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1. Introduction

Consider a nonlinear control system of the form

k
(11) & = f(a)+ D) w:9,(2),
{m]

where z € M (an n-dimensional manifold), f and g,,..., g are smooth
or analytic vector fields on M and «,’s are controls which belong to a cer-
tain class of admissible controls. We will study the problem of local li-
nearization of system (1.1) around a given point #, € M, using different
groups of transformations including changes of coordinates in the state
and input spaces and feedback. We prove some linearization results in
the case of changing the coordinates in the state space only. We also
formulate and compare recent results on linearization using other classes
of transformations (2], [4), [6], [8], [9].

We define three groups H, F, and G of transformations of system
(1.1).

The group H, which was studied by Krener [6], is given by

(i) changes of coordinates in the state space M:

5 0 0uf, @utyy

where p: M —>M is a diffeomorphism and ¢.f, peg; are vectors fields f
and g; in new coordinates given by ¢, respectively.

The group F was defined and studied by Brockett [2] and is
generated by

(i) changes of coordinates in the state space M (as in the case of H),

[453])
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(ii)’ linear changes of coordinates in the mput space RF: g,r—»Z‘dﬂ gy
where D = (d;;) is a nonsingular matrix,
(iii) feedbacks of the form:

k
fef+ D) ag;

i=1
where a; are smooth functions on M.

The largest group G was defined by Jakubczyk and Respondek [5].
It is generated by:

(i) changes of coordinates in the state space M (like in the cases
of H and F),

(ii)" linear changes of coordinates in the input space R¥, nonlinearly
depending on 2:

k
gi— 2 hyigys
Ju=1
where H(xz) = hy(x) i8 a k Xk-matrix of smooth functions, nonsingular
at xye M,
(iii) feedbacks of the form:
k
frf + ) a4,
FED
(like in the case of F).
Consider a linear control system of the form

k
(1.2) & = Ao+ ) wb;,
im1

where ¢ € R” and matrix 4 and vector fields b;,7 =1, ..., %, are constant.
In this paper we give necessary and sufficient conditions for local lineari-
zation of system (1.1), using transformations from H, ¥ or @, to a con-
trollable linear form (1.2). We will make a natural assumption that f(z,)
= 0, and 50 we assume also that ¢ in (i) and ¢;’s in (iii) satisfy @(2,) = 0
e R" and g;(x,) = 0, respectively.

Krener gave in [6] necessary and sufficient conditions for two analytic
systems to be locally H-equivalent. A similar problem, but in a different
framework, was also studied by Nagano [7]. Krener studied also the
linearization problem but his condition is not correct. We formulate and
prove necessary and sufficient conditions for H-linearization in both
smooth and analytie cases,

Brockett [2] gave a necessary and sufficient condition for F-lineari-
zation in the scalar case, i.e., for k = 1. We formulate an analogous result
for any natural %.
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G-equivalence was introduced by Jakubezyk and Respondek [6],
where necessary and sufficient conditions for @-linearization were given.
We compare the linearization theorems in all three cases and give examples.

Let us mention that in the linear case the problem of classification
by using feedback was solved by Brunovsky [3], who found the canonical
forms. If we consider a linear system, then the groups F and G do not
differ and they are equal to the group studied by Brunovsky.

Consider the set V(M) of all C®-vector fields on M as a Lie algebra
with the Lie product [a, ], a,b e V(M). We will also use the notation
ad,b = [a, b] and inductively adlb = [a,ad’!d]. For any A < V(M)
we will write A(z) = {h(z)] h € A}. Denote L’ = {adlg|l<i<k,
0<g<j}.

2. H-linearization

In this section we give necessary and sufficient conditions for H-lineari-
zation in the C*-case. Then we analyse the analytic case, and so we agsume
the diffeomorphism ¢ in (i) to be analytic. We formulate the Krener—
Nagano condition for the H-equivalence and study the problem of li-
nearization.

We will denote by & the Lie algebra generated by L = {f, g, ...
...y @i}y 1.€., the smallest Lie algebra which contains L.

DEFINITION 2.1. We say that system (1.1) satisfies the Lie rank con-
ditton if dim #(x) = ». This condition is sometimes called accessibility
or weak controllability.

It is obvious that if we want system (1.1) to be locally H-equivalent
to a controllable linear system (1.2), then the Lie rank condition and
J{xz,) = 0 have to be satisfied.

THEOREM 2.1. Let system (1.1) satisfy the Lie rank condition and let
f(zg) = 0. System (1.1) is locally H-equivalent to a controllable linear system
(1.2) at &y € M and 0 € R™, respectively, if and only if it satisfies the conds-
tions

(2.1) [9,y ad}g,] = O
in a neighbourhood of zy for any L < 8, t < k and any 0 < J < 2n —1.

Remark. From the proof (see Section 5) it follows that under (2.1)
the Lie rank condition is equivalent to the weaker one:

dimspan{ad}g;(s)| 0 <g¢<n—1,1<i<k} =n.

Thus the above theorem can be expressed in the following form, which
is similar to the theorems in Section 3: a system for which f(x,) = 0 is,
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locally around z,, H-equivalent to a controllable linear system (1.2) if
and only if it satisfies:

(H1) [ad?g,,ad%g,] =0 for any 1 <3, t<k and any 0<p <n—1,
0<g<mn,

(H2) dimspan{adfg;(r)] 0 <g<n—1,1<i<k} =n,
in a neighbourhood of z,.

Now we study the analytic case, i.e., we assume M to be an n-dimen-
sional analytic manifold and f,¢,,..., 9, to be analytic vector fields
on M. In this case, studying the values of certain Lie brackets at the
point z, only, we will be able to answer the question if (1.1) and (1.2)
are equivalent.

At first we formulate the Krener—Nagano result on H-equivalence
in the analytic case. Assume we are given another analytic control system

k
(2.2) §=FfW)+ Y uwgly), ye¥,

i=1
where N is an analytic manifold. Denote f = g, and f = g,.

THEOREM 2.2 (Krener [6], Nagano [7]). Systems (1.1) and (2.'2)- are
locally H-equivalent at 2, € M and y, € N, respectively, if and only <if there
exists a linear isomorphism L: T, M—T, N such that

Lg,(®o) = §i(yo) for any ¢ =0,...,k
and
(2.3)  Llgiyy [+ [96,_1» 95,1 -+ )] (@0) =[Gy [--- Td, s 6,1 -] (o),
for any p=2 and 04, < k.

For the linear system (1.2) we havef = Ayand g, =b;, ¢ =1, ..., k,

and so adf g; = A%, and the Lic bracket of two constant vector fields

is equal to zero. Thus the H-invariance of Lie brackets and the above
theorem give

COROLLARY. System (1.1), for which f(z,) = 0, ¢8, locally around vy € M,
H-equivalent to a controllable linear system (1.2) if and only ¢f it satisfies

dimspan {adfg,(2,)] ¢ 0,1 <s<k} =n
and

[ad,"‘g,l, [ [ad?"“g,p_l, adﬁ’g,p] ]] (g) =0 for any p =2,

G=20,1<y<k.
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In other words, the second of the above conditions means that all
iterative brackets

[g¢17 [ . [gip__lv gip] ]]1 iy=0,

which include at least two ¢,’s, 1 < ¢ < k, have to vanish at z, (see (2.3)).

The above condition can be replaced by a weaker one in the following
way:

THEOREM 2.3. System (1.1), for which f(z,) = 0, i3, locally around
@y € M, H-equivalent to a controllable linear system (1.2) if and only if 4t
satisfies

dimspan {adlg,(zo)| ¢ 20,1 <8<k} =n

and

2.4) [adfg, ... [ad}”"g‘p_l,ad}""g,-p] ] (@) =0
Jorany p=22,1 <4<k 0 <n—1 when 1 <j<p—

and 0< ¢

1
» S M.

3. F- and G-linearizations

In this section we will study the problem of the linearization of system
(1.1) by means of the transformations in the groups ¥ and ¢. We consider
the smooth case, i.e., the state space for system (1.1) is an n-dimensional
C®-manifold, f and ¢;, ¢ =1, ..., k are C®-vector fields on M.

Consider the H-linearization condition [g,,ad}g,] =0. Assume for
a moment the scalar input case and denote g, = g¢. For j =1 we have
[g,ad,g] = 0. Use feedback and replace f by f =f+ag. For any vector
fields X, Y and smooth functions a, § we have

[aX, Y] = af[X, Y]+ a((VA) X) Y —B((Va) X) X;
thus

ad;g = [f+ag, g] = ad,g—((Va)g)g
and

[9,ad; 9] = |g,3d,9— ((Va)g)g] = [g, ad,g]+ By

for a suitable smooth function . Therefore [g,ad,g] = 0 implies that
(¢9,ad;g] = Bg, and we see that even in the scalar control case (H1) is
neither F- nor G-invariant. We have to find more general conditions which
are invariants for F or (. This was done in [2], [6] and [8). The problem
of G-linearization was solved in [6] in the following way:

THEOREM 3.1. System (1.1) 8, locally around z, € M, G-linearizable to
a controllable linear system (1.2) if and only if it satisfies in a neighbourhood
of x, the following conditions:
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(G1) Por any 0 <p<j<n—1 and 1 <s,t<k there exist functions
a;, € C* (M) such that

[ad}g,, ad}g,] = 2 a;,0d}g,,
2574
t.e., I are involutive for j =0,...,n—1.
(G2) dimspan{ad}g;(z)! 0 < ¢<j,1 <4<k} =r;(z) = const.
(G3) dimspan{adfg,(#)| 0 < g<n—1, 1 <i<k} =1,_,(2) = n.
We refer the reader to [5] for the proof of the above theorem. In very
recent papers Hunt, Su and Meyer [4], [9] have given weaker conditions
for G-linearization in the following way. As we have noticed, any controlla-
ble linear system (1.2) is G-equivalent to its Brunovsky canonical form
based on its Kronecker indices (see [3], [10]). This implies that we can
a8 well ask the question when (1.1) is G-equivalent to (1.2) given in the
Brunovsky canonical form. Suppose we are given the integers (the Kro-
necker indices) %,, k,, ..., k,, satisfying zﬂ:‘k‘- =mnand kyZ2k,>... 2k,
=1
> 0. Denote L = L'y Ll-'u ... ULkm~1, where L! = {add¢; 0 < ¢ <j}.
Hunt, Su and Meyer [4] proved (for notational convenience we write
= m)

THEOREM 3.2. System (1.1) is, locally around x, € M, G-linearizable to
a controllable linear system (1.2) ¢f and only if it satisfies in a neighbourkood
of x, the following conditions:

(T1) For any j =kpn—2,kp_1—2,...,k:—2,%,—2, any 0<p <]
and any 1 < 8, 1 < k there exist funclions a;; € C* (M) such that

(ad?g,, adlg,] = Z' a;,ad%g;,
0<g<<]
1<igm

i.e., L’ are imvolutive for _7 =kn—2, bpy_1—2,..., k3 —2, ky—2.
(T2) span L*~2(z) = span (L** ﬁz) (z) foramyr =1,..., m.
(T3) dimspan L(x) = =.

The reader is referred to [4] for the proof of the above theorem and
some comments.

The problem of F-linearization was studied by Brockett in [2]. He
gave necessary and sufficient conditions for F-linearization in the scalar
control case, i.e., for ¥ = 1. In the multi-input case the following theorem
holds. Define ad;'g = 0.

THEOREM 3.3. System (1.1) 18, locally around z, € M, F-linearizable to
a controllable linear system (1.2) ¢f and only ¢f it satisfies in a neighbourhood
of x, the following conditions:
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(F1) Porany 0 <p <j<n—-1 a-nd 1<, t<k there exist funclions
a;, € C° (M) suck that
[2d7g,, ad7g)) = X~ aiadig,.
1<i<k
(F2) dimspan {adfg,(z)] 0 < ¢<j,1<i<k} =r;(x) = const.
(F3) dimspan{ad}g(z)] 0<g¢g<n—1,1<i<k} =r,_(2) = n.
(F4) For any 1 <m <k and 0 <j < n—1 such that

adlgn(z)) = Y oadlgz)+ D cpadig(a,),

ivm Igg<i—1
I<igk 1<ik

where ¢;, ¢;; € R we have

adlgn = D cadlg+ D a,adly
ivm 0Casf—1
1Qigk 1<k

Jor some smooth functions a,,.

ERemark 1. Conditions {F2) and (F3) in the above theorem and condi-
tions (G2) and (G3) in Theorem 3.1 are the same. If we compare conditions
(G1) and (F1), we see that in (F1) the sum on the right-hand side does
not contain any term corresponding to j. This is connected with the fact
that the funetions d; in (ii)’ are constant while the functions hy in (ii)"”
may depend on the state (see the definitions of F and @ in Section 1),
Condition (F1) implies for j = 0 that [g,,9,] =0, 1 <8, t <k while for
J = 1 the presence of the terms ad;'g; on the right-hand side of the sum
in (F1) does not change anything.

Remark 2. Condition (F4) has a meaning only in the multi-input
case. It is connected with the fact that functions d; in (ii)’ are constant.

The proof of the above theorem is given in [8].

4. Examples

In this section we give some examples of H-, F-and G-linearizable systems,
ExaMpPLE 4.1. Consider the system on R?

& 0 1
(4.1) y| = x ] +u 0] = f+ug.
2 d(y, 2) 0

We want to find the conditions on the function d(y, 2) under which the
above system is locally, around 0 € R?, H-linearizable. Compute

0 0
0 . 0 \ 0
ad;g =| -1, adfg =l1aal [gpadfg] =0, [adfgiadfg] = otdl-
0

o o
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d

=0:
oy? ’
8o d(y,z) = a(z)y+b(z), where a(z), b(2) are certain smooth functions.
Condition (H2) gives a(0) # 0. We have

Condition (H1) in the Remark after Theorem 2.1 implies that

0
adjg=| 0 |, where ¢ =ab' —ba’
¢(?)

and for the functions a, b, ¢ we denote by a', b’, o', respectively, the deri-
vatives with respect to z. Now we compute

lg, ad}g] =0, (ad,g, a’d;g] =0, [3‘d;91 ad}g]

LBl L2

Condition (H1) gives ac’ —ca’ = 0. Therefore the necessary and sufficient
linearization condition for (4.1) is that d(y, z) satisfies d(y, 2) = a(z)y +-
+ b(z), where a(0) = 0 and

(4.2) a(ab’—ba’) —a'(ad’'—ba’) = 0.

Now we find the coordinate system in which (4.1) takes a linear form.
It follows from the proof of Theorem 2.1 that we have to introduce a new
coordinate system (Z, 7, z), in which

1 0 0
g=1[0], ad;g=1|1 and adjg = |0].
0 0 1

Therefore put

8l
Il
5

w2
I

1

dt.
a(t)

™
fl
er . E'Q

In the new coordinates we have
0

T 1
- , g=]ol.
gl PRRCYRY [o]

b . . . _ . d
We show that — is a linear function of z, i.e., —{—] = 0.
a dzt \a
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Compute
d (b d (b dz _ ab’'—ba’ gzl and a (b
di\e] dz a) i a T a dz* \a
_a (c dz  a¢’'—ca’
dz a) dz a

The last term is equal to zero because of (4.2), thus system (4.1) takes
a linear form in coordinates (Z, 7, 2).

ExaAMPLE 4.2. We want to find the conditions under which system (4.1)
from Example 4.1 is F-linearizable. From condition (F1) we have

0 1 0
[ad,g, ad}g] = #al=clo|+8]1
-5 0 0

2

d
= 0;s80d(y,2)=a(2)y+

for certain smooth functions a, 8. This gives ——

+b{2). Condition (F3) implies that a(0) # 0; conditions (F2) and (F4)
are in the scalar input case satisfied automatically.

We find a change of coordinates and a feedback to bring (4.1) into
a linear form. Put

8

I

8

+

S

=

._I_

&
—
sl

™l
I

[y

-~

We have

where m is a certain smooth function. Using feedback we can eliminate m
by putting ¢; = —m in (iii) (see the definition of ¥), i.e., we take new

f=f-mg =[

<

x
y
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ExawpLe 4.3. Consider again system (4.1) and study the problem

0
1 0
of G-linearization. Compute g = [0], ad,g = [—1J and adjg = 6(:i .
0 0 —

aa oy
Condition (G3) gives — (0) # 0, and if we assume that, then (G1) is

satisfied. o
We find transformations in & to bring (4.1) to a linear form under
the above condition. Introduce the new coordinates

% — od +d od
=rg P
7= d(yr z))
zZ =2z,
in which we have
— ] od
m(Z, ¥, z) 'a?
f = y ’ g = )
g | 0
0
where m is certain smooth function. Using (ii)"’ (see the definition of @)
1
- 1
we can replace g by ¢ =27 '9= 0|. Finally, using feedback (iii),
—_ 0
oy :

| Bl ©

we replace f by f = f—mg to obtain f = [

].

In this section we give proofs of Theorems 2.1 and 2.3.

Proof of Theorem 2.1. From the Jacobi identity [f, [g, ¢.]]
= [g,, ad,g,] +[ad,g,, g.] We have by an induction argument

w2

5. Proofs

g

— _ [ad%1g,,ad%2g,] for an e V(.
(P (p)! 7791, 305%0s Y f191, 9. (M)

a'd}[gu g:] =
P1+Pa=]

This implies that condition (2.1) is equivalent to the following one:
(5.1) [adfg,,ad}g] =0 for any 1<s,t<k and any 0<p < 1,

"—
0<j<m.
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Write
L, = {adjg;| ¢ 20,1 <i<Fk},

and denote by %, the Lie algebra generated by L,. Note that
¥ = span{¥,, f} and, since f(x,) = 0, the Lie rank condition means that
dim #Z,(z,) = n. We prove that the condition dim.Z,(z,) = n and (2.1)
imply that

dimspan {adfg;(z,)] 0 <g<n—1,1<i< k}=n.

Take a neighbourhood U, of «, in which dim #y(#) = x. For any
1<¢<k let p;(v) denote the largest non-negative number such that
9:(z), ad,g;(z), ..., ad%g,(x) are linearly independent. Denote p(z)

= maxX p;(z). It is obvious that 0 < p(z) < n—1. Since all the functions
1<ICk
p;(z), % =1, ..., k are lower semicontinuous, p(z) iz lower semicontinuous

and therefore p(x) is locally constant on an open dense subset ¢ < U,o.
Take a connected component ¢, = @ on which p(z) is constant and equal
to p. Define the family of vector fields

LP = {adfg;l 1<i<k,0<qg<p}.

We show that dimspanZ?(z) = » on a certain subset of @,.

Denote N(x) = dimspanL?(x). Since the function N(z) is lower
semieontinuous, it is locally constant on a certain open dense subset
n < 0,. Take a connected component =, ¢ = on which N(x) is constant
and equal to N. Thus on =, the distribution .D spanned by vector fields
from L? is N-dimensional and involutive (see (5.1)).

The definition of p(z) implies that on 7, we have

a;dp'“g‘ = 2 amad‘gg‘
<y

for suitable smooth functions a;. For any vector fields X, Y and smooth
functions a, § we have

[aX, Y] = ap[X, Y]+ a((VR)X)Y —B((Va) Y) X.

This and the above expression for ad?*'g, imply that for any 1 <<k
and 0 <j < p the Lie bracket [ad}*'g,, ad}g,] belongs to D. Using an
induction argument, we find that adfg, belongs to D for any ¢ >0 and
any 1<t <% Thus the involutivity of D gives h € D for any h € &,.
Therefore from the Lie rank condition we have dimspanL?(z) = n for
& em,.

Take a point z € z,. Choose from the family L? vector fields k,, h,, ...
+..y b, in such a way that k,(x), ..., h,(x) span an n-dimensional space.
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From (5.1) we have [h, h;] = 0 for any 1 <4, j <n. Thus there exists
(see Bishop—Crittenden [1]) a coordinate system (z,, ..., z,) around « € =,

0
in which A, takes the form h; = o ¢ =1,.,,n From (5.1) we have

0
Ry 9o = [-350_’ g,] =0 forany 1<¢<<n and 1 < &<k and this means
4

that in the coordinate system (z,, ..., z,) the vector fields g,,¢ = 1,...,k,
are constant. Since h; = adfg,, h; = ad}g, for certain 0 < g, r<p and
1<s,t<k in the coordinate system (z,, ..., @,) we have

° i,
_[a‘dfga’ r+lgl] [adfga’ [ad}g,,f]] = [hﬂ [hjyf]] = [3_.13" [3_0.7,’ ]] =0

because of (5.1). This means that in the above coordinate system the
vector field f takes the affine form f = 42+ C, where the matrix A and
the vector field C are constant.

This implies that on n, we have [ad}g,, ad}g,] = 0 for any 0< ¢, ]
and 1 <8, t<k as the Lie bracket of two constant vector fields. Since
nm = | J=, is dense and open in ¢, and ® = | )0, is dense and open in Uz
we have [adlg,,ad}g,] =0 on U,,. Therefore the Lie rank condltmn
implies that dimspan L,(z,) = n and from the family L, we can choose
n vector fields h,,..., A, linearly independent at z, and commuting.
Take a coordinate system (z,,...,®,) around «, in which k; are of the

form h; = T it =1,...,n Repeat the above arguments to show that
s
in this coordinate system the vector fields ¢;,, ¢ =1, ..., ¥, are constant

and, since f(x,) = 0, it follows that f = Az for a certain constant matrix A. w

To prove Theorem 2.3 we need some notation. For any diffeomorphism
¢: MM let ¢, denote its tangent map, i.e., for any vector field & € V(M)
we have

Peh(z) = -D?’Iw‘l(:c)h(q’—l(m))?

where Dg|, -1, means the differential of ¢ taken at ¢~ '(x). Forany h e V(M)
we will write Exp (tk)x for a (local) flow of 4, i.e.,

d
EExp(th)w = h(Exp(th)z) and Exp(0h)x =a.
For a fixed ¢, the map s—Exp(—th)x is a diffeomorphism from a neigh-
bourhood of Exp(th)z on a neighbourhood of » and has the tangent map
Exp(th)s. The derivative of the curve t—Exp( —th)ug(x) at t = 0 is equal
to [k, g] (#) (see Bishop—Crittenden [1]). Therefore in the analytic case
we obtain
hod t!
Exp(—th)eg(z) = Z]—ad g(z).

Jm0
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Proof of Theorem 2.3. We now show that under the condition f(x,) = 0
the assumption dimspanLy(z,) = n implies dimspanIZ"!(z,) = n (see
the notation in the proof of Theorem 2.1). Notice that if ad,g,,, (@) 18 linearly
dependent on the other vectors ad}g;(z,), ¢ <j, 1 < ¢ <k, then for any
P > j the vector ad?g,,(2,) is linearly dependent on the other vectors of
the form ad$g;(z,), ¢ <P, 1 <¢< k. Indeed, let

adig,(2,) = Zc4ad}g,-(m.,)+ 2 ¢;.24%g;(x,) for certain ¢, ¢, € R.
i=m Igti—1
I<i<k
We will write a for ad}g,, and b,, a € A for the vector fields c,ad}g; and
¢, 0dfg;; thus a(z,) = T bq (). Obviously we have

span {a(zy), b,(®,)| a € A} = span {(a_ Zba) (@0) 5 ba(@y)| a € A};
aed

but ad (e — D> b,) (#,) = 0 as the Lie bracket of two vector fields vanishing

aed

at x,. This implies that
ad}*'g,, (z,) € span{ad,b,(2z,)| ac A}.

An induction argument gives the desired property for any p > 1. Since
dimspan Ly(z,) = n, it follows that dimspanL"~!(x,) = » and from the
family Z*~! we can choose » vector fields k,, ..., h, linearly independent
at z,. We show that »,, ..., h, commute in a certain neighbourhood of z,.

Let O be a certain neighbourhood of 0 € R" and define a map a: 6—>M
by the formula

0> (8,...,8,) = 8—a(s) = Exp(s:h,) ... EXp(s,k,)2,.

a maps O onto a neighbourhood UzO of z,.

Notice that for a fixed ¢ = (8, ..., 8,) ais a diffeomorphism and its differ-
ential will be denoted by Da. Taking if needed, a smaller ¢, we may
assume a to be a diffeomorphism on 0. We show that [k;, h;] =0 on
U;,- We have

[hss By (@) = [hs, Ry] (a(3)) = Dalyy Da™ag kg, byl (a(s))
= Dal,, au' [hyy By] ().

Therefore to conclude that ks and k; commute on U, we have to
prove that ay’ [k, h;] = 0. In fact, we have

as' [y, bl (zo) = (EXP( —8,hy ) EXp(—8,5h,) ... Exp( _snhn))‘[hil hj] (@)
= BXp(—38; 2 )s EXP(—8305)s ... EXDP( —8, Ry )a Ry, By )(2)

30 — Banach Center t. 14



466 W. RESPONDEK

= Bxp(—81h)s ... BXp(— "")‘2 ((8:))! .

ady [k, b;] (a,)

r Tn
(81) ady! ( ( Y {8a) ad}® [hy, h,]) ) (@) -

(ry)! dd  (7,)!
In view of analyticity, the above term can be expressed as
(20)" (8,)™
1 f r
2 o ( ( ) o ad . ad h,]) ) (20)

and is equal to zero because of (2.4).
Therefore &,, ..., h, are vector fields commuting and linearly inde-
pendent at x, and we can choose a coordinate system (a,, ..., #,) around

7

@ in which »h; = 20 ¢ =1,...,n. We show that in this coordinate
T

system the vector fields f and g, are of the form (1.2). In fact, for any

1<j=45h+j.+ ... +j. we have

ajg‘ In i
W (370) = adhn eee adhlgi(mo) =0
because of (2.4) for any 1 < ¢ < k. This means that all derivatives of the
coordinates of vector fields g‘, ¢t =1,...,k are equal to zero at z,. Analy-
ticity shows that they are constant.

The vector field f takes in this coordinate system a linear form f = Ax.
In fact, forany 1<i<nand 1 <j =4, +5.+ ... +j, we have

Frf

7 Fj
or," ... 0z,' O,

(@) = ady? ... ad) adhy(a,) = 0

0
because of (2.4). Thus, by analyticity, the matrix a—f- is constant and,
since f(z,) = 0, we have f = Aux. Ti
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