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1. Crystallographic patterns

A crystallographic pattern in n-dimensional space is one that is invariant
under a set of translations that form a lattice of dimension »n. Examples are
the three 2-dimensional tilings in Figure 1. In each of them the plane is
covered with non-overlapping congruent tiles of a single shape and a basis
{x, y} of the lattice of translations is indicated.

1. General parallelogram tiling 2. Cheasboard tiling 3. Honeycomb tlling

Fig. 1

In addition to its translation symmetries, each of these tilings has central
symmetries consisting of the groups 2, 4m and 6m, respectively. (In crystal-
lographers’ notation rm is the group generated by a rotation through an angle
2n/r and a mirror reflexion. In group theorists’ notation these groups would
be C,, D, and D¢ — or perhaps Dg and Dy,.) The crystallographic restriction
says that the latter two groups are maximal, in the sense that the group of
central symmetries of every plane crystallographic pattern is a subgroup of

[439]
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either 4m or 6m. There are, in fact, 17 different types of plane crystal-
lographic patterns (or “wallpaper patterns”, as they are called). There are
10 distinct subgroups of 4m and 6m altogether, but more than 10 types
of pattern both because some symmetry groups can interact with the
translation group in two essentially different ways and because reflexion,
instead of acting as a mirror reflexion with its axis through the centre of
rotation, can sometimes appear only in combination with a translation, in
the form of a “glide reflexion”. A more general form of the crystallographic
restriction, applicable to space of any dimension, is the following. (We give
the proof, derived from [8], as it is simple and elegant.)

CRYSTALLOGRAPHIC RESTRICTION. If a crystallographic pattern in
n-dimensional space is invariant under a symmetry of order m then
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where the sum is over maximal prime power divisors of m and ¢ is Euler's
totient function.

For each dimension n this gives only finitely many possibilities for m.

Proof. Call the symmetry ¢ and take a fixed point of o to be the origin,
so that ¢ is linear. (Every symmetry of finite order has at least one fixed
point.) The image of the origin under the lattice of translations is a lattice, L,
of points in R", and we take a basis of L to be our basis of R". Then ¢ is a
symmetry of L and so has an integer matrix with respect to this basis. The
characteristic polynomial of o therefore has the form []f;(x), where f,(x) is a
power of the m, th cyclotomic polynomial for some m; dividing m. Let V, be
the kernel of f;(¢). By standard linear algebra, each V; is o-invariant, R" is
the direct sum of the ¥/’s, the characteristic polynomial of ¢ on ¥, is f(x),
and the order of o on V¥ is m;. Clearly the order m of ¢ is the least common
multiple of the m's, so if p*|m then p*|m; for some i. We now have
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R. L. E. Schwarzenberger drew my attention to the fact that the
statement of the crystallographic restriction given in [8] (namely, that
@(m) < n) is incorrect without some extra hypothesis. For n < 5 it coincides
with the correct version, but taking the direct sum of a 2-dimensional pattern
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with a symmetry of order 6 and a 4-dimensional pattern with a symmetry of
order 5 gives a crystallographic pattern in R® with a symmetry of order 30.

A good account of crystallography in space of any dimension can be
found in [8]. Everything mentioned in this section is treated there in detail.
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Fig. 2

2. Penrose’s tiling

Figure 2 shows part of a non-crystallographic tiling of the plane constructed
by R. Penrose (initially in a less simple form) in 1973. (The thicker lines have
no significance at the moment: they are to aid explanation later.) It is
composed of two shapes — the “kite” and the “dart” — which are derived
from the regular pentagon, in that their angles are multiples of n/5 and the

ratio of the long sides to the short is 7 = (\/§+ 1)/2. The complete tiling has
a good deal of the appearance of being crystallographic, even though it is
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not, because every configuration that occurs in it occurs everywhere through-
out the plane with uniform frequency. In contrast with crystallographic
tilings, the frequency is not independent of the configuration (larger configur-
ations occur with lower frequency); but nevertheless the phenomenon gives
the tiling the same kind of aesthetic appeal that crystallographic patterns
have, which is, if anything, enhanced by not actually being crystallographic.
The tiling also has pentagonal symmetry about the centre (and consequently,
because of the phenomenon just described, local pentagonal sym-
metry everywhere). Such a symmetry is impossible for crystallographic
patterns in the plane, because of the crystallographic restriction. Detailed
accounts of Penrose’s tiling and its properties can be found in [3], [6] and [7].

Clearly tilings of this sort are a Good Thing of which we cannot have
too much. The purpose of this paper is to describe how to construct many
other similar tilings. We start by making a list of what we see as the main
properties of Penrose’s tiling, that give it its interest and aesthetic appeal;
then our aim is to construct other tilings with the same properties (but with
different types of symmetry in Property 3). The properties (which follow) are
not all independent of each other.

PrOPERTY 1. A finite number of shapes is used in the tiling.

PropertY 2. The tiling is quasicrystallographic.
By this we mean that it satisfies the following two conditions:

QClL. Every finite configuration of tiles that occurs in the tiling occurs
everywhere throughout the tiling with constant frequency (the frequency depend-
ing on the configuration).

QC2. Only finitely many configurations of tiles of any given bounded size
occur in the tiling.

ProperTY 3. The tiling has pentagonal symmetry.
ProPerTY 4. The tiling is not periodic in any direction. In particular, it is
not crystallographic.

(In view of the crystallographic restriction, the fact that the tiling is not
crystallographic is a consequence of its pentagonal symmetry.)

PrOPERTY 5. The tiling can be generated by an inflation operation.

We explain what this means in the next section. It is the way Penrose
constructed the tiling,

ProPERTY 6. There are uncountably many essentially different ways of
tiling the plane with kites and darts. These tilings are closely related, in that
the same finite configurations of tiles occur in each of them.
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The necessity of making QC2 (which is clearly aesthetically desirable) a
separate, explicit condition was pointed out by W. F. Lunnon, who noticed
that certain tilings with heptagonal symmetry, constructed, independently, by
J. F. Rigby and himself, failed to satisfy this condition in spite of having
Properties 1, 4, 5 and 6 and satisfying QC1. In each case the tiles were
polygons that did not always meet vertex-to-vertex and there were infinitely
many positions relative to each other that a pair of tiles meeting along part
of a side could take. So, somewhat unexpectedly, QC1 does not imply QC2.
When the tiles are polygons and are always fitted together vertex-to-vertex
(as is the case with the tilings we shall construct) then QC2 is necessarily
satisfied.

Fig. 3

3. Inflation

The operation of inflation for kites and darts is perhaps easier to explain if
we cut both shapes into two congruent triangles along their axes of sym-
metry. We then have four shapes: a left half-kite (LK), a right half-kite (RK),
a left half-dart (LD) and a right half-dart (RD). These shapes are, in fact,
congruent in pairs, but for the present purpose it is important to regard them
as distinct entities. Figure 3 shows how each half-kite can be subdivided into
two half-kites and a half-dart and each half-dart can be subdivided into a
half-kite and a half-dart, the new half-kites and half-darts being reduced in
scale by a linear factor 1/t compared with the original ones. A tiling of the
plane can now be generated as follows. First choose one of the four shapes
and position it anywhere on the plane. Then choose a shape that has the
previous one as a part in its subdivision, enlarge it by a factor 7 and position
it so that the part coincides with the previously placed shape. This has the
effect of placing one or two more tiles with the one that has already been
placed. Now choose a shape that has the shape last chosen as a part in its
subdivision, enlarge it by a factor t? carry out two stages of the subdivision
process and position it appropriately. This adds more tiles to those that have
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already been placed. The process can be continued indefinitely: we choose an
infinite sequence of shapes and the result is usvally a tiling of the whole
plane (though for certain special sequences of shapes only an infinite region
of the plane is tiled). The left and right halves of kites and darts turn out
always to come together correctly, so that the resulting tiling consists of
whole kites and darts. At each stage of the construction there are either two
or three possible choices for the next shape in the sequence, and it is this
infinite sequence of choices that gives rise to the continuum of different
tilings. Even when the shape and position of the starting tile are given, the
construction still leads to uncountably many tilings (which can be shown to
be different), and each of them is a translate of only countably many of the
others. So there is a continuum of different Penrose tilings even after
allowing for rigid motions. The sequence of shapes starting LD, LK, RD,
RK, ... that is periodic with period 4 results in a tiling of only a sector of
the plane with angle n/5, having the initial half-dart at the apex. The same is
true of the mirror image sequence starting RD, RK, LD, LK, ... The plane
can be covered by five sectors of each kind placed alternately round a point,
and the resulting tiling is that shown in Figure 2.

There is a connexion between inflation and quasicrystallographicity, in
that tilings generated by an inflation operation usually meet the first criterion
of quasicrystallographicity. To make this statement more precise we need
some definitions. A set of shapes has an inflation with multiplier A if when
each shape is scaled up by a linear factor A (> 1) it can be subdivided into
shapes of the set (using the same shape more than once, if necessary). An
inflation can be used to generate tilings by the construction just described.
An inflation is irreducible if there is no proper subset of the shapes such that
shapes from the subset subdivide into shapes from the subset only.

ProrosiTiON. A tiling generated by an irreducible inflation satisfies QC1.

The proof uses Frobenius’s theorem for non-negative matrices. The
counting matrix of an inflation (the matrix whose (i, j) th element is the
number of copies of the jth shape in the subdivision of the ith shape) is
irreducible if the inflation is irreducible. A matrix all of whose powers are
irreducible is called primitive. Every irreducible matrix has some power that
is primitive. Frobenius’s theorem says that a primitive non-negative matrix M
has a unique eigenvalue 4 of maximum modulus which is simple, real and
positive and has a positive eigenvector. Also, for any non-negative real vector
x, the sequence {1™"M"x] converges to an eigenvector of M with eigenvalue
A. Details of the proof of this proposition (and of all other results described
here) can be found in [4].

Figure 4 shows two inflations each based on a single shape: an “L-
shape” and a “sphinx”. (In the case of the sphinx, we have to allow mirror
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Fig. 4

images of the original shape.) These were known before Penrose’s tiling (and
the sphinx is mentioned in [3]). They both give rise to tilings that are non-
periodic but are quasicrystallographic (even though the tiles do not always fit
together vertex-to-vertex). Their symmetry is less interesting than that of the
Penrose tiling, however, in that neither has a symmetry that is not possible
for crystallographic patterns. (This is inevitable, since the shapes and their
inflations are derived from tilings of the plane by squares and equilateral
triangles, respectively.) There is a quasicrystallographic tiling of the plane by
L-shapes with square symmetry (4m) and there are quasicrystallographic
tilings by sphinxes with mirror symmetry (m) and with the symmetry of
rotation through =n (2) (but no tiling with both these symmetries). These (and
certain proper subgroups of 4m, in the case of L-shapes) are the only
symmetries that occur in inflation-generated tilings by these shapes.

4. Specics of tilings

Any two Penrose tilings by kites and darts have the property that any finite
configuration of tiles that occurs in either of them also occurs in the other.
We shall describe tilings related in this way as being of the same species. The
kites and darts tilings then form a complete species.

For crystallographic tilings the concept of a species is not very interes-
ting, as it is not hard to see that the species of a crystallographic tiling
simply consists of all tilings obtained from it by rigid motions. This does give
the species a topological structure, however. For a 1-dimensional crystal-
lographic tiling the only rigid motions are translations, and since the tiling is
periodic the set of translates is topologically a circle. So the species is
topologically a circle in this case. The translates of a 2-dimensional crystal-
lographic tiling are in one-one correspondence with the points in a period
parallelogram of its lattice of translation symmetries. So the set of translates
(that is, the species modulo rotations) is topologically a torus. More gen-
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erally, the species of an n-dimensional crystallographic tiling modulo ro-
tations is topologically an n-dimensional torus. Since this torus is compact
and the set of rotations of n-dimensional space about a fixed point is also
compact, the species itself is compact.

5, 1-dimensional quasicrystallographic tilings

Our aim is to take the Penrose tiling apart to find out what makes it tick. In
this we have been successful, in that we have found a two-stage construction
method for a tiling that (although it is not one of the tilings constructed by
Penrose) has all the Properties 1 to 6 and is a close relative of the kites and
darts tiling. We have also been lucky, in that the same construction method
can be used to construct similar tilings with any kind of symmetry. (It was
like taking a Soviet watch apart and finding you have enough pieces to make
two watches when you put it together again.)

Fig. 5

We begin by simplifying the problem by looking at 1-dimensional
quasicrystallographic tilings. The two stages of our construction method will
be first to construct suitable 1-dimensional tilings, then to derive higher-
dimensional tilings as “products” (of a certain sort) of 1-dimensional tilings.
The Penrose tilings themselves contain 1-dimensional tilings, which seem to
play an important part in making them work. The thick lines in Figure 2
outline a short “worm” consisting of a “short bow tie” sandwiched between
two “long bow ties”. A long bow tie is 7 times the length of a short one, and
Figure 5 shows that the inflation of a short bow tie contains two halves of
long bow ties and the inflation of a long bow tie contains a short bow tie
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and two halves of long bow ties, in such a way that the inflation of a worm
contains a worm t times the length. Consequently, every kites and darts
tiling contains arbitrarily long worms, and some tilings contain worms that
are Infinite in both directions. Such an infinite worm gives a tiling of its
centre line by intervals L and S (corresponding to the long and short bow
ties) of two lengths in the ratio t to 1. This tiling is generated by the
inflation § — L, L —» LS. (We have introduced a shift by an amount } L, so
Shat the intervals are subdivided into complete intervals in accordance with
our definition of an inflation) It has no two consecutive $’s and no three
consecutive L's. Part of such a tiling is as follows (where the brackets
indicate inflation from another tiling of the species):

...(L8) L(LS) L(LS)(LS) L(LS)(LS) L(LS) L(LS)(L...

Two-symbol sequences of this sort have been studied extensively. In par-
ticular, we refer to [9] and [1], which (especially [9]) provide many
references to earlier literature. This tiling has many other interesting proper-
ties, of which we mention only the “2-distance property”. Let ..., x_,, x_;,
Xp, Xj, X3, ... be the boundary points of the tiling in their natural order
measured from a fixed origin (so that {x,} is an increasing sequence). The
distance x,.,—X, between consecutive points takes omnly the two values L
and S as n varies. The 2-distance property is that, more generally, for every r
the distances x,.,— x, between points r apart take only two values, L, and S,
as n varies, where L, and S, depend only on r.

If we change the scale so that L has length ¢ and S has length 1, and
take one of the points x, as the origin, then each x, is a+b1, for some
integers a and b, so is an integer of the field Q(t). Since the tiling is very
interesting, the x,’s must be a very interesting subset of the integers of Q(x).
What subset is it? The integers of Q(r) can be represented by the integer
points in the plane, (a, b) representing a+bt. When this is done the x,’s
correspond to the integer points in the infinite strip (outlined with con-
tinuous lines in Figure 6) that has slope 7 and meets the x-axis in the interval
[—1, 4]1. (The significance of the broken lines in Figure 6 will be explained in
the next section.) The relation between the strip and the tiling is very close:
if the strip is cut at right angles through the integer points in it, as indicated
in Figure 6, then the resulting rectangles are of two lengths {(in the ratio z to
1) and are arranged in the same way as the long and short intervals in the

tiling; the only difference is that the scale is reduced by a factor ./3—1t. (The
reason for this is that the strip is perpendicular to the lines x + 1y = constant,
so the distance of (x, y) along the strip is proportional to the size of x+1y.)

This strip model sheds much light on the worm tilings and accounts for
many properties that previously seemed unrelated. It can be seen that the
configuration of tiles within a given distance of a boundary point x, depends
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Fig. 6

on the position of the corresponding integer point relative to the edges of the
strip and that only finitely many configurations of given length are possible.
Consequently QC?2 is satisfied for the worm tilings, and to prove QC1 it is
enough to show that the integer points in the strip are uniformly distributed
across its width. This is equivalent to the fractional part of nt being uniformly
distributed mod 1, which is so since t is irrational. It can be seen from this
that not only is this particular worm tiling quasicrystallographic, but so are
the tilings obtained in the same way from parallel strips of the same width,
and these tilings are all of the same species. If the strip is translated by an
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integer vector we clearly get exactly the same tiling, and consequently the
tilings derived from parallel strips of the same width are in one-one cor-
respondence with the points on a torus. (It can be shown that translations of
the strip that are distinct modulo the lattice of integer vectors give different
tilings.) One-dimensional tilings can be given a topology in which tilings that
nearly coincide on a large neighbourhood of the origin are close, and in this
topology a species is the closure of the set of translates of any one of its
members. For the tilings derived from the strips this topology is the same as
the natural topology of the torus, so since the torus is closed and contains all
translates of the original tiling it contains all tilings of the species.
Consequently the tilings derived from parallel strips of the same width are all
the tilings of the species. (An appropriate convention is needed for the strips
that have an integer point on each edge, if they are not to be exceptions to
some of these statements, but we shall not go into such detail here.)

The 2-distance property is also easily accounted for by the strip model.
Since the strip meets horizontal lines in intervals of length 1, there is exactly
one integer point in the strip on each line y =n (n an integer), and this
corresponds to the point x, of the tiling. It follows that (for fixed r and
variable n) there are only two possibilities for the vector joining the integer
points corresponding to x, and x,,,, because the y-component of this vector
is r and there are only two possibilities for the x-component (namely, [r/z]
and [r/t]+1). The construction can be varied a bit without affecting the
proof of the 2-distance property. Strips of any slope can be allowed (no
special property of the slope v has been used) and it is not necessary to cut
the strip at right angles through the integer points in it — any angle of cut
(provided it is the same for every integer point) will do. What is important
for the 2-distance property is that the strip meets the x-axis in an interval of
length 1. For the statement of the 2-distance property the points must be
labelled with the y-coordinate of the corresponding integer point in the strip.
For some slopes of strip and angles of cut this labelling may not exactly
correspond to the linear ordering of the points. W. F. Lunnon has shown
that this construction gives essentially all sequences with the 2-distance

property.

LunNoN's THEOREM. The construction just described gives all sequences
with the 2-distance property (up to scale) apart from a certain well defined class
of exceptions. Each exceptional sequence consists of u periodic sequence with a
section of finite length removed and the gap closed up.

The strip construction suggests the general idea of making patterns that
are quasicrystallographic but not crystallographic out of lower dimensional
“slices” of crystallographic patterns (the integer lattice in this case). We shall
not use this idea in its full generality, but only in the case when the slice and
the derived pattern are I-dimensional.

29 — PBanach Center, t. 17
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DerinmmioN. Take any prism (infinite in both directions) in R" whose
cross-section is an (n— 1)-dimensional polytope and whose axis is in “general
direction™ (i.e. the coordinates of the axis are linearly independent over Q).
Also take any hyperplane (i.e. (n—1)-dimensional subspace) in R" not parallel
to the prism. Cut through the integer points inside the prism with hy-
perplanes parallel to the chosen one. The resulting 1-dimensional tiling is
called a prism pattern.

As with the worm tiling, the configuration of a prism pattern within a
given distance of ome of its points depends on the whereabouts of the
corresponding integer point in the cross-section of the prism, and QC2 is
satisfied for prism patterns. Also all the tilings in the species of a prism
pattern are obtained by translating the prism (keeping the directions of its
axis and of the cutting hyperplanes fixed), and hence the species of a prism
pattern is topologically an n-dimensional torus. Because of the stipulation
that the axis of the prism is in general direction, prism patterns are not
crystallographic (which, since they are l-dimensional, is the same as saying
they are non-periodic). (Again, a convention is needed to fit the prisms with
an integer point on the boundary into this framework. It is to facilitate this
that we restrict ourselves to prisms with polytopic cross-section, which can
have only finitely many integer points on the boundary — at most one on
each face.)

LEMMA. If a prism in general direction has area of cross-section A rthen the
number of integer points in a section of length X is AX+o(X).

Outline of proof. The number of integer points in a polytope of volume
V and surface area S is V4 O(S). A section of prism of length X has volume
AX, but its surface area also has order of magnitude X. The idea of the
proof is to find an integral unimodular transformation that takes the section
of prism into a shorter section of a wider prism. Such a transformation
preserves integer points and does not change the volume of the prism, but it
will reduce its surface area and hence reduce the error in estimating the
number of integer points inside it. By the usual box-principle argument we
can find arbitrarily long integer vectors as close as we like to the axis of the
prism. If the axis is in general direction then it is not parallel to the
hyperplane containing any n—1 such vectors, and so we can find n such
vectors that are linearly independent. It is also possible to arrange that these
vectors form a basis of the integer lattice. The transformation that takes
these vectors to the unit coordinate vectors then does what we want,

The hypothesis that the prism is in general direction is essential for this
lemma: for example, it is possible for a narrow enough prism in a rational
direction to avoid integer points altogether.

CoROLLARY. Prism patterns satisfy QC1, and hence are quasicrystal-
lographic.
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Proof. Apply the lemma to the subprism of the original prism that
contains the integer points that give rise to points of the pattern havmg a
given desired configuration as a neighbourhood.

6. Inflation of prism patterns

The broken lines in Figure 6 show a wider strip that meets the x-axis in an

interval of length t with its right-hand edge coinciding with the right-hand

edge of the original strip. When the wider strip is cut at right angles through

the extra integer points it contains the effect is to divide each long interval of

the worm tiling in the ratio 7:1. This is the inflation we have seen already.
Why does this work? The reason is that the matrix

[

is unimodular (so preserves integer points) and has one eigenvector parallel
to the strip with eigenvalue 7 and one eigenvector at right angles to the strip
with eigenvalue —1/7. So M transforms the wide strip into a translate of the
original strip and preserves the direction of the cutting lines at right angles
to the strip. Hence the tiling derived from the wide strip, when magnified by
a factor t, is in the same species as the tiling derived from the original strip.
Also, since the wide strip contains the original strip, the wide strip tiling is a
refinement of the original tiling. When the integer points (a, b) are regarded
as numbers a+ bt in Q(r) the effect of M on integer points is the same as
multiplying by .

DerFiNITION. A prism pattern P, is an inflation with multiplier 2 of a
prism pattern P, if it is in the same species as P, and refines AP,.

This is more general than our previous concept of an inflation of a set
of shapes, because it does not require a tile to subdivide in the same way at
every occurrence. It has the drawback that it may not be possible to use the
inflation to generate the tiling, since if the same tile subdivides in more than
one way there may be no way of deciding which method of subdivision to
use at each stage of the construction in order to arrive at the desired tiling
(or even at a tiling of the same species).

Figure 7 shows two other inflations of the worm tiling. The upper half is
the same as Figure 6 except that the wide strip is positioned so that its
centre line coincides with the centre line of the original strip, instead of the
right-hand edges coinciding. The result is an inflation with multiplier 7 in
which S becomes L and L becomes either LS or SL, but not the same every
time. In the lower half of Figure 7 the original strip is enclosed in a strip that
meets the x-axis in an interval of length t%/2 and extra cuts are nserted not
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Fig. 7

only through the additional integer points in the wider strip but through all
half-integer points in the wider strip as well. The result is an inflation with
multiplier 2t2 in which neither tile subdivides in the same way at every
occurrence. This example shows that an inflation can be derived from a
matrix that is not unimodular — merely integral. The matrix is

B

which has an eigenvector parallel to the strip with eigenvalue 2t? an
eigenvector at right angles to the strip with eigenvalue 2/t%, and takes half-
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integer points to integer points. The effect of the matrix on the integers of
Q(1) is to multiply them by 22

To get a prism pattern with an inflation with multiplier 4 by this
process we need an integer matrix M with A as a simple eigenvalue and all
other eigenvalues < 1 in modulus. It is then possible to find a prism, with its
axis in the direction of the eigenvector for 4, that has the property that it is a
subset of its image under M~!. For the cutting hyperplane we use the
hyperplane containing all the other eigenvectors of M. (This is a real
hyperplane because complex eigenvectors occur in conjugate pairs.) For this
construction' 1 must be an algebraic integer with all its conjugates < 1 in
modulus (i.e. a Pisot—Vijayaraghavan number). Conversely, for any PV-
number A we can find at least one such matrix M: namely, the matrix of
multiplication by A, regarded as a linear operator on the ring of integers of
Q(4). (Instead of the ring of integers, any full module in Q(A) that is closed
with respect to multiplying by 4 will do.) It can be shown that the inflations
constructed in this way are the only inflations of prism patterns there are,
and that inequivalent full modules give different inflations. Since every real
algebraic number field can be generated by a PV-number, it follows that
there is a prism pattern with an inflation with multiplier A such that Q(1) is
any desired real field. The dimension of the prism used is equal to the degree
of A as an algebraic number.

We look briefly at the question of which of these inflations can be used
to generate the corresponding tiling. The answer is: almost none.

DEerFINITION. An inflation is context-free if each kind of tile is subdivided
in only one way. It is bounded-context if the way a tile is subdivided can be
decided by looking at a bounded neighbourhood of it in the tiling.

Superficially, a bounded-context inflation is more general than a
context-free one, but in fact the two concepts are virtually identical. A
bounded-context inflation can be regarded as context-free by regarding tiles
that subdivide differently as distinct, even though they are the same shape
and size. The tiles of the inflated tiling must be given a corresponding finer
classification, and for a bounded-context inflation this can be done in such a
way that the inflated tiling is of the same species as the original tiling even
after taking account of these distinctions between geometrically identical tiles.
A context-free inflation can be used to generate the tilings of the species it acts
on, and consequently the same goes for bounded-context inflations too.

The harsh truth is that most inflations of prism patterns are neither
context-free nor bounded-context, however. A prism pattern with an inflation
has a continuum of different inflations, corresponding to the continuum of
different ways of positioning the wider prism so that it encloses the narrower
one. At most countably many of these can be bounded-context (finitely many
for each size of context). Furthermore, it can be shown that inflations of
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prism patterns derived from prisms of dimension greater than 2 are never
bounded-context, and neither are inflations derived from matrices that are
not unimodular. Consequently, algebraic numbers of degree 3 or more are
never multipliers of bounded-context inflations of prism patterns, and neither
are quadratic non-units.

Neither of the two inflations illustrated in Figure 7 is bounded-context.
The inflation given by the upper half of the figure has a neat description in
terms of unbounded contexts, however. For each long tile L take the longest
possible section of the tiling that is symmetric about the centre of this L.
Because of the maximality of this section, it is flanked by tiles of different
kinds: either L {symmetric} S or S {symmetric} L. The L at the centre inflates
correspondingly as LS or SL. Since there is an infinite worm tiling that is
symmetric about a central L (the inflated tiling in Fig. 6) every tiling of the
species has arbitrarily long sections that are symmetric about a central L,
and consequently there is no fixed size of neighbourhood of L that decides
the inflation.

Although an inflation of a prism pattern is not context-free in general,
an obvious way of deriving a context-free inflation with the same multiplier
is to choose just one of the finitely many possible ways of subdividing each
tile. The resulting context-free inflation can then be used to generate a tiling.
A tiling obtained in this way is not a prism pattern, in general, but it is not
far from being a prism pattern: it can be obtained by cutting with hy-
perplanes parallel to the original ones through some (not all) of the integer
points in a wider prism parallel to the original prism.

7. A square quasicrystallographic tiling

Prism patterns are a rich source of 1-dimensional quasicrystallographic
tilings with inflation. The next stage in our construction is to use them to
create higher-dimensional quasicrystallographic tilings, and the simplest way
to do this is by direct products.

In Figure 8 the horizontal and vertical continuous straight lines are
drawn so as to cut each axis into a symmetric worm tiling. The result is a
quasicrystallographic tiling of the plane with square symmetry that uses three
kinds of tile: a large square, a small square and a rectangle. The broken lines
correspond to inflation of the two worm tilings, and hence give an inflation
of the 2-dimensional tiling. We have chosen a context-free inflation of the
worm tilings, and so the inflation of the 2-dimensional tiling is context-free
and can be used to generate the tiling. This tiling has Properties 1 to 6,
except that pentagonal symmetry is replaced by square symmetry in
Property 3.

In the same way, taking the direct product of n copies of the worm
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tiling (or any other 1-dimensional quasicrystallographic tiling with a context-
free inflation) gives a tiling of n-dimensional space with hypercubic symmetry
having Properties 1, 2, 4, 5 and 6. Constructing tilings with other kinds of
symmetry is not so trivial, although essentially the same idea works. If we
take a system of parallel straight lines that intersect a transversal in the
worm tiling and superpose five copies of it, one parallel to each side of a
regular pentagon (see Figure 9), then the result is a tiling of the plane with
pentagonal symmetry having Properties 1 (o 6, each tile being a convex
polygon with not more than five sides. The difficulty lies in proving that the
tiling contains only finitely many different shapes and that it is quasicrystal-
lographic. It is for this purpose that the lemmas in the next section are
needed. This construction method can be used to give quasicrystallographic
tilings with any symmetry. In the general case the 1-dimensional tiling used
must be chosen to have an inflation multiplier that generates a field
containing the cosines of all the angles between the symmetry directions. A
very similar construction is used by de Bruijn [2] in analyzing the Penrose
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tiling. The difference is that instead of being equally spaced, like the grids
that make up de Bruijn’s “pentagrids”, our systems of lines are spaced
according to a prism pattern.

8. The liﬁear form lemmas

FIRST LINEAR FORM LEMMA. Let P,, ..., P,, P,,, be prism patterns derived
from parallel prisms with parallel cutting hyperplanes, and let

L=a x;+...+a.x

be a linear form with rational coefficients. Fix a radius ¢ and let x; run through
the points of P; (i =1, ...,r). Then the points with distances L along P,
have only finitely many different kinds of g-neighbourhood in P, .

Proof. Translating each P; has the effect of adding a constant to L,
which clearly does not affect the conclusion of the lemma. So without loss of
generality we can suppose that 0 is a point of each P;. Since x; is a point of
P;, there is an integer vector x; such that x; = x; u+y;, where u is the unit
vector parallel to the axes of the prisms and y,; is a vector parallel to the
cutting hyperplanes whose length is no greater than the maximum diameter
of the cross-section of P,’s prism by a cutting hyperplane. First suppose that
the as are integers. Then a, x, + ... +a, x, is an integer vector and has the
form Lu+y, where y is parallel to the cutting hyperplanes and has bounded
length. Since there is an integer point inside P,.’s prism on the cutting
hyperplane through the point 0 on its axis, it follows that there is an integer
point within a bounded distance of the axis on the parallel hyperplane
through the point L on the axis. The position of this integer point deter-
mines the position of nearby integer points, so it follows that there are only
finitely many parallel hyperplanes within a bounded distance of the point L
that can possibly contain an integer point inside the prism for P, and their
relative positions are independent of the value of L. Hence there are only
finitely many possibilities for the g-neighbourhood in P,,, of any of the
points L. (The latter part of this argument is essentially the same as the
proof that QC2 holds for prism patterns.) When the g;’s are not integers, the
same argument again gives a point a bounded distance from the axis of
P,,’s prism on the hyperplane through the point L on the axis, but it may
not be an integer point. It is, however, a rational point with denominator
equal to the least common denominator of a4, ..., a,, at worst; so there are
finitely many possibilities for it modulo the integer lattice. The rest of the
argument now carries through as before.

SECOND LINEAR FORM LEMMA. If each of the prism patterns P, in the
previous lemma has an inflation with multiplier A and the coefficients a; lie in
the field Q(/) then the same conclusion holds.
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Proof. Let &; be the prism that gives rise to the prism pattern P, and let
M; be the matrix that gives the inflation of it. Then the prism M, 2, is
parallel to 2; and, with cutting hyperplanes in the same direction as those
for &, it gives rise to the prism pattern AP;. Similarly M? #, is parallel to 2,
and gives rise to the prism pattern 42 P, and so on. So A*P,, for all i and &,
are prism patterns derived from parallel prisms with parallel cutting planes.
Since each a; 1s a polynomial in A with rational coefficients, the lemma follows
from the first linear form lemma applied to a larger number of prism patterns.
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9. Construction of quasicrystallographic tilings
with arbitrary symmetry

Let u,, u,, ..., u; be equally spaced unit vectors in the plane emanating from
the origin (so that the angle between consecutive vectors is 2m/s).. Take a
prism pattern P, and for each w; lay a copy of P along the direction u; and
draw the system of lines perpendicular to u, through the points of P. (Figure 9
illustrates the case s = 5.) The lines divide the plane into polygons of bounded
size.
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Our first task is to ensure that these polygons are of only finitely many
shapes and sizes. Take any such polygon and choose one of its vertices x. We
shall suppose for simplicity that x is on the intersection of a line perpendi-
cular to u, and a line perpendicular to u, (although a vertex on any other
pair of lines could be treated in just the same way). Then x-u, and x'u, are
both in P. Using {u,, u,} as a basis, we have

w=au+aqu, (=1,...,59),

where the a/s and b;’s are in Q(cos 2n/s). We now choose for P a prism
pattern with an inflation with multiplier 4 such that Q(4) 2 Q(cos 2n/s).
Then, by the second linear form lemma, there are only finitely many
possibilities for the g-neighbourhood in P of

x u; = a;(x u)+b;(x-uy),

where ¢ is the maximum distance between consecutive points of P. Clearly
the shape and size of the chosen polygon is determined by the p-
neighbourhoods of x-u; (j =1,...,8) in P, and hence only finitely many
shapes and sizes occur.

Also, tilings constructed in this way are quasicrystallographic. The proof
of QCl1 is along the same lines as the above proof that only finitely many
shapes of tile occur, but uses a different pair of linear form lemmas. Again, it
is necessary for P to have an inflation with multiplier A such that
Q(4) 2 Q(cos 2r/s). Since, by construction, the polygons fit together vertex-
to-vertex, QC2 is automatic. '

Finally, the tiling has the symmetry of the regular s-gon, by construc-
tion, and is not crystallographic because P is not periodic. Also it has an
inflation that is inherited from the inflation of P. The inflation is not usually
bounded-context, however, and, indeed, it can only be chosen to be bounded-
context when s =3,4,5,6,8, 10 or 12 (so that Q(cos 2n/s) is quadratic).

Modifying this construction to make the inflation context-free (so that it
can be used to generate the tiling) is the main difficulty in the proof of our
main theorem. Applying the simple method of making an inflation context-
free, described in the last paragraph of Section 6, directly to the 2-dimen-
sional tiling results in a tiling that may not satisfy QC2. Applying it at an
earlier stage to the prism pattern P (replacing it by a pattern with a context-
free inflation) does not affect the proof that the number of shapes is finite but
makes it difficult to ensure that the 2-dimensional tiling satisfies QCI.
Hybrid constructions that attempt to avoid both these pitfalls can lose the
symmetry. The difficulty can be overcome, however, and the inflation can be
replaced by a context-free inflation without sacrificing the other desirable
properties of the tiling.

The construction can be carried out in higher dimensions too, starting
from a set of unit vectors that is closed and transitive under the action of the
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desired symmetry group and dividing up space by means of hyperplanes at
right angles to these vectors. As before, it is necessary to use a prism pattern
with an inflation with multiplier 1 such that Q(1) contains the cosines of all
the angles between the unit vectors. There are very few irreducible finite
symmetry groups in dimensions = 3, and for all of them the cosines of the
angles between the unit vectors are algebraic. In dimensions > 5 there are
only the hypercubic and simplicial groups, and for these the unit vectors can
be chosen so that the cosines are rational, In dimension 3 there is also the
dodecahedral group and in dimension 4 there are two other groups, but in
each case the unit vectors can be chosen so that the cosines lie in Q(z) at
worst. (In the plane the only finite symmetry groups are n and nm, and we
have dealt with all of these.)
We thus have the following

MAIN THEOREM. Given any finite symmetry group (in any number of
dimensions) there are tilings with that symmetry having Properties 1, 2, 4 and
5. The inflation multiplier can be any PV-number ). such that Q(A) contains the
cosines of all the angles between the symmetry directions.

10. Examples

Pentagonal group. Our construction gives a tiling with more than two
shapes that is closely related to Penrose’s kites and darts tiling. It is less
aesthetically pleasing than Penrose’s tiling, partly because it uses more
shapes but partly because it is a criss-cross of straight lines (a drawback of
all tilings constructed in this way). See Figure 9.

Dodecahedral group. We obtain a quasicrystallographic tiling of 3-
dimensional space with dodecahedral symmetry and with plane sections that
have the above pentagonal tiling (related to Penrose’s). It has an inflation
with multiplier 7.

A similar tiling of 3-space that uses just two rhombohedral shapes has
recently been discovered by R. Ammann (see [5]).

Heptagonal group, etc. Our construction gives quasicrystallographic til-
ings of the plane with the symmetry of any regular polygon. These tilings can
be generated by inflation.

Cubic and simplicial groups. For the cubic and simplicial groups in any
number of dimensions the cosines of the angles between the symmetry
directions are all rational. So the second linear form lemma is not needed for
these groups, and quasicrystallographic tilings can be constructed with these
symmetries having any PV-number as inflation multiplier. Perhaps more
interestingly, there are quasicrystallographic tilings with these symmetries
that have no inflation at all.
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Fig. 10

It would be inexcusable to end this paper without showing at least one
new tiling, although, as we have already said, the tilings we construct all
consist simply of criss-cross lines. Accordingly, Figure 10 shows a tiling in
our final category of examples: it has simplicial symmetry in the plane, i.e.
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symmetry 3m. It was obtained by using the worm tiling to give a quasicrys-
tallographic tiling with simplicial symmetry and an inflation with multiplier
1, according to our construction. The inflation of the resulting shapes was
then slightly modified and simplified to give an inflation of a set of only four
shapes: two sizes of equilateral triangle and two sizes of similar hexagon.
(The way the enlarged shapes are subdivided is shown at the bottom of Figure
10.) The simplified inflation was then used to generate the tiling shown. The
criss-cross lines are still strongly in evidence.

Most of the work presented here is in the course of publication in [4],
where fuller details can be found.
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