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ON INFINITE-SERVER QUEUES WITH CYCLICALLY DEPENDENT
SERVICE TIMES

1. Introduction. It is well known that in the infinite-server queue
M/GI/o with Poisson arrival moments and with identically distributed
independent service times, which are also independent of the arrival
moments, the stationary distribution of the number of customers in the
system is Poisson with parameter depending on the arrival intensity and on
the mean service time only, but not on the form of the service time
distribution. The question, in which we are interested, is for what class of
stationary sequences of (possibly dependent) service times this insensitivity
property is preserved.

In the following we propose a way to consider an infinite-server queue
with Poisson arrivals and with service times, which are cyclically dependent
in some sense stated below. For this queue we show that the stationary
distribution of the number of customers in the system is also Poisson with
Parameter being equal to the arrival intensity multiplied by the mean service
time. Moreover, if the service times satisfy some mixing condition this
Stationary distribution can be approximated by the corresponding time-
dependent distributions under the condition that a busy period starts at time
Zero.

2. The model. Assume that the arrival moments {7,} form a
homogeneous Poisson process with intensity A (0 < 4 < o0). Furthermore, let

given a strictly stationary sequence {S,}, S, =(Sa, S7, ...), of infinitely
dimensional random vectors consisting of independent identically distributed
Non-negative components (0 < ES¥ < o0). Besides the assumption that for
Cvery fixed n the random variables S}, S2,... are independent, we
additionally assume that the sequences {S,} and {T,} are independent.
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Thereby, S. is the service time’ of the customer who first arrives during the
nth busy period, S? the service time of the second arriving customer during
the nth busy period and so on. Thus, the service times of the customers
served during the same busy period are assumed to be independent. On the
other hand, concerning service times being realized on different busy periods
no independence assumptions are made.

Assume that T; =0 and that at time zero the first busy period starts.
Thus, the customer arriving at time zero receives the service time Si.

Because the behaviour of the considered queueing system on a given
busy period is the same as that of the M/GI/oo queue with completely
independent service times, from a result of Shanbhag [4] we get the finiteness
of the mean busy period Ex:

Ex = A~ !(exp(A/w—1) < o0,
where u~! = ES%. This means that the stationary sequence of cycles
([T, S11, [T, S21, .oy [Twy S D0 ([T, 415 S31, [Ty 420 830, ..

N
ey [TN1+N2’ S22])7 },

where N, denotes the number of customers being served during the nth busy
period, generates a Palm point process distribution, see [1] and [2].
Namely, it induces the conditional Palm distribution P, of the marked
point process {[T, (S;, I')]} of the arrival moments T, marked by the
corresponding (actually realized) service time S; and by the indicator I
under the condition that the customer arriving at time zero finds no other
customers in the system, i.c. he initiates a busy period. Thereby, S; = Sk, if
i=N+...+N,+k<N;+...+N,,; and

1 fi=N;+...+N,+1 for some n,
F" = .
0 otherwise.

In other words, P, is the Palm distribution of {[ T, (S;, I';)]} with respect to
the mark set R, x{1}.

Furthermore, using a result of Neveu [3] (see also Theorem 1.4.5 in [1])
from P, we get the unconditional Palm distribution P, of {[T, (S;, I’ )1}

1 (N
(1) Po(") =ENTJ; 1,(0;9) P, (do),

where ¢ = {[1;, (s;, 7)1} and 6;¢ = {[t;—t;, (s;, 7:)]}; Ix denotes the indicatOi
of the set X. Thus, P, is the Palm distribution of {[T;, (S;, I')]} w1th-r€$P;3cr
to the set R, x {0, 1} of all possible marks. Note that P, is 6,-invariant Y
every j.
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3. The number of customers in the system.

THEOREM 1. We have

k
@ Po(p: £(9) =) =0

where

exp(—4/yw), k= O\, 1,2, ...,

1 ift<0, s> —t,
0 otherwise.

Eo) =2 S(t(o), si(@) and [, s)={

To prove Theorem 1 we need two lemmas.
LEMMA 1. For every t,t' <0 (t #t)) we have

Po(s; > —t,5;> —t'|t;=t,1;=1)=(1-B(-1))(1-B(-1)), i,j<0,

where B(x) is the distribution function of the service times S%; B(x)
= P(S* < x).

Proof. This statement results from the above made independence
assumptions and from the form (1) of the probability measure P,. Without
loss of generality we assume that ¢ <, ie. i <j. Then, from (1) we get

Po(s- > —t,s; > —t', e l{dt}, tje{dt'})
Z (‘P Ni(p) 2k, 5;(6,0) > —t, 5;(6,0) > -1,

t:(0, )€ {dt}, 1;(6, @) e {dt'})

I

m(_

Z (CD N(@) = k, 5;1(0) > —1, 544 (@) > — 1,
vk (@) —tis 1 (@) {dL}, ik (@) —tis 1 (@) eldl’})

— 1 had ’
‘EN' _Z Pe(‘P: Ni(9) = k, s (@) > —t, Sj+k((P)> =,

1 k=

k(@) —ter 1 (@) e {dt}, tirk (@) —tis 1 (@)e {dt'})
1 @
=EN Z Pe(‘P: Ni(@) = k+1i, 5ie1(@) > —t, sj14(9) > =1,
1k=—i+1

L@ —tir1 (@) {dt}, ti (@)=t i1 (@)€ {dt’})

Y  P.o: Ni(9) = k+i,

= (1—B(—t))(l—B(—t'))EN1 N

ik (@)— w1 (@) ldt}, ti (@) —tisy (@) e {dl'})
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P,(p: N >k,
EN1 kgl e((p 1((»0)

=(1-B())(1-B(-1))

tk((p)_t—i+1+k(¢)e{dt}’ tj—i+k((P)_t—i+1+k((p)e {dt’})
(1—=B(—=t))(1=B(—1t)) Po(to—t_;+r€{dt}, tjmi—t_;1,€{dt’})
(1=B(—0))(1—B(—1)) Po(t; {dt}, t;e {dr'}).

LEMMA 2. With respect to the probability measure P,, the random
variables {t;} also form a Poisson process with intensity A.

Proof. From (1) we get
Po(tys1—th <Xpy ... ta—1ty < Xy)

1
" EN,

1 2 )
= Z PNy Z )Po(tns14+j=tnsj < Xpo ooy basj—t14j < Xq)
EN, /&

=P (tyr1—ty <Xpy ooy tz—1t; < Xy)

a0
Y P.(N, >}, bnt 1+ bntj < Xpy ooor bagj— 145 < Xq)
=1

for every n=1, 2, ... and for every x,, ..., x, = 0.

Proof of Theorem 1. The formula (2) is equivalent with the statement
that with respect to the probability measure P, the factorial moments of ¢
have the following form:

3) Ep[SO(O-1)(0)-2)... 0 —(k—D)] = (A/p", k=1,2,...

For brevity, we provide the proof of (3) for k = 2 only. For k # 2 similar
arguments can be used. We have

Ep, [0~ 1)] = [{X f (t:(0), si(@)[X f (50, 5;(9) 1]} Po(de)

= X f(t:(9), 5:(9)) f (t;(9), 5;(9)) Po(de)

i%j
= [ f@,9f(@,s)af(d(,s,.t,s),
R2 xR2
+
where af) is the second factorial moment measure of P;

a2 (X x Ly x X5 x Ly)
= I Z le xLy (ti ((D), Si((p))lxz xLy (tj((p)’ Sj((P)) PO(d(p)

i#j
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Thus, from Lemma 1 we get
Ep, [£(0)(¢(0)—1)]
=) | j f@t, ) f(t, s)Po(s;e{ds}, sje{ds'}t; =t, t; = 1) x
i#j 2 R

x Po(t;e {dt}, t;e {dt'})

[ Pols; > —t,8;,> =t'|t; =1, t; =t) Po(t;e {dt}, t;e {dt'})

i#j RE

= [ (1=B(=0)(1—B(—1)) Po(t;e{dt}, tje {dr'})
i#j g2

= [ (1-B(-p)(1-B(—1))a®(d(, 1)),
R2

where a®(X; x X,) = af) (X, xRy x X, xR,). This gives (3) taking into
consideration that from Lemma 2 we have «'®(d(t, t')) = A2dtdt for t, t' < O.

Note that in completion to (1) it is possible to express the distribution
P, by P,, too.

THEOREM 2.
P.(-) = Po (- =0).
Proof. From (1) we get
Po(i-}n{E =0}

~ N
1 1 .
= Ionw )
EN, ] j;l {}n{w.ié:ol{_,iqi}(.p)_o}(HJ ¢) P,(do)
= 1 r‘I (0N1(‘P) )P (d )
E]V1 J {-}r\llll:iszol{_ti<si}(¢)=0} @) P,(do
1 I
= ENl ] I{-}f\{wll_gol{_‘i <si}(lﬂ)=0}((P) Pe (d(p)
1

1
EN ( }m{lp .;01{—‘<s'](¢) })zm—Pe()

and, furthermore, P, (¢ = 0) = (EN,)” .

4. Ergodic theorem. Now, we turn towards the question under what
conditions we have the convergence

(4) lim P,(p: &(@) = k) = Po(p: &(9) = k),

n-—a
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where

(@) = T Luyyen(©)

Therefore, £, is the number of customers which are in the system
immediately before the arrival moment of the nth customer, under the
condition that at time T, =0 a busy period starts.

The strictly stationary sequence {S,} of service time vectors is called
strong mixing if for every n

(5) sup |P(ZnZ)-P(Z)P(Z) ==

n o
ZeF " Ze¢n+m

where %% denotes the o-algebra generated by the random vectors
{S,; i= a, ..., b}
THEOREM 3. The mixing condition (5) is sufficient for the validity of (4).

Proof. First we note that without any additional condition we have

lim Po (¢, = k) = Po(§ = k)

n—a

for every k=0,1,... (see Theorem 2.3.1 in [1]). Thus, the statement is
proved if we show that

lim P,({, = k) = lim Po(, = k)

n—oo n—a

for every k =0, 1, ... Using formula (1), the probability P,(&, = k) can be
written as follows:
n—1
Po(@: &a(@) = k) = Po(o: Z Lyt <5y (@) = k)

1
" EN,,

n—1

ZP(N,—r._i ({01 Tupn e e @) = RH 103 Ny (0) = 1))

By the dominated convergence theorem (EN; < o), instead of the limit

n—1

lim Z P.(Ny=r) Z P, ({ Z I{'n+j_‘i+j<si+j}((p) = k}l{‘P: Ni(p) = r}),

n-w p=1 i=1

for every pair (r, j) the limit

n—1

im P, ({p: Y Iy, -uyj<sis (@) =k} {@: Ni(9) =r})
i=1

n— a0
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can be considered. Note that for every ¢ > 0 and for every m > 0 we have

n—1

|P.({¢: ; Ly i-ti4j<sie (@ = K} {02 Nyi(9) = r})—

n—1

=P (fo: Y i< p@ =k}l{o: Ni(9)=1}) <e

i=N1+...+Nm

for all sufficiently large n. Moreover, taking into consideration the
independence of the sequences {T;} and {S,}, from (5) we get

n—1
|P.({o: y Loy imtiej<sio p (@) = k}{p: Ny(@)=r})—
i=~1+"'+Nm
n—1
—P,(o: Z I(fn+j"i+j<5i+j)((p)=k)| <é&
=Nyt Ny
for all sufficiently large m.
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