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1. Imntroduction

One of the main problems in the theory of semiconductors is the deter-
mination of the distribution of electrons over admissible quantum states.
Deviations from the known equilibrium distribution function can oceur
e.g. under the influence of electrical fields and have to be taken into
consideration in many physical and technical problems. For several
purposes it is sufficient to describe the electron transport by linear Boltz-
mann equations (for physical theory, cf. [1]). The following simple
one-dimensional example serves as an illustration of the structure of
the linear Boltzmann equations occurring in the theory of electron trans-
port:

aDu(x)+ c(x)u(z)
1
= [ [Ey(®, )8 (w(@)—w(t) +Xy(z, 1) 8 (w (@) —w(t) +w,)]u(t)d
—1
with

;
¢lx) = f[Jfl(t,m)d(w(t)—w(w))-f—lfz(t,m)é(zo(t)-w(a:)—l—wo)]dt

-1

and
Eiz,t)e C[-, Ix[-1,1], Kj2,1)=0, j=12,
w(z) € C1[ -1, 1], symmetric, Dw(z)>0 in (0,1),

a,w,eR, a>0.

[425]
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The boundary condition for the distribution function % (w) is
w(=1) = u(l).

%
If [ w(t)dt is interpreted as the number of electrons which are in the
z

gtate interval [o, z,], then the right-hand side of the equation represents
the number of electrons which, owing to interactions with the erystal,
were scattered from a possible state ¢ into a unit state interval near z
in the given example two such processes of interactions were taken
nto consideration). The term

K;(z, 1) (w(x) —w(t)+wf’)

represents an interaction process in which transitions from a state ¢ are
admitted only to states # with energy w(z) satisfying the equality

w(z) = w(t) —wd,

¢(2) % (x) represents the number of electrons which, owing to the same
scattering processes, were scattered from a unit state interval near 2
into a possible state t. aDu(x) is the go-called drift term desecribing the
influence of a constant electrical field onto the distribution funection.

In this paper we consider approximations for a class of linear func-
tional differential equations which are generalizations of the one-di-
mensional linear Boltzmann equations from the theory of electron trans-
port. The convergence of the solutions of the approximating equations
to the exact solution of a functional differential equation under examin-
ation is investigated by means of convergence results from the theory
of discrete convergence of linear operators developed by F. Stummel
[4], [6]. The definitions which we neced and statements of this theory
are briefly presented in Section 3. In particular, the applicability of the
projection method and of the finite difference method to the functional
differential equations is demonstrated.

2. Definition of functional differential equations

Let [a, b] be a finite interval of the real line R! and let C*[a, b] (C: = (9),
L*(a, b), W™*(a, b) be the familiar spaces of real-valued functions de-
fined on [a, b]. In these spaces the norms are defined as usual. We shall
use double brackets to denote scalar products and single brackets to
denote the values of bounded linear functionals.

For given r —1 distinct points #,, ..., #,_, e(a, b) and &, = a, £, = D,
write X; = (4,_,,4), j =1,...,7,and X = [a,b]\{dy,..., 4,}, and de-
note by PC = PC(X) the space of real-valued functions defined on X
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which are continuous on each X, and can be continnously extended to
X;. The norm in PC is defined by

lullpg : = sup |u(z)].
zeX

By Ky, Kpgy Ky, Ky we denote the eones of non-negative functions
from the corresponding C, PC, Lt W™2,
Given m > 1 linear independent linear forms

(2.1) By(u) := 2 [as.ka“(af)+IBa,ka“(b)]: §=1,...,m,
k=0

define

(2.2) Vi={ueWm™(a,b)| Ry(u) =0, s =1,..., m}.
We assume that the cone I{, = KyNV has the property
{2.3) int () =int(Kp)NV =0

(int (K ) denotes the interior of Hy).

Further, let there be given families of non-negative functionals
x) e’ [a,b], e X;, j =1, ..., r, which are continuous on X, in the
following sense:

(2.4) lim sup |(u,19(@)—1(2") =0, Vauella,?d].
60 l:::,_z?e’lzg-d .

We set

(2.5) Wo):=19x) for weX

and deduce ﬁrom Banach—Steinhaus theorem the existence of a x> 0
such that

I (2))| < =

holds for all z € X. By means of this family we define the operator

(2.6) B: C—PC, (Bu)(z):= (u,l(®)).
This operator has the properties
,(2-7) B EB(O,PO), B: KC%KPC'I BEBO(V,PO)-

Here B(E, F') and B,(E, F) denote the set of all continuous, resp. com-
pletely continuous linear operators from ¥ to I. The operator B is supposed
to have, moreover, the following properties:
(2.8) Vu eint(K,) =Bu 0,

Jc e PC: Yu e V= ((Bu, 1)) = (1, ¢)
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(0 and 1 denote the null function and the unit function in C[a, b], re-
spectively, and {(-, )) denotes the scalar produet in L*). Hence we have
¢ #0 and ¢ e Kpp.

Along with B we congider the operator

m
(2.9) 4, = 3 a,(2)D" meCa,0], k=1,...,m, a,cPO(X), a,>0
k=0

and the embedding operator J*: V—L? and we define

(2.10) A: V=I2, A:=A4,+cdh

We impose the condition

(2.11) A bijective, Yw e Ky, w # 0=>4""w eint(K}),
(Aou,1)) =0, Yue7.

Consider the problem

(P1) (A—B)u = 0;

we wish to find a non-trivial solution # e V.

In addition to this problem, given another linear differential operator
4, of order m, < m, we will consider the following inhomogeneous problem

(Ps) (A+4,—B)u = f;

we wish to find a solution « € V for a given f e L?, in particular f e Kpy,
under the assumptions

(2.12) A-+A4, bijective, Vwe K, w #0=(A-+4,)"'w eint(Ky),
((Ao%,1)) =0, YueV,
((Aqu,1)) > 0, Vu eint(K,).

Equations of the form (P,) describe clectron trangport models with ab-
sorption and generation of particles.

Notice that A and 4-+4, are Fredholm operators with index zero
and thus A and 4-+4, are bijective, provided that

((Agts, w) =0, (((An-l—Aa)u, u)) >0, VueV.

Obviously, 4 = 0 belongs to the resolvent sets o(4, B), ¢(44-4,, B)(})
and the spectra o(4, B), (A +4,, B) arc countable sets with no accu-
mulation points different from oo. Each point of these spectra is an cigen-
value of finite (algebraic) multiplicity. The question we are interested
in is whether 4 =1 is a point of the spectrum or of the resolvent set.

(!) e(4, B} := {Ae C| A— AB bijective}, o(4, B) ;= C\ (4, B).
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It can be answered by use of the following theorem (cf. [7]), which in
its turn can be proved by means of theorems on positive operators in
spaces with cones:

THEOREM 1. (i) The closed disk |A| <1 45 coniained in the resolvent
set (A -+4,, B) and thus (P,) has exactly one solution u e V for any f € L2,
If fe Ky (in particular, if fe Kpy) then u eint(Kp).

(ii) A = 1 belongs to o(A, B) and has algebraic multiplicity 1. This
point is the smallest (in absolute value) eigenvalue in o(A, B) and the corre-
sponding eigenvector can be chosen from int(Ky). Accordingly, (P,) has
exactly one normed solution u () with u(a) > 0 and this solution is in int (K ).

3. Basic notions and statements from the theory
of discrete comvergence of Linear operators

To get approximate solutions of the problems (P,), (P.), we examine
suitable problems in finite-dimensional spaces. In order to define approxi-
mations for the problems (P;) and (P,) we need adequate approxima-
tions of spaces and of operators. The notions and results which can be
used in the investigation of convergence properties of the approximate
problems are to be found e.g. in the theory of discrete convergence of
linear operators due to F. Stummel (see [4], [6]). In the sequel we give
all the definitions and statements of this theory which we need.

Let I, be a denumerable infinite sequence of pairwise distinct el-
ements and let H, (E;),;, be normed spaces over the same scalar field
K (K =R or K = C). The sequence (I;),, 15 said to form a discrete
approzimation of E il there is given a sequence of restriction operators
RE: E-»E,, i eI,, with the following properties:

(381)  (BFulg~>lulg (i L),
IRE (at + po) — aRFu— BRF vilg,~0 (i € I,),
Vuvel Va fcK.
A discrete approximation is denoted by (B, (Hyiezy, (BD)ier,)- In (B (Biier, »

(RY)iez,) discrete convergence for sequences (u;) & [] B; (to a limit % € &)
is defined by el=ly

(3.2) 1w~ (i e I)es |, —RFullp,~0 (4 €I).
We shall also write
wu,—u (B, —E) (i € I)
to denote discrcte convergence in (B, (E;)es,, (£f)wz,). In defining con-

crete diserete approximations the following extension theorem for resirie-
tion operators may be helpful.
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THEOREM 2. To any sequence (v2) -of densely defined restriction operators
vE: B-H;, i €I, ie. such that the domain D(rf) = @ is linear and dense
in B and (3.1) is satisfied Vu, v e @, there ewists a sequence of restriction
operators RE: BB, i eI, with

||1‘f':u—Rf"u|]Ei——>O (tel,), Vued;
if (RF) and (RE) are two sequences of such extensions, then

|]Rfu—Rfu||Ei—>0 (tel,), Vuwel.

Therefore, to define a discrete approximation of a space, one only
needs a sequence of densely defined restriction operators. Given a sequence
(rF) of densely defined restriction operators, we can define by means
of Theorem 2 several discrete approximations of ¥; the discrete con-
vergence which results is independent of the particular extensions of

rE and can be characterized as follows:

(3.3) ;% (leleVe> 0=>3¢, e D

e —@lp <&, limgupilu;—rfe,lz <e.

sl

A sequence (4;),;.y, 0f hounded linear functionals I, e B, is said to
be discrelely weakly convergent to a limit 1e E',

L—=l (el,
i
(3.4) Yu,—u (¢ eI)=(u;, L)—(u,1) (¢ el).

We suppose that all spaces E,; of a discrete approximation for a pre-
Hilbert space I are also pre-Hilbert spaces. In discrete approximations
for pre-Hilbert spaces we also define discrete weak convergence for se-
quences of their elements:

(3.5) w—u (i e D)eVo,—»0 (i eI)=((v;, 4))g,~>((v, u))g-

A diserete approximation of a pre-Hilbert space is called discrefely
wealkly compact if

(3.6) V (%;)ier, bounded =3I, = I, Ju e B: w,~u (¢ eI,).

If E is a separable Hilbert space then all discrete approximations
of B are discretely weakly compact, and obviously, a discrete approxi-
mation of a reflexive Banach sgpace with E, « ¥ and with discrete con-
vergence equivalent to norm convergence is discretely weakly compact.

A discrete approximation iz called diseretely compact if

(3.7) Y (Uy)ier, bounded =3I, = I, Ju e B: u,»u (i e I,).
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Now let (E » (Bi)iery (Rf)iero)s (F y (Fidier, (Rf)iezo) be two diserete
approximations. For operators 4 e B(H,F), A,c B(E;,, F,), il < I,
we then introduce the following types of convergence:

(3.8) A—A (iel) o Vu—»u (tel)=Au—~Au (4 €I),
(3.9) A=A (iel) s« Vuy—u Gtel)=Adu—A4Au (i cl),
(3.10) A=A (iel) «Vu—~u (i el)=>Au—~Au (i el).

Of course, F and F in (3.9) and Z in (3.10) are assumed to be pre-Hil-
bert spaces.
A sequence (4,);; is called diseretely compact if

(3.11) Y (%)icr,ary bounded =3I, c I, Iw e F: A;u;~w (1€ l,)

and is called diseretely weakly ocompact if

(3.12) Vu,—0 (i e)=Au,—>0 (i I).

The discrete convergence (3.10) can be characterized (see [6]) by

(3.13) A,—»A (iel) < A,—~>A (iel), (A, discretely weakly compact.
If B is a separable Hilbert space and F a pre-Hilbert space, then

(3.14) A,~—>A (iel)< A,—A (i), (4, discretely compact.
Finally, (A4, (4,)er) is consistent if

(3.15) Vue®, & dense in E=3(w;) €[] E;:

del
u,—u (iel), Ayu,—Au (1el)
and a sequence (4,),y 18 said to be inversely stable if
(3.186) dy > 0, 3I¢* = I (I° denoting a final piece of I) such that
vy, < 1Ay, v e By, i eIt

Stummel ([], Section 2.2) proved the following convergence theoren
for the class of approximations

{(3.17) A (2)u = (A, —zB)u, =w,, iel, zeK,
for inhomogenous problems

(3.18) A@R)u:i=(A—2B)u =w, zek,
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of type
(3:19) AeB(B,F), BeB,(E,TI), o4,B)+#*0(:

THEOREM 3. Let there be given two discrete approximations (E, (B,
(BY) isID) and (¥, (F t)iery (Rr)ielu) If

(1) AeB(l,F), BeB,(E,F), o(4, B) # 0,

(ii) 4; e B(E;, F;), B, e By(E;, F;), (4,(4;)) consistent, (B, (B,)
consistent, 1 €I < I,

(iii) (B;) discretely compact,

(iv) 4,((4y), (By):i=fee K| AI° = I%2) = I, y = y(2) > 0:

v lwillg, < WA —2B)ullp, u; € By B(A;—2B;) = Fyy iel}#0

(4, ts oalled the region of boundedness),
then

iEIo )

4y ((A), (By)) = e(4, B),
A (2 1=A ()"t (1 eI’(?)), =eeo(4d,B).

In particular, the assertion of this theorem is valid under the fol-
lowing assumptions:

(V) E, F complete, A bijective, B e B,(F, I,

(V,) dim E, =dim F, < oo, ¢ € I,

(Vo) 4;, B,eB(H;, F;), (4, (4,)) and (B, (Bi)) consistent, 1 e I < I,
(V) (B;) diseretely compact,

(V:) (A;) inversely stable.

If K = C, then under the assumptions of Theorem 3 the following
convergence theorem for eigenvalues and eigenclements holds:

THEOREM 4 (see [5], Section 3.2). (i) If Aeg(4, B) i8 an eigenvalue
of (algebraic) multiplicity m and w, ..., w™ {s a basis of the correspond-
ing algebraic eigenspace E(1), and if U is a bounded closed neighbourhood
of A with

o(4, B)nT = {1},

then there are o final piece I° < I and Vi e I® cxactly m eigenvalues A, ...

o ™ (counted according to multiplicity) and m Ulnearly mdepmde'nt
vectors wd, ..., w™ from the sum BP, ..., ™) of the algebraic eigen-
spaces of ;l“’ vory A0 such that

(%) Here g(4, B) denotes the set {¢ € K| A —¢B hijective}.
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o(d;, BYnT = (00, ..., A"}, ielf

and
Wsd, wPsuw®  Gely, k=1,...,m.
(ii) If P; denotes the eigenprojeciion onto B(AY, ..., 20W),
then
(B, (BOE, oy A™)ieres (PiRF)iero)

is a discreiely compact approximation, and the corresponding discrete con-
vergence is equivalent to the discrete convergence in (B, (Bierys (RiE)l-EIO).

4. Sufficient conditions for inverse stability
and discrete compaciness

In the following sections two classes of discrete approximations for the
problems (P,) and (P,) are investigated by means of Theorems 3 and 4.
These theorems are applicable since the assumption (V,) is valid for
(P,) and (P,). In this section we give certain simple testable conditions
for approximations of the operators from (P,) and (P,), which imply
(V,) and (V;), respectively. For this, let

(Vs (Voierys (BDiery (Vs (Cidieryr (B Vier,)s
(L2 (Lser, (B )isz,)

be discrete approximations of V, Vs, L? respectively. Here V. denotes
the subspace JV in ¢ (J denotes the embedding operator from V into
C). Suppose there are defined cones Ky and Ky, in V; and 0, such that
the following conditions are fulfilled:

Vu—u (tel), u,eV, weint{K,)=
AI° < It weint(Hy ), el

Furthermore, let W (z) e 0;, 2 € X;, j=1,...,7, i € I < I, be families
of non-negative functionals which are continuous on X, in the sense of
(2.4), and let I;(x) be the family of functionals (2.5) formed by I{(z),
i=1,...,7. We then define

(4.2) B;: 0;»PC, (Bu)(@):= (v, Lx), @eX,icl.
Obviously, B, e B((,, PC). Moreover, the following holds:

28 — Banach Center t. XIII
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THEOREM 5. Suppose that
(i) V, is continuwously embedded in 0' with the embedding operator
J9, iel,, and

JIJd%  (iely),

(ii) supsup |%(2)l < a, with a> 0,
el 2zeX

11m3u£ '(RO(P, ) (tp, ))| = 0, V(P EO°°('\V)
iel ze
(i) (i 45 o seguemce of operators 7y PO—»I% with the property

- u;—>u(PC) (i € I) = |ryu;—Riull ,—~0 (i el),

and consider the operators

(4.3) B,: =B, iel,

‘L”;' ?
Then the sequence (B;) 18 dism'etely compact and B,—»B (i elI).

Proof. Since V is a geparable Hilbert space, to any bounded sequence
(u;) € [] V; there correspond I, < I, and % € ¥V with w,—u (V,—>V) (i e I,).
tel

Thus according to (i), #,—su (C,—»Vy) (¢ €1;). For an arbitrary £>0
et ¢ € C*N7T be chosen in such a way that |# —¢lly < e, From (ii) it follows
that

1B, —Bu||pg = sup |4y T (@) ~ (12, Ua))|
sup \(u;—ERSp, 1;( )|+sup (B @, L)) — (@, Ua))| +

+sup |(p —u, (z))|
reX

< ;=B elig, o+ sup (B @, L)) — (@, 1@))| + llp —wllcrt
and therefore

lim |B, u, —Bul]Pc e(a+x).

fEIz
Oonsequently B,u;—+Bu(P(C) (¢ e I,). Assumption (iii) leads to B,u;—~Bu
(¢ € I). Bo (B,),r is discretely compact. The discrete cocnvergence B;—B
(¢ € I) is obvious.

Using the following theorem we shall investigate the inverse sta-
bility of approximations for the operators 4 and A +4A4,, respectively.

TurorEM 6. If (E, (Ey)ier, (RE),EID) s o discretely weakly compact
approximation of a Hzlbefrt space I, if (P, (I, )1610’ (R1 iEIo) 18 a discrete

approxzimation of o pre-Hilbert space F and (F, (F Dieryy (Bi )ier,) 18 @ dis-
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crete approximation of a normed space _f‘, and iof A € B(E, F) is injective,
then a sequence (4A;).r, A, e B(E;, F,), is inversely stable if A, ocan be
split into the sum of two operators A, AP

A, — AW LAD, e,

with the following properties:
(i) (A is discretely weakly compact,
(ii) Ia > 0, I(XK,);;, K, e B(E,, F,), (K;,) discretely weakly com-
pact and
a ”%1”E1’ g ’|A$l)uiI|F{+ ”Kiui”ﬁ\i, ’M,i (=] Ei’ ?: (=] I,

(iil) 4,—4 (i eI).

Proof. If (4;) were not inversely stable, then a subsequence I, = I
and a sequence (u;), w; € By, ully, =1, i el,, with |4;ullz >0 (i e1y)
would exist. Since (B, (Ei)es,, (Bf)wr,) Was assumed to be discretely
weakly compact, there exist a subsequence I, = I, and a % e E with
w,—u (4 €I}, From (iii), A,u;—Aw ({ €I,) results. Thus Au = 0 and
congequently # = 0. Then according to (i) APu;—~0 (¢ €I,) holds and
thus AP u;—~0 (i € I,), too. The inequality in (ii) leads to w,—0 (i e I,),
in contradiction to e, = 1.

5. Discrete approximations of functional differential
equations in subspaces of V, L*

Let Iy:= N be the sequence of natural numbers and let V; <= ¥V, i € N,
be a sequence of finite-dimensional subspaces of V with

inf lu—o|,—0 (ieN), VYueV.

vel;
Let II; be the ortho,c;onal projection onto V, and

RY :=1II,.
Obviously, the sequence (II;) satisfies condition (3.1) and thus
(5.1) (V5 (Vidiews (IL)seni)

is a discretely weakly compact approximation of V.
Since

=>4 (V= V) <, —IT,u),~0 < [u; — ull,,—~0 <> u;=>u(V),
the discrete convergence corresponding to (5.1) is equivalent to the norm

convergence in V. It is also easily seen that the diserete weak conver-
gence corresponding to (5.1) is equivalent to the weak convergence in V.
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Furthermore, let C;:= J°V; and
Réu:=Iu, YueV.
From wu,—u (V) follows u,—u(C), and therefore

(6.2) (Vey (Ciienrs (IT)en)

is a discrete approximation of V,, and the discrete convergence in (5.2)
is equivalent to the norm convergence in C.
Let

(5-3) .K-p-il = .Kai = Komai,
by which (4.1) is obviously fulfilled.
Let (P;) be a sequence of projections with
P,eB(PC,L* and Pu—su(l?), VuePC

(e.g. the orthogonal projections in I? which project onto finite-dimen-
sional subspaces of L? spanned by the elements of complete systems in
L3 or interpolation operators interpolating the functions of PC at the
zeros of orthogonal polynomials). We then put

!>} :=R({P,) and rfu:=Pu, VuelPC,

and assume dim L2 = dim V,, i e N,
The sequence (P,;) satisfies (3.1) for all 4, » € PC and thus- we get
a diserete approximation

(6.4) (L% (Ldiews (B )ien)

defined by the extensions Ry of P,. The discrete convergence in (5.4)
is equivalent to the norm convergence in L* as is seen from the following:

=% (LE—>L?) (e Ny) < Ve>0 = dp, e PC: u—e,ll < &
limsup |lu;, —P;p.|| < &

‘iENl
= lim sup [[v; — w|| <limsup |lu, —P;p,[| + limsup | P;p, — || - [lp, — ull < 2¢
ieN; N, €N}

= w,—>u (L2} (1 € N,)
and, on the other hand,
w—>u (L2 (e Ny) =Ve>0 = dp, e PO: [u—g,l < &
= .12}1 sup iy =Pyl < Tmsup o, — ufl + i — ]| + limsup lp, —Peg.ll < o
ieN) ieN,

’iEN 1

Then again the discrete weak convergence in (5.4) is equivalent to the
weak convergence in I.2.
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For approximations of the operator B we choose

(6.5) l@'(m)::l(w)’ r:=P;,, deN,
Then all agsumptions of Theorem 5 are satisfied, and for
(5.6) B, =P¢B|V¢7 ie N,

we get B;—~B (i € N) and the sequence (B;) is discretely compaet. The
operators 4 and A 44, are decomposed into

m—1
AD:=a,D™ and A®:= ) @, D'+ %

k=0

(for convenience we have denoted the coefficients of 4,44, also by a,).
Obviously, A® e B,(V, PC).
We assume

(5.7) ANV)cPC, ieN,
and put
(5.8) AP:=P,AD|,, j=1,2, A4, =d4P+4P, ieN.

The operaters A, are consistent with A (with A +.4,, respectively).
To apply Theorem 6 to (4,) we choose

(6.9) F =F,:=Wn(a,b), RF :=1d3, E,:=J: V>W""!, 4N,
(J denotes the embedding operator) and suppose
(5.10) 38> 0: Blw) < [IP;wll, Yw e AV(V,),

w;—w(L?) =Pw,—w(L?), w,eANV,).
The assumptions (5.10) are fulfilled, e.g., if
(6.11) ANV)< R(P), ieN.

(49 is discretely weakly compact, and from (5.9) and (5.10) it is easily
seen that also the conditions (ii) and (iii) of Theorem 6 are fulfilled.
Therefore we get:

For almost all ¢ € N the solutions «, € V; of the approximate prob-
lems

(Pyy) P, 4 —')‘JimnB)u{ =0, il = 1, u;(a) >0, 1eN,
and
(Pa;) P(A+A,—B)u, =P;fy, felpy ieN,

exist, are uniquely determined and are in int(Hyj ) They converge in
the norm of W™? to the corresponding solutions of (P,) and (P,), re-
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spectively. Here 77" denotes the smallest (in absolute value) eigenvalye
from o(4,, B;) which for almost all 7 € N has (algebraic) multiplicity 1,
Moreover, AP 1, If, e.g., V; = L} and 1 € V,, then for almost all { ¢ N
we have }.mm = 1. Finally,

{Ael| <1} < o(4;+4,, B)

for almost all ¢ e N.
We notice that both problems (P,;) and (P,) can be solved
also iteratively by essentially the same procedure.

6. Discrete approximations of functional differential equations
in the linear vector spaces R’

Again let I,:= N be the sequence of natural numbers and let —co < g
<a<bd<b< oo. Suppose that for each e N, there are given m-+1
gets of net points in [@, 6],

(6.1) a<oit<... <altLh, =0,1,...,m, s=35(i,k) eN,
with

B 1= max |[o¥f — g%~ 0 (i e N),
2<]<s

and

o' >a (ieN), a=b (4eN), k=0,1,...,m.

We assume for convenience
{m?'j[ i=1, teey 3} < [a, b].

Consider m +1 convergent quadrature formulas

8 b
D whip@i)—> [p@)ds  (ieN), peOfa, b]
j=1 a

with positive weights _(wf-f), j=1,...,8 (p denoting a continuous con-
tinnation of ¢ to [a@, b]) and write

8(i,k)
(6.2) ((ug, v 2 wiluiv]  for w, v, eR, k=0,1,...,m.

jml

We then define the spaces
(6.3) L= (RGN, (1, )®), ieN, kE=0,1,...,m,
and use the densely defined restriction operators
(6.4) r: AP, D) =0,
g) = oPpY = p(ald), §=1,..,s,
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with ap arbitrarily fixed continuation @ of ¢ to produce the m+1 dis-
crete approximations

(6.5) (L2, (L e (ng))isN)

of I? by extensions R of #{¥,
If we take the spaces

(6.6) Cp = {RGO, - BY, {eN, k=0,1,...,m,
with
(6.7) gl : = max fuf],  u; € RAH),

1<I<s

and the restriction operators

(6.8) By u:r=1%u, wel,
then we get m+41 discrete approximations
(6.9) (Cs (Crtdiens (BEi)ien)

for the space C.
In order to define a discrete approximation for W™*! we take oper-

ators :
(6.10) 8 RUER-D_ RGN, —1, ..., m, ie N,

with the following properties:
(6.11) (i) DfrVp—sDre(L* 1) (i e N),
Vo € 0®[a, b] and g e C™ [z, b}, m; > m, with
k
D¥ =[] &7,

r=1
(it) 8@ rFyp—>Dy(LP*"'>L2) (i e N),
Vy e CP[a, b] and § e (™ [&, b], m, > 1, with
500, RO Retik-)
(("”’1" 8 0,)){ = -"((ég‘)'“ia ’Ui))i'k_l);
for u, € R*®%), o, e RSWF-1)
N TR T (g
o ;zk)u?iLI;u(L—;f-gLi;(j ZEVE\TTCN,)N) b —>U(Opy,4—>0) (1 € Ny)

for w e W2, (u,) E.];v] RGE=D =1, ..., m,
1e 1
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and we set
m
(6.12) (s Wlmsi= D, (Dt DEO)P,  ws 0, € RGO,
fe=0
With this scalar product, let
(6.13) Wit s = {Rs(i'o)y (( ) '))m.i}, ieN.

We then use the discrete approximation
(6.14) (W2 (WP )iens (BT iew),
which is defined by extensions of the following densely defined restriction
operators:
6.15) r7: WmrosWrE, DEF) =0°  rFu:=+"u, ieN.
For discrete convergence and discrete weak convergence in (6.14) the
following holds (see [7]):
(6.16) 4,5 u(WrsW™?) (ie N, = N)
<DFu,S) Dey(LE* I (ie Ny N) for k =0,1, ..., m,
(D} and D° denote the identities of L2° and I? respectively) and
(6.17)  w;—u (WP >W™) (i e N)
>Dfu,—»D*u(C,,~C) (ieN,) for k=0,1,...,m—1,
(ct. [2]).
In concrete applications the conditions (6.11) (i) and (ii) can be

easily verified. The validity of (6.11) (iii) can be shown by means of in-
terpolation operators (see [7])

(6.18) Int®: ROA-D WG, 5y, k=1,..., m.

Now we present discrete approximations for the spaces L2, Vi, ¥V which
will be used to define approximations of the problems (P,) and (P,).
We set

(6.19) L}:=ILy™ REf:=RM,
C.i:r— 00’“ .R?:z.Rg,“ 1 e N.

Let Ky, be the cone of non-negative vectors of R, To approximate
the space V, we choose subspaces R*™® = R with dim R***) = dimI?
and scalar products ((, -))p, such that in the resulting Hilbert spaces

(6.20) V= {R'®0, ((’ '))7;}’ i€N,
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the following inequa.lities hold:
(6.21) @ hyllm,s < Mtllp, < Bloillmys, Yy eV, ie N,
with e, # > 0 independent of ¢, and

int(Ky,) #@ for Ky =K;nNV,.

We then consider the discrete approximations

(6.22) (Va (Vidiens (Rr)iezv)
defined by the extensions of densely defined restriction operators
(6.23) fr V>V, D{#) =0°nV

with the property
(6.24) r®¢ — #@ly 0 (i € N), Vp e 0°nV.
The condition (4.1) is then fulfilled (ef. [7]).

It is eagily seen that then the discrete convergence in (6.22) is equiv-
alent to the discrete convergence in (6.16). The discrete weak conver-
gence in (6.22) is proved to be equivalent to the discrete weak convergence
in (6.16) too. Therefore condition (i) in Theorem b is fulfilled and
(V,y (Vdiewy (B{)icw) Temaing discretely wealkly compact.

The operator B is approximated as follows: For a sequence of pro-
longation operators

(6.26) @Q;: C;~C, |Ql<y, Rlp—>p(0) (ieN), ¢eC*nV
(e.g. linear interpolation operators) we define

(6.26) (B (@) = (w, L(@)) i = {Qeuz, 1(2))

and we set

(6.27) (rou) 1= }(u(@™ +0)+u@™ —0), j=1,...,5(,%), uePC.

By these settings, ail assumptions of Theorem 5 are satisfied and we
have again

B.—B (ie N} and (B;) discretely compact.
For simplicity we consider here only the following type of approximations.
for A4 and A +A4,, respectively:
-Ai = Agl) +A$2):
with
m—1
(6.28) AW =10, DP, AP := > r,a,M®Df+ 1M

k=0
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and linear operators
(6.29) MP: L¥ESIE™ & o=0,1,...,m—1,

which are discretely convergent to the identity of L? (with respect to
generalized approximations; of. [3]). To apply Theorem 6 to (A4,) we set

Fi= W a,b), Fpi= W= (RGO, (-, ), ),

6.30
(6.30) K,:=J; Vi-»Wpr 1 (J; the embedding operator)
and we define the discrete approximation of T by the extensions of the

following densely defined restriction operators:
W0 WrLR DY) = 0.

Then all conditions of Theorem 6 are fulfilled, and therefore the sequence
{4,) is inversely stable. Obviously, (4,) is consistent with 4 and 4 +4,,
respectively, and thus we again obtain the existence, uniqueness, posi-
tivity, and convergence of the solutions of the approximate problems
defined by the operators (4,), (B;).
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