<1

provided ¢, < 1. If this is not the case, then we put ¢y = 1. In both cases,

we put @, = 2,4 £hy. Suppose now that a4, z, ..., 2, € D(P) have been
already chosen. Then we put
(2.2) e, = min {g|\Px,|;/max [P (z, +h,) (b, By )lli} s

pi<m <i<1

provided &, < 1. If this is not the case, then we put ¢, = 1. In both cases,
we put

(2 3) Tpy1 = Ty +e, hn?
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where k, = h,(@,) satisfies relations (i) and (2.1) with # = #,. In this
way, the sequence (2.3) i8 well-defined for » = 0,1, ... It is clear that
the sequence {z,} satisfies relation (1.1) with 4 —x, and y = —Pz,.
In fact, we have, by virtue of (i) with z = =,

“P(mn+ €n n) - ( - En)Pwn”i = ”P (mn+ Enhn) _Pwn_' sn-P’(wn) h

n”‘i

1
< p [P (@ + teg o) (i B, )ls 02
o
< &) MAX [P (@, + thy) (B, By);-
0<i<1

Hence, by virtue of (2.2), we have

(2.4)  |P@y+enhn)— (L —en) Pl < qP,lly, for all p<i<n

Regularity Hypotheses

RH,: It is assumed that the sequence {¢,} defined by relation (2.2)
bas the following property:

&n = ¢ |Pw,|;, fmax [P (2, +th,) (hy, ko)l
0l

where 4, < n and i,—>00 as n—>00.

RH,: It is assumed that D e, = oo.

ne=j
RH,: It is assumed that 0 is a cluster point of the sequence {M, —s,},
‘where

(2.6) M, = max{anmnﬂ,/max 1P (@4 thy) (B T )}
p<i<n

RH,: It is assumed that ¢,—0 as n—>oo implies that Prv,—0 as
n—00,

RH;: It is assumed that e,—0 as n—oco implies that
(P(wn—l—snh)—Pwn)/an—>O a8 n—>o0,
where {¢,} is the same as in (2.2) in all the hypotheses quoted above.

Remark 2.1. In all cases the sequence {¢,} defined by (2.2) can be
replaced by the following

(2.6) e, = min {g|\Pz,]; /m&X 1P (2, + thy) (B Byl G}

p<ign

for some sequence of C; = 1 independent of =.

4 — Banach Center t. XIII
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3. Local existence and convergence theorems

The following lemma holds for the algorithm defined in Section 2 by
relation (2.3).

Levma 3.1, Suppose that the mapping P: D(P)c C—X satisfics
the hypotheses (i), (i) of Section 2, and in addition,

(3.1) r>(1—¢7" [sT'B(s)ds  with a =P,
[H]

Then there exists a family {I,(P,n)} of sets of coniractor directions
such that —Pw e I'y(P, ) for all & = @, and n = p, where {x,}, » = 0,1, ...
18 the sequence gemerated by relation (2.3) of the algorithm im question. More-
over, {x,} is a Cauchy sequence and lies in Uy = D(P)NS (g, 7).

Proof. The existence of a family of sets of contractor directions
results from relation (2.4). It follows from Lemma 1.5 that {z,} is a Cauchy
sequence which lies in U,.

TueEOREM 3.1. Under the hypotheses of Lemma 3.1, suppose in addi-
tion, that one of the regularity hypotheses RH, or RH, is satisfied. Then
the sequence {,} defined by relation (2.3) lies in U, and converges to a sol-
ution of equation Px = 0.

Proof. By virtue of Lemma 3.1, it remains to be seen that the sequence
{Pz,} converges to 0 as n—»>o0. Suppose first that hypothesis RH, is
satisfied, Then by Lemma 1.2, a,—~0 a3 n—oco. It follows from relation
(1.7) of Lemma 1.3 that

lPz,|l;—~0 a8 m—>oo for each i =0,1,...

Suppose now that hypothesis RH, is satisfied. If ¢,—~0 as —>o00, then

by assumption, Pz,—0 as n—oc. If the sequence {¢,} does not converge

to 0, then obviously } &, = oo, and the hypothesis RH, is satisfied.
ne=0

THEOREM 3.2. Under the hypotheses of Lemma 3.1, suppose in addi-
tion, that the hypotheses RH, and RH, are salisfied, and that the sequence

(111) {ma’x "-P”(.a"n_l'ﬂ"n)(hn’ hn)"i}

o<i<1
8 bounded for each i =p,p-+1,..., where {z,} and {h,} are defined by
the algorithm. Then the sequence {x,} lies in U, and converges 1o a solution
of equation Px = 0.

Proof. Suppose that the sequence {M,} defined by relation (2.5)
contains a subsequence convergent to 0. Then relation (iii) yields the
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existence of a subsequence of {Px,} convergent to 0. But {Pz,} is a Cauchy
sequence, since 8o is {z,}, by virtue of Lemma 1.3. Therefore, {Pz,} con-
verges to 0 as n— oo, If the sequence {M,} does not contain a subsequence
convergent to 0, then the sequence {g,} is not convergent to 0 and, con-

equently, >’ e, = oo, i.e., the hypothesis RH, is satisfied and the proof
n=0
follows from Theorem 3.1.

TmzorEM 3.3. In addition to the hypotheses of Lemma 3.1, suppose
that relation (iii) is satisfied. Then the sequence {r,} defined by relation
(2.3) converges to a solution of equation Px = 0 if and only if the hy-
pothesis RII; is satisfied.

Proof. Suppose that the sequence {g,} converges to 0. We have
(3.2) 1P (@,+ eahy) — (1 — ) Payll; < €, max [P (, +1hy) (R 5 )l

0]

for all ¢ = 0,1, ... It follows from relations (3.2) and (iil) that the hy-
potheses RH; is satisfied if and only if the sequence {Px,} converges to 0.

If the sequence {e,} does not converge to 0, then obviously, D ¢, = oo,
and the proof follows from Theorem 3.1. n=0

4. The second algorithm for the diagonal method of contractor directions

Let P: D(P) =« X—Y be a continuous nonlinear mapping which satisfies
the hypotheses (i) and (ii) of Section 2, We assume, in addition, that
the following relation is satisfied. There exist positive constants C,, Cy, ...
such that

(4.1) max|P"(x+1h)(h, 1)|; < 0;||Px|;, for all ¢ ==0,1,..., and
01
ze U, = D(P)nS(x,, r), where P'(2}h = —Pz.
We are now in a position to define the algorithm. Given =, € D(P)

and hy = hy(x,) satisfying relation (i) and (2.1) with p(0) = p» > 0, and
a global constant 0 < ¢ <1, we define ¢, as follows:

g = q/C, 7provided e, < 1.

If this is not the case, then we put &, == 1. In both cases, we put &, = v,
+ ey hg. Suppose now that %y, 24, ..., ¢, € D(P) have been already chosen.
Then we put

(4.2) e, = g/max C; provided ¢, <1.
ogign

If this is not the case, then we put e, = 1. In both cases, we put

(4’3) CD,H_l = fL‘n-I- Enhn’
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where h, = h,(z,) satisfies relation (i) and (2.1) with # = x,. In this
way, the sequence (4.3) is well-defined for » = 0,1, ... It is clear that
the sequence {z,} satisfies relation (1.1) with # =&, and y = —Pg,,
In fact, we have, by virtue of (4.2), (4.3) and (i) with = = =,,,

1P (2t + £ 1ty) — (1 — ) P, ll; = IP (@, + e3h) —P, — 8, P’ (2,) b,
1
< e [P (@t tenhy) (hyy By) s
0

\<~ 8?1, max |I-P”(wn+ﬂ"n) (hﬂ.’ hn)”t"
[IF{ £'4]

Hence, by virtue of (4.2), we obtain
(4.4) Pz, +e.h,)—(1—¢,)Px,ll; < qe, | Px,l;, for all 0<i << n.

THEOREM 4.1. In addition to the hypotheses (i), (ii), (3.1) of Lemma
3.1, suppose that the following growth condition is satisfied for relation (4.1)

(4.5) jl/max 0, = oo.

nm=0 Osién

Then the sequence {z,} defined by (4.3) lies in U, and converges to a solution
of equation Pz = 0.

Proof. The proof follows immediately from Theorem 3.1, since >’ ¢,
= oo, by virtue of (4£.5) and (4.2). n=0

Remark 4.1, It follows from assumption (3.1) of Theorem 4.1 that if
>(1—g)! f sTIB(s)ds with a = ¢4,
0

then for all y satisfying the condifion
(4.6) Pz, —¥llp, < ¢ < [Py,

the equation Pz—y = 0 has a solution # such that |z — x|, < r,. More-
over, if P% = §, where ¥ satisfies relation (4.6) and

F>(1—g)7 [ s B(s)ds  with a = ¢'775,
0

where ¢ is such that [y: |§—yl, <] = [y: [Pr,—yl, < ¢], then for each
y with |7 —yll, < ¢, there exists a solution 2 of equation Px —y = 0 such
that |2 —x|l, < 7. Hence, it follows that if P is one-to-one, then the inverse
of P is continuous. v

Proof. We replace the operator P by the operator with valuey Px—y
and apply the corresponding theorem. This remark also holds for The-
orems 3.1-3.4.
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Remark 4.2. Suppose that X and ¥ are Banach spaces and that for
some ;> 0,

(4.7) max ||[P"(x+th)(j, B); < C;|IR];  for all 3 e U,
ot
where
P'(z)h = —Px.
If
(4.8) Ikl < B;(IPsl)  with  Bj(s) = O71e"2,
then we obviously obtain that
(4.9) max [P (@ +1h)(h, h)||; < C; [Pz
I<t<1

Hence, assumption (4.9) follows from (4.8) provided that condition (4.7)
is satisfied. Condition (4.8) appears in a different form in the Kantorovich
hypothesis used in hig convergence proot for Newton’s method (see [5]).
This argument shows that the hypothesis (4.1) seems to be a natural
extension of the one made in case of Banach spaces. If the seminorms
in X are norms, then we obtain

CoROLLARY 4.1. Suppose that in addition to the hypotheses of Theorem
4.1, the following condition is satisfied

(410) |P' (@) [P’ (24 t(@—a) —P' (@)] (F—2)|, < & —2Il;
for all =z, Telu: |[u—moly,<7,] and 0 K<I< 1,

where v, is the same as in Remark 4.1. Then the mapping P has a continuous
inverse defined for all y satisfying relation (4.6).

Proof. We have from Taylor’s formula
1

PE—Pu—P'(@)(E—a) = [ [P'(o+1(E~0) —P (2)](Z—o)dt.

0

If Pz = Pz, then
Z—o = [ P'(2)[P[0+1(5 — o)) ~P' (@)](z—2)dt.

Hence, by virtue of (4.10), Z = 2. The continuity follows from Remark 4.1.

Consider now a particular case of relation (4.1). As in the case of
tame operators (see Hamilton [8]), suppose that the following assumption
is satisfied. There exist comstants C;, ¢ = 0,1, ..., such that

(4.11) NP (@) Ty R); < O5 (IRl Il + iol: [1B13).
Suppose, in addition, that
(4.12) B, < OF \Palilye  for i =0,1,...,
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where P'{z)h = —Pu, i.e., the function B, € B in relation (1.8) is B,(s)
= (} s'*. Then we obtain from (4.11) and (4.12)

(4.13) max |P" (@ +1th)(h, B)|;

e < O (IPaI e I + (ol + 1Po 1) Pl
where p = p(0). Finally, assume that there exist constants Gy, ¢ = 0, 1,..,
such that
(4.14) 1P | P2l + (2l + 1 P2l ) (P2l < C; || P2,
for all « e U,. Combining relations (4.13) and (4.14) yields

(4.15) max [P (x+th)(h, M|, < C;|\Px||, fori=20,1,...,

0t<]
where C; is the constant resulting from those in (4.13) and (4.14). Hence,
we obtain the following

THEOREM 4.2. In addition lo the hypotheses (3.1), (i) and (ii) with
(2.1) replaced by (4.12), suppose that relation (4.14) is satisfeed. If the growth
condition (4.5) is satisfied for relation (4.16), then the sequence {x,} defined
by (4.3) Ues in U, and converges to a solution of equation Px = 0.

Proof. The proof follows immediately from Theorem 4.1.
It is evident that Corollary 4.1 also applies to Theorem 4.2,

5. The third algorithm for the diagonal method of contractor directions

Let P: D(P) « X—Y be a nonlinear map which satisfies the hypotheses
(i) and (ii) of Section 2. We assume, in addition, that there exists a sequence
{0,(s, 1)} of positive functions such that

61 max P @tk (b Wl < Oul0llsrgy Poliega) 1P

<t<t
for ¢>p,..., where r(4) >0, q(¢) > 0 arec arbitrary integers, P’(x)h
= —Po for all # € U, = D(P)NnS(xy, 7) with S(z,, r) = [@: |lw— 2,/ < 7],
r being defined below. We can now define the following algorithm. Given
o D(P) and 0< ¢< 1, put

& =min{l, Q/Oo(”mo”r(u); ||P-7’o||q(o))} and @, = @yt eghy,

where P’ (x))h, = —Pux,.
Suppose now that »,, #y, ..., 2, € D(P) have been chosen. Then we
put

(52) 8'); == min{1? Q/max Oi(“mn”i+r(i)’ ”Pwn”i+q(i))}
0ien
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and

(53) Tpy1 = Op+ .0, where P'(e,) bk, = —Pux,.

Thus, the sequence in (5.3) is well-defined for ¢ = 0,1,... It is clear
that the sequence {z,} satisfies relation (1.1) with # = «,, and y = —Px,.

In fact, we have, by virtue of (5.2) and (5.3),
'lP(wn+Enhn)_(1 - n)Pm,nlI@ = IIP(xn—l_Enhn) —’Pwn—sn-Pl(mn)hn”i

1
< E127, f “P“(wn_I_tEnhn)(hnl hﬂ.) “idt
0

< Ei max ”-P”(mn_’— thn) (hn) h’n)"z
0l
Hence, by virtue of (5.2), we obtain
(5°4) I'P(mn""_ snhn) - (1 - sn)l)mn”i g- qsn ”-P"'vnun for all 0 g 7/ g .

TrEoREM 5.1. In addition to the hypotheses (i), (ii), (3.1) of Lemma 3.1,
suppose that the following growth condition is satisfied for relation (5.1)

3
(5.5) D) 1/m8% Oy (@l risys 1Pl g) = 00,
neo 0stsn

whenever {x,} is a Cauchy sequence which lies in U, Then the sequence
{z,} defined by (5.3) and (5.2) lies in U, and converges to a solution of equa-~
tion Px = 0.

Proof. The proof follows immediately from Theorem 3.1, since D ¢,
= oo, by virtue of (5.5) and (5.2). n=0

Remark 5.1. Corollary 4.1 also applies to Theorem 5.1,

ExAvpPLE. Suppose that the following assumption is satisfied as in
the case of tame operators (see Hamilton [8]):

(5.6) 1P () (hy B)li; < (Il Ille + Nl MB13), 4 = 0,1, ...
Then we obtain

max [P (& +1eh) (h, )l < C; (I1); ello + & I1%;) B 15
ol

where P'(z)h = —Pz. Now suppose that
(5.7) 2l < CillPelny  for i =0,1,...,
i.e., the function B, ¢ B in relation (1.8) is B,(s) = C;s'*. Then we obtain
from the above
(6.8) max ||[P"(x+1teh)(k, h)l;
ost<t 2 12 1/2
< Oy ||Pm||1]J-!+p(i)/ 1Pz iy” 4 loll; + 1P| pi) 1P®
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where p(0) = p and C, is the constant resulting from those in (5.6) and
(8.7). Thus, relation (5.8) is a particular case of the more general rela-
tion (5.1).

6. The fourth algorithm for the diagonal method of contractor directions

Assuming that relations (5.6) and (5.7) hold, we can define the following
algorithm. Given @, € D(P) and 0 < ¢ < 1, solve for & the following equa-
tion

(6.1) 1Patolly* € + (14 lllfo) e — ¢/Co = 0.

Put ¢, = min(1, &), where ¢ is the solution of equation (6.1), and », = »,+
+ &yhg, Where P’'(zg)hy = —Px,. Suppose now that zy, 2,, ..., x, € D(P)
have already been defined. Then we solve the equation

(6.2)  IPo, o € + (12,155 0y 1P, 1 + ) e — g/C,, = 0,

and put &, = min(1, &), where &, is the solution of equation (6.2). Put

(6.3) Xy = Ty + e, 0y, where P'(2,)h, = —Px,.
Thus, the sequence in (6.3) is well-defined for ¢ =0,1,... It is clear
that the sequence {z,} satisfies relation (1.1) with » =a,, y = —Pa,.

In fact, we have, by virtue of (6.2) and (6.3),
”P(mn 'l— Enh’n)—(l_e)Pmn”i = ”P (mn+ enhn) _-Pmn'”_anP’(wn) hn”;'

< Efm max ”-P”(mn"]_tsnhn)”i'
051
Hence, by virtue of (6.8) with # ==2,, h = 4,, and { = n, and (6.2),
we obtain
(6.4) WP (2, +enhy) — (1 —¢,) Pa,ll; < g8, )| Pa,l;,  for P<i<<m.

THEOREM 6.1, In addition to the hypotheses (i), (ii), (3.1) of Lemma 3.1,
suppose that one of the following growth conditions is satisfied for relation
(5.8)

(>}

(6.5) D NP O, 1P iy + 1P % el) = 00,
ne0
or
6.6) Z{[l 4 PO i 1Pl ]"2 -_1}= -
< (1P 113 iy + 1P ], ’

whenever {x,} is a Cauchy sequence which lies in U,. Then the scquence
{w,} defined by (6.3) lies in U, and converges to a solution of equation Py = 0.
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Proof. Oonsider the larger root of equation (6.2)
en = ([Pl om) + WP 1) /1P lp + 44 1P 15 )10, 1 —

n-+o(n)

— (P25 oty + 1P eyl ) WPz, 23 12 P 12

n+p(n)°
Hence,

”-Pmn“}zlip(n) + ”Pﬁf’n”m I|mn”n

2 ][Pmnlllfz ”-Pmn”}l/-ip(n)

4q1| P, |52 iy 1P, | Ha
w1 n+p(n) nllp ] __1}
{[ + On(”Pmn“}z,!ip(n) + ”-Paf"'n.””2 ”mn”‘n,):A

IP2 3 oy + P22 I,
2|1 Pz, |42 1 P2yl sy

(6.7) &=

49 1P 1574 oty 1P|
22120, (I1Pm, 35 oy + 1Py 12 1, 1)

= qIPay 122 C o | Pl pimy + P 1@ lla) 5
provided that for some 0 < a <1 we have
: 4!2 ”Pmn”}ml-iz@(n) llen||11212/0n(”Pwﬂ”:zlip(n) + ”Pwn”q]@[-?-p(n) "mn”n) a < 1
and since 0 < a < 1 implies (1 +a)**—1 > /2% Tf this is not the case,

then ) & = oo, since the sequence {|Pz,[L*} is bounded. Hence, we
N0
have in both cases that 2 &, = 0o, and the proof follows from Theorem 3.1.
n=0

It is clear from (6.7) that (6.6) implies 2 &, = 00,
n=0

Sufficient conditions can be given for relation (6.5) to be fulfilled.
For instance, suppose that there exist positive constants M, which have
the following property.

Relation

(6.8) 1Pz < M, ||1Peit? (L + l2ll,)

is satisfied for all # € U, and for almost all » > p. Then we obtain the
following

THEOREM 6.2. Theorem 6.1 holds true if condilion (6.5) is replaced
by (6.8) and

(6.9) D10, My ey = .

n=0

Proof. We have from (6.9) that

(6.10) 2 1P, 2 10 WPyl oy (L F Bl py) = 204

=0
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by virtue of (6.8) with & =, and » replaced by n+p(n) for almost
all n > p. It is clear that relation (6.5) follows from (6.10).

With regard to relation (6.6) consider the following condition. Suppose
that there exist positive congtants d, such that the relation

(6.11) P[5 iy P21 2 By G (1P oy + [P (1l )?
ig fulfilled for all # € U, and almost all n. Then we obtain the following

THEOREM 6.3. Theorem 6.1 holds true if condition (6.6) is replaced
by (6.11) and

(6.12) 2[(1 +d )2 —1] = co.
n=0
Pyoof. It follows from (6.11) with # = #,, and from (6.12) that condi-
tion (6.6) is satisfied.
Condition (6.5) can be replaced by the following coersiveness hy-
pothesis. Suppose that there exists a positive function f such that f(s,)—0
as n->oco implies 8,—0 as n—oco0, and relation

(6.13) Pz (WPoI py + P21 @ll) = f(I1P]l,)
is satisfied for all » € U, and all n > p. Then we obtain the following

THEOREM 6.4, Theorem 6.1 holds true if condition (6.5) is replaced
by (6.13).

Proof. The proof follows from the argument used in the proof of
Theorem 6.1 and from the fact that e;—0 as n—oc implies ||Pw,|,—0
a§ n-»oo, by virtue of relation (6.13) with » = #,, since the sequence
{z,} lies in U,

Acknowledgment. I am indebted to Dr. Richard A, Graff for the
Hamilton paper reference and interesting discussions concerning tame
maps.
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