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We consider a parabolic equation with an initial-boundary condition of
the third kind in @, = @ x [0, T], where £ is an arbitrary bounded
domain in R? To solve this problem we construct an alternating direction
Galerkin (ADG) method with the bilinear approximation in the space of
independent variable #,, ¢ = 1, 2, and the difference approximation in
the time variable {. We prove that thigs method is unconditionally stable
and convergent. The error of the method is O(z+%) in the norm L(0, T;
H1Y), where v and h, are the steps of the time and space grid, » =max{k,, 4,}.

The corresponding system of linear equations is solved by the capac-
itance matrix method, see [1], [2]. If T is of order . then the cost of the
method is proportional to the total number of unknows.

In [3] and [4], the ADG method is considered for the parabolic
problem in @, = [0,7]x82 where £ is a rectangle or rectangular
polygon. In [5] this method is gencralized for an arbitrary domain £ for
the parabolic problem with a boundary Dirichlet condition.

1. Differential problem

We consider the initial-boundary value problem for a parabolic equation
with a boundary condition of the third kind,

(1.1) %?——I—Lu=f(m,t), (z,t) eQp = 2%x(0,T],

ou
(1.2) wu(z,0) =u, =z, —a-;+cm=0, vel, 1e(0,T],

[725]
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where Q is a bounded domain in R* with the boundary I' = 8, which
is piecewise smooth. The operators I and d/dv in (1.1) and (1.2) are of
the form

2 2
u = — E Dyfa;(z, 1) D,u)+ 2b,-(:v,t)1),-u+o(w,t)u,
1,j=1 T=1
2
ou
= Zaﬁ(m, 1)D;ucos (@, v),

ii=1
where » denotes the outward normal to I" and (z;, ») is the angle between
» and the z, axis.

The weak form of the problem (1.1) and (1.2) is as follows:

For f e L2(0, T, L2(Q)) and u, € H*(2) find a function u: [0, T]->H!
such that

(1.3) u e I}0, T; HY(R)), % e I*0, T; L*(9)),

(1.4) %(u(t),v)—l—a(t;u(t),v)=(f(t),'v), VYveH!(Q), te(0,T],

(1.5) u{0) = 1,

where (-, *) is the inner product in L%(£2) and

2

a(t; u,v) = f{z aijDiuDjv-!-jb,-Diuv—l-cuv} dQ fcmvdP.
r

0 4i=1 i=1

Here LZ(O,T;H (Q)) denotes the space of functions w: [0, T]>H(Q)
fuch that

T
[ Im®)idt < +o0

where H({2) is a Hilbert space.
We assume that a(l; u, v) satisfies the following condition: there
exist constants ,, y, > 0 such that Vie[0,T] VveH(D)

(1.6) vollolin < a(t; v, v) < y1lblin .

The problem (1.3)—(1.5) has a unique solution under some assumptions
on the coefficients of the problem (see for example [6]).
2. Discrete problem

Our aim is to construct an alternating direction Galerkin (ADG) method
for the problem (1.3)~(1.5).
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First we construct a finite element space., Let R} be a rectangular
grid in R? with the steps h; and h,. Let e,; denote the rectangular element
of the form ey = [ihy, (1 4+1)N,] X [jhs, (j +1)k,]. For the domain 2 we
define £, as the union of all elements e; such that ¢; < @ and 0, as
the union of all elements ¢, such that e; N2 5= {@} (see Fig. 1).

The finite element space is defined as

Va(R,) = {v: veC(R), v]ey E'Pm}

where P, , i the set of the bilinear polynomial in z, and @,. The function
2 on the element e is uniquely defined by the valnes of v in the vertices
of e;.
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Fig. 1
Finally, let o, be a time grid,
wo,={t=nt,n=0,...,N, Nt =T}.

The discrete AD Galerkin problem for the problem (1.1) and (1.2)
is defined as follows.
Find a function U: w,—V,(£;) such that

(2.1)
021’2 n n ‘"
(Ut '”)L2(n)+ 6z (U, ’D)H](Oz)"l— m (D,D, U7, DlDﬂv)L2(92)+a' (U* v)
= (f", 9)130a)s VveV,(2,), n =0,...,N-1,
(2.2) U = 4y,

where 6 is a positive real parameter which will be chosen later on and

U* = U(nz), UF=(0""'—U™/z, a*(U" ) =a(nt; U" 0).
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The function wu,, € V,(2,) interpolates the extension of the function
%, t0 Q,. By f™ we mean f(nz). For simplicity we assume that f e 0([0, T7;
L“(Q)).

3. Algorithm

Tn this section we defind an algorithm for computmg the solution of the
problem (2.1) and (2.2).

First we reduce the problem (2.1) and (2.2) to a system of linear
equations. Let 8,,, ¢ =1, 2, denote the sets of the grid points (nodes)
belonging to 2;. For every point z = (ihy, jh,) €82,, we define a basis
function ¢; of the form

@ , @ )
@iy (T15 @2) = @ (21) s (22) = 'P(hl ?') ‘)7(7i —.7)
1 by
where p(s), s € R, is th roof function.
The space V,(£2;) is spanned by the functions ¢, i.e.,
Vy = span{g;}, (4, ]) Eﬁz,m

where (i, j) € £, , means that (i, jh,) € 2, ;.
We seck the solution U™ of the form

U™y, ) == Z ag'%j(mn @) .

(i,j)&az’h

Using this form in (2.1) and (2.2), we get

-
(3.1) Z a?j,e {(‘Pﬁ; ?’pq)Lz(n)+ 07’(%‘1; ‘qu)Hl(nz)'l‘

()85 ),

G272 .
+ 1107 (D, Dy, D1Dz¢pq)L?(nz)} = Iy,
(p,9) ezgz,lu no=0,..,8~1,
(3.2) a_?;q = Uy, (Phy, qhs), (p,9) € Dz.hs

where

F_;qu = (Jt'n’ (ppq)Lz(ﬂ) — a’u( Un) ‘qu) .

We rewrite system (3.1) as a difference scheme. Let us introduce the fol-
lowing difference operators:

ar

h
4, =§1(Tj+4T°+T;), Ay = ——(Tf —27°+17)

where Tf2 = x-4-h,e;, 6, = (1, 0), e, = (0,1).
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We decompose the grid (node) sets £, i =1, 2, in the form &,
= 2,,008;, where 30, are the sets of the grid points belonging to
00;. Define I, = 02,,00%0,,. Let N, denote a neighbourhood of
the node (p, q) € I}, containing the nodes of the elements ¢, for which
the node (p, ¢) I8 a vertex. We can now rewrite the system (3.1) as the fol-
lowing difference scheme: for # =0,1,..., N—1

" Ot o Ot
(3.3) (1--67) (/11+ mfll) (AH‘ Tra % ) gt = Fpgs
(p,q) e Ql.hr
(3.4) D gydly =T, (0,9 el

("'lj)Erh

Note that the coefficients g, do not depend on #.

To solve the scheme (3.3) and (3.4) we apply the capacitance matrix
method. First we describe this technique for an arbitrary difference
scheme defined on the grid D,,

(3.5) Av(p) =b(x), wxeD,

where A is a difference linear operator. We agsume that the problem (3.5)
has a unique solution. Let S, denote some subset of D, 8, = D,, and
let B be a difference linear operator which may differ from the operator

A only at the grid points of §,, i.e.
(Av)(z) = (Bo)(#), @ e(DN\8y)
Tor y € 8, we introduce the functions e, defined on D, as

1 for z =y,
6”(37)_{_0 for » # 4.

The capacitance matrix algorithm for the solution of (3.5) is defined

by the following steps.
1. For each y € 8, compute the vector v,

Bu,(z) = e,(z), wmeD,.
2. Compute the capacitance matrix C,
C = {(4v,) (%)}, ¥, weS,.
3. Compute the vector o,
Bi(@) =b(x), =eD,,

where

s [ =b for @ e(D,\8S,),
arbitrary for o € §;,.
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4, Jompute the veetor d,
d(z) = b(x) —(40)(z), xe€8,.
5. Compute the vector z,
Oz =d.

6. Jompute the vector v,

Bo(@) =b(@)+ Y eWe,0), woeD,.

vsSy,

It can be proven that the matrix ¢ is nongingular if the difference
schemes with the operators 4 and B have unique solutions.

We are now in a position to use this algorithm for the solution of
(3.3) and (3.4). Let D denote a rectangle (a,,b;) X (a,, b,) containing
Q with a, and b, independent of %, and %,. We assume that D is the union
of the elements ¢; and the distance between dD and £, is greater than
h = max{h,, h,}. The set of the grid points (nodes) belonging to D is
denoted by D, = D,udD, where D, is the set of nodes lying on aD.
Let I, be the set of grid points & e (D)\2,,) such that Tfzxel,, or
T}T; v el,, for some i # j where Tfo = w4+ he;. We augment the dif-
ference scheme (3.3) and (3.4) by the equations

(3.6) oy =0, (p,q e(l0aD,)
- 0z Ot n
(3.7) (1—|—01)(A1+ T o /11)(1L+ TTos Az) Qe = 0,

(p,9) € (DN 0 1))

Obviously, the solution of this system is zero.

The system (3.3), (3.4), (3.6) and (3.7) for a fixed n is taken as the
initial difference scheme with the operator A (see (3.5)).

We now formulate the auxiliary difference scheme with the operator
B. For a fixed n it has the form

- Ot - bt - -
8) (1400 A+ ) (Aot T2 it = oo (9,0 €Dy

(3.9) 0 =0, (p,q)ecdD,.

Note that for this case, the operators 4 and B differ at the points
x e (IuI,). Thus we now have 8, = INurl,. Let D, be given as

Dy, = {(ay+phy, as+qhs): p = 0, ey Ny+1l, ¢ =0,..., Ny +1,
hy(N,+1) =b,—a,, s =1,2}.
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The algorithm for solving (3.8) and (3.9) has three phases. For
lq == 1’ ceny Nz

6z -

(/fi—!— 1o, /12) Vo = Fp,/14+61), 9p=1,...,%,,
{3.1.0)

bt

Vpq E(Aﬁ- 176

/12) &;q.i =0, p=0; N,+1;

fOI‘ _p =1,:--,.N1

v
(3.11) (/Iz‘f‘ 1567 Aa) Upgt = Vpgy ¢ =1,..., N,,
a:a,t =0, ¢q=0; N,+1;
(3.12) aprl = ot +val,, p=1,...,N;¢=1,..., N,

The matrices of the corresponding systems are tridiagonal.

The difference scheme (3.3) and (3.7) (without (3.5)) is solved by
the capacitance matrix technique as follows. We label points of §,. For
% = 0 and successively chosen functions ¢,, y € §,, we solve the following
problems (step 1)

0
(3.13) (1.4 67) (/Il_;_ 1+TB'5 )(/12.;_ Az) vy (phy, qhy) = e, (Dhy, qhy),

(2, q) € Dy,
{3.14) v, =0, (p,q) cdD,

by the algorithm (3.11) and (3.12).

Having found the function #,, we successively compute rows of
the matrix ¢ (step 2). The matrix € is independent of n. Note that the
solution 7, of (3.10) with F,, = ¢, is equal to zero with the exception
of the horizontal line passing through the point y. Note also that we
compute v,(z) only at these points in which the values v, needed to com-
pute the cocfficients of C.

In the third step we solve (3.8) and (3.9) with the right-hand side
F?, which is equal to

1';"10 — {ng for (p) Q) € ZJl,hi
700 for (p, @) € (DN2y,).

Here we assume that F), is already given. The evaluation of Fj
usually requires use of numerical integration. Having found #(z), we
compute the vector d (step 4).

Next we solve the linear system with the matrix ¢ (step B), for in-
stance, by the Gauss elimination. It is convenient to make a factorization
of the matrix € into the product LU where L and U are lower and upper
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triangular matrices. This factorization of O is stored and will be used
for n =1,..., N—1. In the last step 6 we solve the scheme (3.8) and
(3.9) with 7, of the form |

i ng for (p,q) € -Ql,h:
o= for (p, q) € 8y,
0 for (p, g) & (DN (2,0 8,)).

That is now we compute agq.,’. Applying the formula (3.12), we obtain ajl,q.
To .find oy, for n =1,..., N —1 we proceed as above apart from the
steps 1 and 2, and we use the known factorization C in the step 5.

We now estimate the cost of the described algorithm. Note that

the number of points of §, = U f“h at most is of order 2™, so the cost
of the step 1 is of order A~° and the cost of the step 2 is of order A% of
arithmetic operations. These steps and the factorization of C are done only
once during the whole process. For n fixed the cost of the other steps
is of order h~%. Thus the total cost of the algorithm is

O(r'h~ 2+ 1Y)

of arithmetic operations.

If we take v proportional to h, as we usually do in practice, then
the cost is of order %, Note that the total number of unknowns is also
of order A~ This shows that our algorithm is (asymptotically) optimal.

4. Stability and convergence

In this section. we shall prove stability and estimate the error of the
method (2.1) and (2.2). We introduce the following norms

N
_ T — - 712 1/2
Il gy = ey 0l = (e 3 1070

TuroreM 1. If condition (1.6) holds,

doa, db, de do
atj’ PR EEG(QT)y EEO(I'X(O,T)) and 62=0.5y,

then the solution U™ of (2.1) and (2.2) satisfies the inequality

(4.1) 1Tl +IT1, < M {|ifIl

SE )

1]
Z3(zA) (o) F10Mz100y }

where M is a positive constant independent of v and h,.
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Proof. Putting » = tU} in (2.1), summing up this equation from
n =0 to k—1 and using the identity U" = 0.5(U™* 4+ U"—<U?), we get
k-1

@2 D N0t @ (U LT, 7)1 T+

n=0
'E«TZ
3 g 1D U iy — 0.8 a*(OF, T)|
k—1

=T 2 (f* U?)ﬂ(ﬂ)-

n=l

Using (1.6) and the e-inequality (ab < 0.5:7'a®40.5¢b2, &> 0) it
can be proved that

k—1

(4.3) r ) ay((U* 4T 2, Up)
n=0
k-1
= (%’}’o — &) ||Uk||fql(m - %9’1 I Uo"?&rl(n) -M 2 T||Un||231(n) .
n=0
We estimate the right-hand side of (4.2) as follows:
(4.4) (fn: U?)Lz(!)) <& ”Uzn”‘iﬂ(n) + (4:“31)—1 “fn”2L2(.Q) .

Using the estimates (4.3) and (4.4) in (4.2), we get

k-1

(4.5} {(3¥0—20) |l Uknzﬂl(n) +T 2 {(1 —ep) |l Utn“i,z(n) -+

n=0

2.2
+ 11067 .0, D, U?”i%nz)’i“T(BHU?”?Hlmz) _%7’1“17?”?5[1(9))}
k—1
< Mr DI o+ 10 o} +37: 10 °lcay-
n=0

To obtain the required estimate (4.1) for 8 = 0.5y, we choose respect-
ively ¢;, 1 = 0,1, and we use the Gronwall inequality.

We shall now prove an error estimate for the problem (2.1) and
(2.2).

THEOREM 2. Let the assumption of Theorem 1 hold and let w be a sol-
ution of (1.3)—(1.5) such that

du du
T €00, T HN®)),  —-e D0, TiHMN®D),  [e0(0,1513(R)).
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Then

(4.6) 10—l oy < M (21 )

where M is a positive constant independent of v, h = max{hy, h,}, and
U™ is the solution of (2.1) and (2.2).

Proof. We rewrite equation. (1.4) for ¢ = nr as

(4.7) (ugy V)2t a" (u" v) = (f™ V)r2a)+ (6", V)L @)

where
8" = uf —(du/dt)* and 8% r2z2y = O(r).

Let Z" = U"—W" in 2, where W" is for a time being an arbitrary
function from V, (£2,). First we prove the estimate (4.6) for Z”, The estimate
for U"—u™ will follow from the triangle inequality.

Subtracting from the both sides of (2.1) the terms of the left-hand
side of (2.1), in which the function U" ig replaced by W", using equation
(4.7) and summing up the corresponding expressions for 0 < n < k-1,
we get

k-1

48) T D@ e+ 05128, ey +
n=0
02r2 n n n
-+ 1160 (D, D27, -D1-D2”)L2(.02)+a Z 7’”)'}'

k-1
=71 20: { — (4", 7’)1,2(9) — 6r (W7, ’”)H‘(nz) —

6272

- 146z

(DuDaWP, DiDut) sy (4" =T, o)+ W, o) .

We estimate the second term of the right-hand side of (4.8). Putting
v = vZ;' and applying the formula of summation by parts in the variable
1, 'w¢ obtain

k=1
62 3 (W7, 20V,
=0
k=1

= —6722 (Wi, Z")gya,)+ 6z (WF~, Z¥) g, — 0T (WY, 2% g0, -

fim]
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Using the e-inequality, we have

k-1

(4.9) O+ Z (W, Z?)Hl(nﬂ

n=0
k=1

sezZ‘{sanznnﬂlmﬁ 13 nH:mz)}+e4(nzkn§1mz,+||Z°||§g:mz))+

Nl
2

44

In (4.8) we put v = 7Z}'. The terms of the left-hand side of this equa-
tion we transform and estimate as in the proof of Theorem 1. The terms
of the right-hand side (except the second one) are estimated by applying
the e-inequality. This yields

("Wk_l"Hl(nz) + ||W°|[H1(92))

k-1

5
(4.10) (0.5y0—&0— &) ”anzﬂl(n) +7 Z (L—e;—e,) ”Z?”.nt’(a) +

n==0

02 72
+ 1+ 67 (1 —&) ”DIDZZ?“?[F(.%) +1(6—0.5y,) ”Z?”?il(oz)
k-1
< M{Z T {”Znnﬂ'l( )‘I“ H 1”31(92)+ 72 ||D1.D2W?Hizmz)+
pryer

+ [l — W[5 0y +- 19 — WLz, + 1'2} +

+ 12031 0) + 2* ”W]f_l”zﬂl(az) + =2 W} Iﬁil(az)} .

Choosing respectively ¢, ¢ =0, ..., 5, and using the discrete Gronwall

inequality we get the estimate of the type (4.10) without the term
k-1

7 ), |2™}1.0) and with in general different M. To obtain (4.6) we proceed
n=0

as follows. We put W» = %", where 4" € V,(£,) interpolates the extension
of 4 to ;. For example, from [7] we know that

flw™ —“n”HI(n) < Mh ”’“n”zﬁ(n)

Applying the triangle inequality, we finally get (4.6).

5. Remarks

1., For the methods (2.1) and (2.2) we can also find an error esti-
mate in the norms of the spaces L®(L?) and L2(L?). In the space L}(L?)
the error is O(z-+h?) whenever fe L*(0, T; L2(R)) and u, € H* (see [6],
[8]).
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2. The same results are also true for the problem (2.1) and (2.2)
without the term 62r%(1+67)~" (D, D, U}, Dy Dy0)1q,).

In this case a system of linear equations can besolved by FFT together
with the capacitance matrix technique. The cost of this algorithm is of
order O(r™'A~?lnh~') whenever 7 is proportional to .

3. The presented ADG method can also be used to the numerical
solution of some nonlinear parabolic and hiperbolic problems; see [3],
[4] and [9].

References

T1] B.L. Buzbee, F. W. Dorr, J. A. George and H. Golub, The direct soluiton
of discrete Poisson equalion on irregular region, SIAM J. Numer. Anal. 8 (1971),
722-736.

2] W. Proskurowski and O. Widlund, On the numerical solulion of Helmholtz's
equation by capacitance malriz method, Math. Comp. 30 (1976), 433-468.

i3] J. Douglas, Jr.,, and T. Dupont, Alternating direction Galerkin method on rec-
tangles, in: Proo. Symposium on Numerical Solution of PDQ II, B. Hubbard,
ed., Academic Press, N. Y., 1971, pp. 133-214,

[4] J. Dendy and G. Fairweather, Alternating direction Galerkin methods for
parabolic and hyperbolic problems on recltangular polygons, SIAM J. Numer. Anal.
12 (1976), 144-163.

6] M. Dryja, Optimal allernating direction Galerkin method for the parabolic problems
n arbitrary region, submitted for publication in SIAM J. Numer. Anal.

6] J.-L. Lione et E. Magenes, Problémes aux limiles non homogenes et applications,
v. 1, Dunod, Paris 1968.

[7]1 1. A. Orauecan, JI. A. PyxoBeu, Bapuyuonno-pasnocmusie memodst peuwieHus
esanmuneckur ypasnenuil, ,,Hayka', Epesan 1979.

(8] A. A. 3norruk, O cropocmu czodumocmi RPOEEYUOHHO-PAIHOCMHOL CTemsl ¢ pac-
WENARIOWUMER OREpamopos 0 napabosudeerur ypasuenull, 3. BRIUMCIH. MaTeM.
i Marem. us. 20.2 (1980), 422431,

{P] M. Dryja, Alternating direction Galerkin method for the quasilinear parabolic
equations, Annales Societatis Mathematicae Polonae, ser. 1II, Matematyka Sto-
sowana XV (1979), 5-22,

Presented to the Semester
COomputational Mathematics
Iebruary 20— May 30, 1980



