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SEMI-MARKOV SWITCHES*

In this paper we consider some properties of a large class of network
decomposition switches. Expressions are given for the semi-Markov matrices
of the output Markov renewal processes they produce, and a classification
theorem for the states in these processes is proved.

L. Introductien. The limited range of results available for multiserver
queueing systems and networks of service facilities means that we must often
consider methods by which the network may be split up or decomposed into
units which can be analyzed separately. A natural place to split up a network
1s at a point where a single stream of arrivals or customers is itself split up
into several output streams. The mechanism governing the allocation of
Customers is called a switching rule. Usually the only such rule which has
been considered is that of random assignment, where the probability of
assigning a customer from the (usually Poisson) arrival stream to a particular
Output is assumed to remain constant. Such a switch amounts to little more
than random deletions from a Poisson stream and may well be unsatisfactory
Since it allows no dependence on properties of the arrival stream such as
Customer type. Further, the Poisson arrival assumption on which this switch
Works best is rarely preserved in non-Markov networks.

The review paper by Disney [5] emphasizes the importance of Markov
Tenewal processes in such aspects of networks as superposition, feedback,
del.)arture streams from service facilities, and overflow. We define a class of
Switches which will produce semi-Markov output streams. With the

—
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additional assumption of .a semi-Markov input stream special cases of this
class have been considered by Cinlar [2], [3] and Hall and Disney [8]. An
application to the allocation of medical emergency services can be found in
Hall [7]. By imposing a further property we can show that a subclass
containing these special cases, in fact requires that the input to the switch be
a semi-Markov process.

A broader class of switches based on the imbedded Markov chain was
suggested in Disney and Cherry [6]. It should be mentioned that such
switches may produce output streams which are not Markov renewal proces-
ses because of dependences transmitted through the continuous component
of the output process.

2. Semi-Markov switches. We consider an arrival stream containing a
number of different customer types, with J, the type of the nth arrival.
Customers arrive at times 0 =Ty < T, <..., we write X,=T,—T,_,, and
assume that J, takes values in some countable set I. The switch is defined by
the random variable Y,, which takes a finite number of values, R. Thus, if Y,
=r, then the nth arrival is directed to the rth output stream. The behavior of
the process {J,, Y,, X,|n >0} describes both the switch and the arrival
process. If the event {Y, =r} occurs on a subset of the arrival times given by
0< Ty < T;- <... then the process {J,, Y, =r, T,,|n’ > 0} describes the rth
output stream. We assume that the initial state of the system is determined
by some vector of probabilities for (J,, Y;). We consider the following class.

DeriniTION. A switch {Y,} is called a semi-Markov switch if

(a) P(Jn=], Y;':r, X”Stl.]n_l, ooy Jo, Yn—la ey Yo, Xn_l, ceey Xl)
=P(Jn =j’ Y;:ra Xngtl‘]n—l’ Yn—l)a fOI' jGI,[)O, re{l, ) R}

We define as stationary semi-Markov switches, the subclass of semi-MarkoV
switches' which have the additional property:

(b) P(Jn =j, Xn S tIJn—l’ ey JO’ Xn~19 sy XOs Yn—l’ cey YO)
=P(J,=j, X, <t]Jp-1)

3. Lumpability. Let {Z,, X,} be a Markov renewal process with semi-
Markov kernel G(t) = {g,,(t)} defined on a countable state space I, and f 2
function from I’ onto another countable set I. {Z,, X,} is said to be lumpable
with respect to f if, for any initial distribution p on {Z,}, the Pf‘?c,ess
{Jn» X}, where J, =f(Z,), is a Markov renewal process whose transition
matrix does not depend on p.

Serfozo [10] shows that necessary and sufficient conditions for
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lumpability are that for any two sets S,, S, in the partition of I’ induced
by f

Y Grs(t) = Y gos(t), for each r, geS, and t > 0.
seS), seSp
We will call the {Z,, X,} process a lumpable expansion of the {J,, X,}
process if there exists a lumping function f from I' onto I such that J,
=f(Z,).
With these definitions, we can characterize the behavior of the switch,
the type of the arrival process, and their interaction.
THEOREM 1. The conditions (a) and (b) are equivalent to the single
condition: {J,, Y,, X,|n > 0} is a lumpable expansion of the {J,, X,} process.
Proof. Assume that {Y,} satisfies the conditions for a semi-Markov
switch. Condition (a) shows that {J,, Y,, X,} is a Markov renewal process
defined on the space I x R, where R=(1, 2, ..., R), and I is the state space
of the input process.
If we consider the function f: (j, r) — r, which defines a partition of I x R
consisting of sets of the form {(j, r)|r =1, ..., R}, then we can show that f is
a lumping function, since:

R
Z P(J _], —r, X tlJn 1 -1 _q)

R
= Z P(Yn=r|Jn=],X L, Jn 1 l_q)P(J _.]’ tIJn 1»
Y,-y=9
=P(Jn=]a Xngtl']n—ly Y;l—l=q)
<

=PJ,=j, X,<t|J,_;) from condition (b).

Hence {J,, Y,, X,} is a lumpable expansion of {J,, X,}.

If, on the other hand, {J,, Y,, X,} is a lumpable expansion of {J,, X,},
with f a lumping function defined as above, then (b) follows immediately,
since {J,, Y,, X,} is a Markov renewal process.

For (a):

P(Jn =J, tlJn 1> -1 Xn—-la °°"JO’ YO)

<
R
= ZP(J”=_], Yn=r’X tl‘]n 1> 17Xn—1’---7']09 YO)’

tlJn 1 n—l)’

!
™M
v
=
|
=
<
|
ﬂ
><

=PJ,=j, X,<t|J,-;) from Serfozo’s result.
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In the next section, we show that a semi-Markov switch determines the
type of the output streams. The result of Theorem 1 implies that the two
properties of a stationary semi-Markov switch also characterize the arrival
process.

From the definition of lumpability and Theorem 1 we immediately get

THEOREM 2. For a stationary semi-Markov switch, the arrival process,
{Jus Xu}, must be a Markov renewal process whose kernel does not depend on
the initial distribution of (J,, Y,).

4. Output streams. To show that each of the output streams from a
semi-Markov switch forms a Markov renewal process we need a result
originally due to Anderson [1], which is discussed in Cinlar [4]. Consider a
subset, K, of the states of a countable state Markov renewal process, and
define a decomposition switch, giving rise to two output streams, by:

P(Y,=1J,eK)=1, P(Y,=2|J,¢K)=1.

Anderson shows that each of the output streams of this switch (or filter) is a
(possibly delayed) Markov renewal process. Since each of the output streams
is of this type it must form a Markov renewal process.

Although all of the published examples of switches producing Markov
renewal outputs are semi-Markov it should be noted that this is not a
necessary condition for the production of Markov renewal outputs, as the
following example shows. Consider a renewal process with distribution
function F(t), which forms the input to a switch producing three output
streams. Customers are assigned deterministically in the order
L.1,2,3,2,1,2,3,... Now

0, Y,_,=3,

P(Y,=3,X,<t|Y_;=2,% 5, .., Y)= {F(t)’ Y_z -1
and so the switch is not semi-Markov, yet clearly streams 1 and 3 are
renewal processes with common distribution function F*(t), and stream 2 is
a renewal process with distribution function F2(t). Here F"(t) stands for the
n-fold convolution of F(t). Note that this switch can, however, be considered
to be semi-Markov if we assume the input process has an imbedded Markov
chain of order 2. We have the following general result.

THEOREM 3. Any stationary switch that acts on a Markov renewal process
to produce two output streams which are Markov renewal processes defined on
the same state space is semi-Markov.
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Proof. Let us assume for convenience that the last customer was
assigned to output stream 1. Then

PU,=j, Y=L X, <t|Jpr, Yimr =1, Xomys o005 Jo, Vo)
=PU,=j, =1 X, <t|J,_y, Yoy =1),
since the first output stream is Markov renewal.
PUy=j, Y, =2, X, <tloy, Yooy =1, Xury, o0 Jo, Yo)
=PUy=Jj, Xy <tlJp-r, Yaor =1, Xy, ., Jo, Yo)—
—PUp=j, Yy =1, X, <tlJpy, Yooy =1, ..., Jo, Yo)
=PU,=j, =2, X, <t]lJpy, Yooy = 1),

since the input and the first output stream are Markov renewal.

5. The semi-Markov matrices of the output streams. We assume for
convenience that {J,, Y,, X,} is an irreducible Markov renewal process and
that the initial arrival was assigned to the rth output stream. Events in the
filter set K = I x {r} of the state space of the Markov renewal process form
the rth output stream.

In particular, let ny =0,

nk+1=inf(i>nk: (J", Y;)EK), k=0, 1, 2,...,
and define the process {Z,, 1,} by:
Zk:J"k’ Tk:rI;'k’ fOI‘ k=0, 1, 2,...
We have shown previously that {Z,, 7} is a Markov renewal process which
describes the behavior of the rth output stream. Let

GO =1{G;j} ={P(Zi+, =), Werr <t1Z,=}))}, i, j=1,....m,

where W, ., = 17,4, — 7. A formal expression for the semi-Markov matrix of
the tth output stream, G(t), may be found from Cinlar [4].

We write the semi-Markov matrix of the {J,, Y,, X,} process in block
form as A4 = {4,,}, where the i, j-th element of the m xm matrix A, (¢ is

P(Jn‘__j’ Yn =4q, ‘Xn< tIJn—l =1, Yn—l =P)

Then on relabelling the output streams if necessary, 4 may be partitioned as

A_A,,B
“lc DY
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Then G(t) satisfies:
G(1) = A, ()+Bx(>.D")=C(1),

where * stands for the usual matrix convolution operation and D" for the n-
fold convolution of D with itself.
If the first arrival was assigned to the sth output stream, where s # r,

then partitioning A as:
A= A, B
|l D

leads to a similar expression for the matrix of transition functions for the
time until the first event in the rth output stream.

It appears, however, that no simplification of these expressions can be
made unless the class of switches is restricted further.

6. Switches depending only on the input Markov renewal process.
Consider the class of stationary semi-Markov switches in which the switch
no longer depends explicitly on the assignment of the last customer. Thus,

P(Y,=r|Jy Xpy Jn-1, Yoot = P(Y, =r|Jy, Xpy Jn—y), for n=1,2,...

The semi-Markov matrices for the output streams of a special case of
this class where arrivals are assigned according to type alone were derived
directly in Cinlar [2]. By considering a suitable Markov renewal equation,
expressions for those matrices of all switches of this class can be found.

Since the switch is stationary, for any se{l, 2, ..., R}

PUp=j, Ya=r, X, <t|J,y =10, Yooy = 8) =fi (1) = £;;(0) 4. G, J, 1),

where F(t) = {f;;(t)} is the semi-Markov matrix of the arrival process, and
qr(i’ja t) = P(Yn = rl']n =j’ Xn < Jn—l = l)

Let G(t) = {G;;(t)} be the semi-Markov matrix for the rth output
stream. Then since the condition on the switch implies that all the higher
order transition probabilities of the {J,, Y,, X,} process are independent of
the initial state of the switch

Gy(0) = ¥, PUpyy=dsmsr—m =L T, —T <t|J, =i
1=1

m R

=f;'jr(t)+ Z Z Z (_’;P(Jnk+1 =h, Ynk+1 =3y,

1=2 h=1 s=1
s¥r

X, +1€(x, x+dx)|J,, =i)
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P(J =j, nk+1_nk_1 = 1—1, T;l T)‘lk+1 S(t'_x)l‘]nk+1 = h’ Ynk+1 =S)

g+ 1 k+1

—fa 0+ 3 S [(fon(dx)—fow (@) x

=2 h=10

x,I.)(Jnk+1 =j’ nk+l_nk—1 = l—-l’ T;'k+1_T"'k+1 <(t_-x)l‘]nk+1 = h)-

Hence

m t
1) G;O=f;0+ ) j(f,-,,(dx)—f,-,,,(dx))G,,,-(t—x), for all i, jel.
h=1 0

If the first arrival to the switch was not assigned to the rth output
stream then it can be seen that the conditions on this class of switch means
that the distributions of the delay until the first event in the rth output
stream also satisfy the equations (1). These equations can be solved under a
further weak assumption to give:

THEOREM 4. If all the states of the input Markov renewal process are
conservative then the r-th output stream from the switch forms a Markov
renewal process with kernel and matrix-valued distribution function of the time
until the first event both given by

@ G(1) = [R, () F,(t— ),
(4]

where F,(t) = {f;;, (1)}, and R,(t) is the Markov renewal matrix corresponding
to the semi-Markov matrix {f;;(t)—f;(t)}.

Proof. F,(t) and {f;(t)—f;;(t)} are both semi-Markov matrices, so (1)
is a Markov renewal equation. If all states in I are conservative then Cinlar
[4] shows that a unique solution to equations of this type exists, and in this
case is given by (2).

If I is finite, then at least for Re(s) >0

O 6O= T (FO-FOPFO =(1-FO+E0) Fo,

where
F,(s) = Te"‘F,(dt), G(s) = CIfe“‘G(dt).
0 0

We can further note that if f;(t) =f;(t)-q,(j), so that the switch
depends on the type of the arrival only, then with Q = {J,;4,(j)}

G(s)=(I-F(+F()Q) ' F(Q =F()(I-U-QF(s)"Q,

Which was Cinlar’s result [3]. ,

One example of the application of (3) is to a generalization of Palm’s
Overflow problem to the case of Markov renewal input. Customers arrive
according to a Markov renewal process at a system of N servers with mean
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service time 1/u. If there is no waiting room and service times are
exponential then the streams of customers who join each server and those
who overflow to the next can be considered as the results of a semi-Markov
switches of this type. Thus if F"(s) represents the input to the nth server then
F}(s) = F"(s+u), and so

F'*i(s)=(I—Fs)+F'(s+w) 'F'(s+w), n=1,2,...,N-1

is the transform of the kernel of the overflow processes. The renewal case of
this result is well known ([9]).

7. Classification of states in the output streams. Although states which
are transient in the arrival process will-clearly also be transient in any output
stream, the same is not true for recurrent states.

Let fus=PU,=j, Y, =58,y =i, Y,_y=r), with G=l{g;} the
imbedded Markov chain for the rth output stream. We write (j, r) for the
state (J,=j, Y, =r).

The followmg result completes the characterization of the output
streams of a semi-Markov switch.

THEOREM 5. For a stationary semi-Markov switch state j in the r-th
output stream will be recurrent if and only if there exists some recurrent state k
in the arrival process such that j — k and if (j, r) - (k, s) for any s then (k, s)

=@, ).
Proof. Clearly

where g% and f}},, are the p-step and the I-step transition probabilities of the
respective Markov chains.
Let R' = {s|(j, r) = (k, 5)}, with N(s) = min(n|fj, >0), n= max(N(s))

and ¢ = mm(f,u Nesh)

@ © m R
Yz Y X X S s 2 Z 2 s fies)
p=1 I=N k=1 s=1 I=N R’
@® -9 R
20 Z ijme(S) =0 Z Z fii:sms’
I=N R’ I=N s=1

which is divergent, since k is recurrent and j — k.

Necessity of the first condition follows since if (j, r) is recurrent then at
least one of the terms fji, .M, £J% must be positive, and hence the recurrent
state k exists. The second condmon is a standard result for recurrent states.



Semi-Markov switches 515

If the switch is of the type described in Section 6 then since

a

Z gx'_,l = Z z fk{i:la Where fkjr =f;cjr(<x))s
p=1

I=1 k=1
the conditions of the theorem may be simplified.

CoroLLARY. For a semi-Markov switch in which the assignment of an
arrival is independent of the previous assignment, state j in the r-th output
stream is recurrent if and only if there exists some recurrent state k in the
arrival process such that k—j and f;, > 0.

The proof of this is similar to that of the theorem and is ommitted.
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