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Introduction

The paper consists of two parts. In the first part we present a unified
approach to the theory of closed-valued multifunctions, We consider
only the case of separable metrisable spaces. Our main aim is to study
interrelations between measurability and various kinds of continuity of
multifunctions (Lusin type theorems and its consequences such as the
Scorza Dragoni type theorems). In the statements of definitions and theo-
rems we remain in the framework of topology and measure theory (with
only one exception: d-continnity). We fix our terminology carefully and
with exact references (also in the proofs because even elementary ter-
minology changes essentially (compare: [En], [Fe], [Ru], [Wa]). As
our field of interest is rather elementary and simple (thanks to a suitable
choice of definitions and statements) we do not state original references.
The significant statements (either for the theory or for our applications)
are called propositions. We present many remarks in order to justify
our definitions and statements and to emphasize useful properties and
consequences. The omitted proofs can be easily completed. In the second
part of the paper we deal with multifunctions in more special spaces;
however, the majority of our considerations from the first part do not
simplify essentially even in the case of finite-dimensional Euclidean spaces.

The existence of solutions of the following differential relation is
the subject of the second (main) part of the paper:

(1) zeF(t,z), o) =,

[625]
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Here F stands for a multifunction from 2 (£ is an open connected nonvoid
subset of the Euclidean space R xR") into R with nonempty closed
values. The initial state (¢,, x,) belongs to Q. By a solution of the problem
(1) we mean a continuous function z(-) defined in an open interval J ¢ R
and satisfying the following three conditions:

(i) (¢, 2(t)) € 2 for t € J and z(t,) = @,

(ii) the restriction of z(-) to any compact subinterval of J is ab-
solutely continuous,

(iii) #(t) = dx(t)/dt € F(t, (1)) for a.e. Lt ed.

Under the assumption that F(¢,z) are convex and compact the
existence problem has been solved: by Wazewski [Wz] for F continuous,
by Pli§ [P12] for F upper continuous in # and measurable in ¢. Assuming
that F(t, z) are merely compact the answer to the problem was given:
by Filippov [Fi2] for F continuous, by Kaczynski and Olech [KO]
and afterwards by Antosiewicz and Cellina [AC] for F continuous in z
and measurable in i, and recently by Bressan [Br] and myself [Lo] for
F lower continuous (let us observe that for F merely upper continuous
the existence theorem does not hold [Fi2]). Here we present a natural
extension of the results mentioned above. The statement of our existence
theorem is close to the main theorem in [Ol]. The proof is based on [Lo],
[P12] and on some results of the first part of the article.

1. Measurability and continuity of closed-valued
multifunctions in separable metrisable spaces

Let X be an arbitrary set. By P(X) we denote the family of all subsets
of X. By a multifunction F' from X into ¥ we mean a function from X
into P(Y) (we admit empty set as a value of ¥ at some points). We denote
graph ¥ = {(z,y) e X xY: ye F(x)} and for A e P(Y) we put F~(4)
={xeX: F(r)nA # O}. By ouler measure over X we mean the mea-
sure in the sense of [Fe, p. 53] and by measure on a s-algebra of subsets
of X [Ru, p. 9] we mean the positive measure in the sense of [Ru, p. 17].
Any outer measure g, restricted to the g-algebra of u-measurable sets
[Fe, pp. 54-55] is a eomplete [Wa, p. 864] measure on this o-algebra.
Conversely, let 4 be a measure on a ¢-algebra . Put for A € P(X), u*(4)
= inf{u(B): BeZ and A < B}. Then u* is another measure such that
its restriction to J coincides with u. Let X be a topological space. By
B(X) we denote the g-algebra of Borel sets in X [En, p. 45]. We say
that a measure u on B(X) is locally finite if every point in X has an open
neighborhood U such that u(U) is finite. From now on till the end of this
part we suppose that all spaces considered are separable, metrisable and
by u# we denote any measure on B(X). Then the product g-algebra B(X) X
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xB(Y) [Ru, p. 145] coincides with B(X x Y). By B(X)" we denote the
o-algebra of u*-measurable sets. Obviously B(X) c B(X)”. Let p be the
natural projection from X xY onto Y.

DEFINITION 1. We say that (X, 4, ¥) is projective if p(B(X x Y))
= B(X)".

We define a o-algebra B,(X, Y) by putting B,(X, Y) = {AVE:
AeB(XxY), EeP(XxY) and u*(p(E)) = 0}.

Remark 1. If p is locally finite, then B(X)* = {AVE: A € B(X),
E eP(X) and u*(F) = 0}. Hence B(X)" xB(Y) c B,(X, X).

ProrosiTION 1. If Y i3 a Suslin space [\Va, p. 863] then (X, u, Y)
i8 projective.

Proof. Let 4 be the set of all irrational numbers between 0 and 1.
There exists a continuous mapping f such that ¥ = f(A4") [Wa, p. 864].
Let h be a homeomorphism from A4 onto & x4 [Fe, pp. 63 and 65], I
the identity on X, p, (p,) the natural projection from X x4  onto A"
(from (X xA)xA onto X xA"), and 4 e B(X x¥Y). Then 4, = (I x
X f)~'(4A) belongs to B{X x.4#) as an inverse image of a Borel set by
a continuous mapping. Since (I x f)(4,) = A, by the identity p, = po
o(Ixf) we get p(A) = p,(4,). By [Fe, p. 66] 4, is a Suslin subset of
X x4 [Fe, p. 65]. Hence there exists a closed subset 4, of (X xXA) XA
such that p,(4,) = 4,. Put B = (I x h)~*(4,). Then B is a closed subset
of X x4 and (I Xh)(B) = A,. By the identity p, = p,op,0(I xh) we
get p,(B) = p,op,(4,;) = p(A) and consequently p(A) is a Suslin subset
of X. Henee p(A4) is u*-measurable by [Fe, p. 68] and so p(4) € B(X)".

By [—o0, +oc] we denote the extended real number system and
for @ and b in [—o0, + 0] with a < b we denote by [a, b] (]a, b[) the
closed (resp. open) interval with extremities & and . We put R = ] — oo,
+ocof and N — the set of all positive integers. A function f from X into
[—o0, +oc] is called lower (upper) semicontinuous at z € X if for every
sequence {z,},.n converging to x we have

liminf f(x,) > f(z) (limsup f(z,) < f(z)).

n—o0 n—>00

Then f is both l.s.c. and u.s.c. at #z iff it is continuous at . Put Gr~ (f) =
={(z,a) e X xR: a < f(x)}and Gr* (f)= {(z,a) e X xR: a > f(x)}. Then
f is L.s.c. (u.s.c.) at each point of X iff the set Gr~(f) (Gr*(f)) is open
in X xR. Let J be a c-algebra of subsets of X. We say that f is 7 -mea-
surable if f~'(4) e 7 whenever A c [—o0, +oo] is open. If B(X) cF
then every l.s.c. or u.s.c. function is J -measurable.

Lusin’s theorem is the main result relating measurability and con-
tinuity. We present its proof because our formulation differs from the
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classical one in two aspects. We do not assume any kind of compactness
and do not restrict ourselves to the gets of finite measure. Local finiteness
of the considered measure is our unique assumption relating topology
and measure structure.

ProrosiTioN 2 (Lusin’s theorem). Let u be a locally finite measure
on B(X) and f a function from X into [ — oo, +00]. Then f is B(X)"-mea-
surable iff for every ¢ > 0 there exisis a closed subset K of X such that
#(XNK) < e and f|g (the restriction of f to K) i8 continuous. The proposi-
tion remains true if we require only that fig 18 l.s.o. or u.s.c.

Proof. For every # € X take U, to be an open neighborhood of »
with 4(U,) < + . Then {U,},x i an open cover of the paracompact
space X [En, p. 273]. Let & be a locally finite open refinement [En,
Pp. 33 and 165] of the cover {U,},.x. As X is a Lindelsf space [En, pp. 247
and 320] we can choose a countable subcover {U},on of o. Then u(U,)
< +oo for every ¢ e N. Fix ¢ > 0. By [Fe, p. 76] there exists K; c U,,
a closed subset of X, such that u(U,\K,) < ¢/2' and f|g, is continuous.

Put K = | J K;. Then K is closed and f|g is continuocus because
{eN

{K;};en i8 a locally finite family of closed sets. Conversely, let {K, ).~
be a family of closed sets such that u(X\K,)<1/2" and f|g,_ i8 ls.c.
or u.s.c. Let U be an open subset of [ —o0, 4-o0]. Then

FHO) = USIE(DVIR uk, (D)-

We claim that f-(U)eB(X). Since u(X\{J K, =0 we get
neN

#*(fix\yx,(U)) = 0. Hence it is enough to prove that f|z!(U) e B(X)
for every n ¢ N. For this purpose let us observe that without loss of gen-
erality we can replace the family of all open subsets of [— oo, + 00]
by any family generating the same os-algebra. For every acR, f| x‘( ]a,
+o0]) € B(X) provided that f|g_is Ls.c. because f|z;(]a, + o) _p(K X
xX]a, +o0o[NGr~(f|g )) is an open set in K (w1th induced topology).
Similarly f|z ([ — oo, a.[) is open in K, provided that f|g_is u.s.c.

Remark 2. Lusin'’s theorem does not hold if we require only that u
is o-finite (i.e. there exist K, € B(X) with u(F,) < + o for n € N such
that X = (_J E,) instead of the local finiteness of u. For instance, take

neN

X =[—o, +00)], u(d) = m(ANnR) for A € B([ —o0, 4 0]) where m is
the one-dimensional Lebesgue measure and put f(z) = 0 for # e R and
J(—o0) =f(+00) =1.

Now, we are going to extend this Lusin theorem to the case of closed-
valued multifunctions. From now on, till Remark 16, F denotes a closed-
valued multifunction from X into X and g is locally finite.
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DEFINITION 2. We say that F is lower continuous if F~(A) is open
whenever A is open.

Remark 3. In opposition to [En, p. 89] we prefer to say ‘‘lower con-
tinuous” and not ‘‘lower semicontinuous” because in the case of single-
valued F (i.e. F(x) = {f(2)} for all x € X where f is a function from X
into Y) and ¥ = [—o0, +00] F is lower continuous iff it is eontinuous
(and lower semicontinuity of f does not imply lower continuity of F).

Let J be a o-algebra of subsets of X.

DEFINITION 3. We say that F is F-measurable if ¥~ (A4) € & when-
ever A is open.

Remark 4. This definition coincides with the clasical one for single-
valued F. Some authors use the term ‘weakly measurable” instead of
‘‘measurable” [Wa, p. 862].

Let Y, be a dense subset of ¥ and d an admissible metric on Y (i.e.
the topology induced by d coincides with the topology of ¥). For z € X,
yeY and r>0 denote B(y;r)={¢eXY: d(y,2)<r} and d,()
= inf{d(y, #): 2 € F(x)}. By the identity F~ (B(y; r)) = d;'(]— oo, r[) and
since Y is separable we get easily

Remark 5. F is -measurable iff d, is 7-measurable for every y € Y.

Since graph F= () {(z,y) e X xX: d(y, a) > d,(z)} we obtain (assu-
acl
ming ¥, countable) ’

Remark 6. graph F €7 x B(Y) provided that F is J-measurable.

Remark 7. F is B(X)"-measurable iff graph F € B,(X, ¥) provided
that (X, u, ¥) is projective.

By an operation on a family of multifunctions (from X into Y) we
mean the multifunction (from X into ¥) such that its value at x € X is
the result of this operation on values at # of each of these multifunctions.

Remark 8. The closure of the union of a countable family of 7 -mea-
surable multifunections is 4 -measurable and if, moreover, (X, u, Y) is
projective and 4 = B(X)", the same holds true for the intersection.

By the identity F~(B(y,r)) = p(X x]—o0, r[NGr*(d,)} (Where p
is the natural projection from X xR onto X) we get

Remark 9. F is lower continuous iff d, is upper semicontinuous for
every ye Y,.

The last remark suggests the following
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DEFINITION 4. Ve say that F is upper d-continuous if d, is lower
semicontinuous for every y € Y,.

DEFINITION 5. We say that F is d-continuous if it is lower continuous
and upper d-continuous.

Remark 10. These two notions do not depend on the choice of ¥y;
however (in contrast with measurability and lower continuity), they
are not topological notions since they depend on the choice of an admis-
sible metric d (this fact justifies our terminology). For instance, take
X ={0}u{1/2: teN} and Y = N with topologies induced from R
and define F by F(0) == @, F(1/2)) = {n € N: n>i}. Then F is d,-con-
tinuous for d, given by d,(m, n) = |m —n| and is not upper d,-continuous
for d, given by

1

1
dg(m, n) :l; Y

Proposition 2 leads to the following corollaries.

COROLLARY 1. F i8 B(X)*-measurable iff for every e > 0 there exists
a closed subset K of X such that u(X\ K) < ¢ and such that I | (the restriction
of F to K) i8 lower continuous. The corollary remains true if we require
that F | is d-continuous or upper d-continuous instead of lower continuous.

DEFINITION 6. We say that F is upper continuous (strongly upper
continuous) if F~(A) is closed whenever 4 is a compact (closed) subset
of Y.

Remark 11. If F is single-valued (given by f as in Remark 3) then F
is strongly upper continuous iff f is continuous.

Remark 12. Qur strong upper continuity coincides with the upper
semicontinuity in the sense of [En, p. 88] and ¥ is upper continuous iff
graph I is a closed subset of X x Y.

DEFINITION 7. We say that F is continuous if it is both lower and
upper continuous.

Now, we are going to localize our definitions. Let z, e X. We say
that:

DEFINITION 8. F is lower continuous at x, if for every y, e F(x,) and
for every sequence {z,},..x converging to z, there exists a sequence {y,},.~
converging fo y, such that y, € F(z,) for n e N.

DEerFINITION 9. F is upper conlinuous at x, if for every sequence
{z,}.en converging to z, and for every sequence {¥,},.ny converging to
some Y, € ¥ such that y, e F(z,) for n ¢ N we have y, € F(x,).
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DEFINITION 10. F is conlinuous at z, if it is both lower and upper
continuous at z,.

Remark 13. F is (lower, upper) continuous iff it is (lower, upper)
continuous at every zx, € X.

Remark 14. The following implications hold: F is strongly upper
continuous = F is upper d-continuous = F is upper continuous. For ¥
compact these three notions coincide. However, Lusin’s theorem (Co-
rollary 1) is false whenever we use the strong upper continuity. Indeed,
take X = R, Y = R* and px the one-dimensional Lebesgue measure
restricted to B(R). For xe R put F(x) = {(y,2) e R*: y = lsinz, 2
= tcosz, t € R}. Then F is lower continuous (hence B(X)-measurable)
but not strongly upper continuous. Moreover, if K is a closed subset
of R, then F|; is strongly upper continuous iff K is a discrete space
[En, p. 31]. Hence K is countable and u(K) = 0,

Remark 15. If Y is locally compact (in this case Y is also a Suslin
spacec) then there exists an admissible metric d such that upper continuity
is equivalent to upper d-continuity. Conversely, if d is an admigsible
metric on Y such that upper continuity is equivalent to upper d-con-
tinuity and X is not a discrete space then Y is locally compact and any
bounded closed subset of (Y, d) [En, p. 313] is compact.

Since this remark in not quite as easy to prove as the previous ones
we include the proof.

Proof. If Y is compact the statement is trivial. If ¥ is locally compact
but is not compact, take the Alexandroff compactification ¥ = YU {oo}
of ¥ [En, p. 222]. Let p be an admissible metric on ¥ and let d be a metric
on Y defined by

1 _ 1
e{z, oo) e(y, o) )

Then d is an admissible metric and 4 € P(Y) is compact iff it is closed
and bounded in (Y, d). Consequently, the upper d-continuity results
from the upper continuity. Indeed, let F' be an upper continuous multi-
function from X into Y and suppose that for some a € ¥, d, is not lower
semicontinuous at some z,€ X. Then there exists a sequence {x,}q.n
converging to 2, and a positive constant M such that lim infd (z,) < M

n—ro0

< d,(z,). Choose a subsequence {7, }..n Of {Z,},en Such that there exist
Yy € F(z,,) with d(a,y,) < M for keN. Since {ye Y: d(a,y) < M} is
compact we get a y, € X such that y, = lim y,  where {y, }nen is a sub-

m-—>x®

sequence of {y,}..ny- Hence y, e F(z,), because graph F is closed, and
consequently d,(r,) < M which contradicts our choice of M. Now, let.

d(r,y) = oz, y)+
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us pass to the converse. Obviously, it is enough to prove that every
bounded closed subset of (Y, d) is compact. Otherwise, let A be a bounded
closed subset of ¥ which is not compact. Then there exists a sequence
{Yn}nen-s Y €A such that none of its subsequences is convergent.

As X is not a discrete space we can find a sequence {#,},.x converging
to a point &, such that , # z, for all n % m. We define a multifunction
F from X into Y by F(x,) = {y,} for neN and F(z) = @ otherwise.
Then graphF is closed and for every y € X, d, is not lower semicontinuous
at z, because {¥,},.y i8 bounded.

CoBOLLARY 2 (cf. [P11] and [Ja, p. 476]). F is B(X)"-measurable
iff for every £ > 0 there exists a closed subset K of X such that y(X\K) < ¢
and F |y i8 continuous. The corollary remains irue if we require only that
F | i8 upper continuous provided that (X, u, Y) is projective.

Remark 16. The projectivity of (X, 4, Y) is essential in the last part
of the corollary becaunse an upper continuous multifunction (even single-
valued) need not be B(X)”-measurable. For instance, take X =10, 1],
4 the one-dimensional Lebesgue measure restricted to B(X). Let
4 eP(X\B(X) and 0 e X\A. Put ¥ = Avu{reX: —z e X\ 4} and
define F by F(z) = {#} for z ¢ A and F(2) = {—=z} for x € X\ A. Then
graph F is closed in X x Y, A is open in ¥ (obviously in X and Y we take
the topologies induced from R) and F~(4) = A ¢ B(X)".

Now, we extend Definition 3 to the case of partially defined multi-
functions. Let X, e P(X), let F' be a closed-valued multifunction from
X, into ¥ and J a o-algebra in X.

DEFINITION 11. We say that F is I -measurable if ¥~ (A) € 7 when-
ever A c Y is open.

Remark 17. F is J-measurable iff F~(Y)eZ and F is F,measur-
able (7, is the og-algebra on F~(Y) induced by 7). Moreover, F is 7 -mea-
surable iff F: X—>¥ (defined by F(m) F(x) for 2 € X, and F(a:) =
otherwise) is -measurable. Remarks 5, 6, 7 and 8 remain true for partmlly
defined multifunctions.

From now on, till the end of this section, F is a closed-valued multi-
function from X X Y into Z and u is locally finite.

COROLLARY 3 (Scorza Dragoni type theorem — the upper continuous
case, cf. [Rz]). Define the mullifunction G from X into Y XZ by putling
G(z) = graph F(x, ) if graphF(2, ') i8¢ closed and G(z) = O otherwise.
Suppose that F(x, -) i8 upper continuous for a.e. # € X and that @ is B(X) -
measurable. Then for every e > 0 there exists a closed subset K of X with
W(XNK) < e such that Flg,y 18 upper continuous.
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Proof. As at the beginning of the proof of Proposition 2, we use the
local finiteness of 4 and [Fe, p. 62] to get a closed X, e P(X) with u4(X\
\X,) < ¢/2 such that F(z, ) is upper continuous for every z € X,. Co-
rollary 2 applied to G gives K, closed in X with u(X\K,) < ¢/2 such
that @ |g, is upper continuous. Put K = K NX, and observe that graph
Flgxy = graph@G | is closed. '

Remark 18. If (X, u, ¥ xZ) is projective then the converse holds.
Namely, if the conclusion of Corollary 3 is fulfilled then ¥ (z, -) is upper
continuous for a.e. € X and G is B(X)“-measurable {or equivalently
graph ¥ € B, (X, ¥ xZ)).

CoroLLARY 4 (Scorza Dragoni type theorem — d-continuous case).
Let d be an admissible metric on Z. Then the following two conditions are
equivalent:

(i) F(X, ) is d-continuous for a.e. v € X and F(-,y) i3 B(X)"-mea-
surable for all y e Y.

(i} For every e > 0 there exisis a closed subset K of X with u(X\K) < e
such that F|g, p 18 d-conlinuous.

Proof. Fix ¢ > 0. Let ¥, be a multifunction from X x Y into Z defined
by Fy(z,y) = F(z, y) if F(2, ) is d-continuous and Fy(z, y) = O other-
wise. Let {z};cn be a sequence dense in Z. Put f;(x,y) = inf{d(2, a):
a € Fo(z, ).

Then f;(x, ) is continuous for all x € X and f,(-,y) is B(X)"-mea-
surable for all ¥ € Y. Define a single-valued multifunction F, from X x ¥
into [+o0, 400} by Fy(x,y) = {f;(#,y)}. We will apply Corollary 3
to F;. Let G, correspond to F; (as G corresponds to F in Corollary 3);
then Gy(x) = graphF,(z, -) for all z € X. Moreover, since F,(z, -) is lower
continuous we have

(T xV) = U Fi(, )™ (V)
yedNU
for any A dense in ¥ and U XV open in ¥ X[ —o0, +oc]. Therefore
the B(X)"-measurability of @; follows from the B(.X)”’-measurability of
F,(-, ¥). Hence (by Corollary 3) we get a closed K; c X with u(X\K))
< £27%7! such that F, |k,x ¥ 18 upper continuous. 8ince [—oo, +oo0] is
compact, Fy|g,,y 18 strongly upper continuous. Hence f;|x,.y i8 con-
tinuous (for every ¢ € N) and consequently F,|g .y i8 d-continuous where
K, = () K;. By the same argument as in the proof of Corollary 3 we
{eN

can find a closed X, ¢ X with 4(X\X,) < /2 such that F(z, -) is d-con-
tinuous for every z € X,. Put K = X,nK,. Then F|;,y is d-continuous.
The implication (ii) = (i) is obvious.
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Remark 19 (cf. [HV]). If in Corollary 4 we assume additionally that
Z is locally compact then (by Remark 15) we can replace in the state-
ment d-continuity by continuity.

Remark 20. If F in Corollary 4 is single-valued (given by F(z, y)
= {f(wz, ¥)}) then we can replace the d-continuity of F by the continuity
of f, and the measurability of F' by that of f. In this way we get a gener-
alization of the pioneering result [SD].

LEMMA 1. Let f be a B,(X, Y)-measurable funclion from X x Y into
[—o0, +-o0] and suppose that (X, u, ¥ XR) i8 projective. Then E =
{reX: f(z, ) i8 upper semicontinuous} belongs to B(X)".

Proof. By the formulas G(z) = Y X R\Gr*(f(z, *)) and G(z) =clG(z)
we define two multifunctions @ and @ from X into ¥ XR. Let H be the
closed-valued multifunction from X xY into R given by H(z,y) =
{reR: r<f(w,y)}. Then H is B,(X, Y)-measurable and G(z) = graph
H(z, ). The equalities @~ (U xV) =& (U xV) = p(H~(V)nX x U) hold
for any U x V open in Y X R where p is the natural projection from X x ¥
onto Y. Hence G is B(X)“-measurable because the projectivity of
(X, 4, ¥ X R) implies that of (X, 4, ¥). Therefore graph@ € B,(X, Y xR).
Since

X x Y xR\graph@ = ) f'([— o0, a[) x]a, +oo[
asd
for any A dense in R, we have graph@ € B, (X, Y) xB(R) < B,(X, Y xR).
Since (X, z, Y XR) is projective we have

XN\E = {r e X: G(z) # G(z)} = q(graph@\graph@) e B(X)*
(here ¢ is the natural projection from X x¥ xR onto X).

ProposiTION 3. Suppose that F is B,(X, Y)-measurable and that
(X, 4, Y xR) 18 projective. Define A(F) = {(x,y) € X X Y : there exists an
open neighborhood U of y such that F(z, )|y ts lower continuous}. Then
F| 45 18 B(X, Y)-measurable.

Proof. As F|3p(U) = A(F)NF~(U) we need only to prove that
A(F)e B,(X, Y). Let {B;};.y be a countable base of the topology on Y.
Define B; = {z € X: F(w, )|, 1s lower continuous}. Then A (F) = | ) B; x

ieN
XB;. Put F; = F|x,p,. Then F; is B,(X, B;)-measurable. Let {7};cn

be a dense sequence in Z and 4 an admissible metric in Z. Define f; ;:
X XB;—>[—o00, +00] by f; (2, y) =inf{d(z, a}: acFyz,y)} and put
E,;,={weX: f2,) is upper semicontinuous}. As (X, u,¥YxXR) is
projective, (X, u, B; X R) is also projective. Therefore applying Lemma 1
to f;; we obtain E;,c B(X)*. As E; = ﬂ E;; we get E;,c B(X) and
hence A(F)e B,(X, XY).
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PROPOSITION 4. Suppose that (X, u, Y) i8 projective. Then the follow-
ing lwo conditions are equivalent:

(1) F| 4 98 B,(X, Y)-measurable (where A(F) is defined as in Pro-
position 3)

(ii) For every e > 0 there exists K = X closed with u(X\K) < ¢ and
Q< XxY open such that A(F)NK XY = QNK XY and Fl,,gxy 18

lower conlinuous.

Proof. Implication (ii) = (i) is obvious, so we pass to the converse.
Fix £ > 0. Let & be the closed-valued multifunction from X into Y defined
by G(zx) ={yeX: (r,y) e X XY\NA(F)}. Since graphG = X X Y\NA(F) e
€ B, (X, Y), it follows that @ is B(X)"-measurable. By Corollary 1 applied
to G we can choose X, c X closed with u(X\X,) < /2 such that @ |x, is
upper continuous. Define a closed-valued multifunction F, from X X ¥
into Z by Fy(z,y) = F(z,y) for (z,y) e A(F)NnXyx XY and Fy(z,y) =0
otherwise. Then F, is B,(X, Y)-measurable and F,(z, -) is lower con-
tinuous for all r € X.

Let {z;};cx be a dense sequence in Z and let d be an admissible metric
in Z. Define f;: X xY—->[—o0, +00] by fi(z,y) =inf{d(z,a): ac
€ Fy(x, y)}. Let G, be the closed-valued multifunction from X into ¥ xR
given by Gi(#) = ¥ xR\Gr*(f;(2, ). It follows (by an argument as
in the proof of Lema 1) that @; is B(X)“-measurable. Use Corollary 1
to get a closed K; c X with u(X\K;) < «27°~! such that G;|g, is upper

continuous. Put K, = () K,;. The function f;|x «y is upper semiconti-
1eN

nuous because
KoxY XR\Gr+(fi|KoxY) = graph(G|g,)

is closed. Hence Flg .r i8 lower continuous. Put K = K,nX, and
2 = X xY\graph@G|. Since

X x¥\graph@G | = (XIN\NK) X YUVA(F)

we have QNK XY = A(F)nK x Y. For U openinZthe set (F|g,zx¥) (U)
= (Fylgxp) (U) is open in K XY and hence in QNK x Y.

COROLLARY 5 (Scorza Dragoni type theorem — lower continuous
and continuous cases, cf. [Fr] and [Rz]). Suppose that (X, u, Y) is pro-
jective. Then the following two conditions are equivalent:

(i) F is B,(X, Y)-measurable and F(x,-) i8 (lower) continuous for
a.e rveX.

(ii) For every e > 0 there exists K < X closed with u(X\K) < & such
that F |,y i8 (lower) continuous.
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Proof. Implication (ii) = (i) is obvious in both cases. To get the con-
verse choose closed X, « X (by the same argument as in the proof of
Corollary 3) with u(X\X,) < ¢/2 such that F(z, ‘) is (lower) continuous
for all ze X,. In the lower continuous case apply Proposition 4 with
Fy = Flxxy and with u restricted to B(X,). In the continuous case
use, moreover, Corollary 3 with ¥, and with u restricted to B(X,). In
order to verify the B(X,)*-measurability of G, observe that since F,(z, -)
is upper continuous it follows that Gy(2) = graph Fy(z, -), and since

Fo(x, ) is lower continuous we have @Gy (U xV) = |J Fo(-, y)" (V) for
vednU
any A dense in ¥ and U XV open in ¥ xZ.

Now, we will state two useful properties of the operations on mul-
tifunctions which are not closely related with Lusin’s theorems. We use
the convention of Remark 8.

The tntersection of a countable family of I -measurable mullifunctions
18 F -measurable provided that Y 18 o-compact. If, moreover, Y is a finite-
dimensional Euclidean space, then the closed conver hull of a I -measurable
multifunction i8 J -measurable,

The above properties result easily from [CV, pp. 63, 67 and 70].

2. Existence Theorem

By ab we denote the scalar product of two vectors a and b in R™ and

by |a| = Vaa the corresponding norm. For # € R* and X and Y in P(R")
we put dist(x, ¥) = inf{le—y|: y € ¥} and q(X, ¥) = sup{dist(z, ¥):
z € X}. By coX we denote the convex hull of X. We put 2(Y, ) = sup{yz:
yeY}. If Y is bounded and A is dense in R" then clcoY = {x ¢ B*:
za < h(Y, a) holds for a € A}. By C(I) we denote the Banach space of
continuous functions (from a compact interval I = [a, b] =« R into R")
with the norm || = max{|u(t)|: t € I}. The following lemma or its
variants have frequently been used in the proofs of existence of solutions
for (1) [Fil], [P12], [Da] or in the related closure theorems [Au]. We
present a simple proof of it, which avoids the use of infinite-dimensional
functional analysis.

LEMMA 2. Let {@}1en be a sequence in C(I) converging to z,. Suppose
that z, are absolutely continuous and that |i,(t)| < m(t) holds for a.e. tel
(for k = 1) where m is integrable on I. Then z, is absolutely conlinuous and
&o(t) e clcoF'(t) for a.e. t € I where F is the multifunction from I into R™
defined by F(t) = {@,(t): k= 1} if &,(t) exists for k=1 and F(1) = {0}
otherwise.
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Proof. We have
it
|2, (8) — @ (P)] < f m(rydr fora<s<ig<band k>1
8

and so for k¥ = 0. Hence z, is absolutely continuous. Since a,(t) € F(i)

for a.e. tel and k eN we have (for given p e R" and k> 1) pd, () —

—h{F(t), p) < O almost everywhere in I. Hence the absolutely conti-
[}

nuous functions t—paz,(t)—[ h(F(r), p)dr are decreasing for k>1 and
a

so for k = 0. Consequently piy(t) < h(F(1), p) holds for a.e. t e I. Using
it with p in a countable dense subset of R" we get &,(l) € cleo F'(t) for
ae. tel.

By u we denote the one-dimensional Lebesque measure restricted
to B(E) where E € B(R). We will say “measurable” instead of ‘“B(E)"-
measurable” and we denote 5 = B, (R, R"). Let f be a function from
R xR" into [0, +o00]. Then f is called locally tniegrably bounded if for
every bounded subset K of R xR" there exists a function p integrable
on R such that f(¢, ) < p(¢) holds for (¢, z) € K. We say that a multi-

function from R xR" into R" is an orientor field if its values are closed
and nonempty.

THEOREM 1. Let F be an orientor field. Then the problem (1) has a solu-
tion provided that F satisfies the following regularily assumplions:

(i) The following condition holds for a.e. t € R. For all x € R either
F(t, ) is upper continuous at x and F(t, x) = coF(t, x) or F(t, -) resiricted
to some neighborhood of x ts lower conlinuous.

(ii) F i8 I -measurable and dist (0, F(-, -)) i2 locally integrably bounded.

The following proposition generalizes the essential part of the proof
(presented in [Xo]) of a particular case of our theorem.

PROPOSITION 5. Let {F\ }1en be a sequence of lower continuous orientor
fields and {D\}1cn a sequence of closed subsets of R™' such that Fy|p =
= Fi.1lp, for k €N. Let X be a compact set in C(I) and {&,},cx @ sequence

of positive constants with Y ¢, < -+ oo.
k=1

Then there exists a sequence {fi}ran 0f mappings from X inlo the space
of piecewise constant functions from I imto R such that

dist (f(w) (), Fyft, w(0)) < e

holds for k > 1, t € I, u € X, and if, moreover, (t, 4(t)) € D, then |f,(u)(t)—
~fer1 (%) ()] < &-
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Additionally, for every w € X there exists a countable subset Z, of I
such that for each te INZ, and k> 1 the mapping v — f,.(v)(t) 8 conti-
nuous at %.

A multifunction F from R into R is called simple if graph F is a finite
union of sets of the type F x {z} where E is a compact interval and = € R.
We omit an elementary proof of the following

LeEMMA 3. Let V and W be two simple multifunctions and v a piecewise
constant function (defined on an interval I) such that v(t) € V(t) holds for
tel. Suppose that I ¢ W~ (R"). Then there exists a piecewise constant
function w such that w(t) € W(t) and |v(t) —w(t)| < q(V (1), W(t)) holds for
tel,

LEMMA 4. Let F and G be two lower continuous orientor fields
and D a closed subset of R**' such that F|, = @|p. Choose w € C(I), > 0
and a simple multifunction V with I <« V- (R"). Suppose that q(V(t),
F(t, u(t))) < f holds for t € I. Then for every a > 0 there exists 6 > 0 and
a simple multifunction W with I = W~ (R") such that (W (1), @(t, v(t))) < a
holds for all te I and v € clB(u; 8) and such that if (t, v(t)) € D for some
tel and some v e B(u;6) then ¢(V(2), W(t) < §B.

Proof of Lemma 4. Put X, = | _J V(t) and E(v) = {teI: (¢, v(t)) € D}
tel

for » e O(I). Let € X, and § € E(u)nV~({z}). Choose y,, € F(s, u(s))
such that |z—y,_,| =dist(:v,F(s,u(s))). Then |t—y,,/<f and y,,€
e G (s, u(s)). Moreover, there exist ¢, , > 0 such that dist (yz.,, G, 'u(t))) <a
for t—s|<¢,, and |v—u| < ¢,, because the mapping (¢, v)—(t, v(1)) is
continuous and dist(y,,,@(-,-)) is u.s.e. By the compactness of E(u)n
NV~ ({r}) we can choose i(z) e N and 8 =8, E(u)nV~ ({z}) (with
t =1,2,...,i(z)) such that E(u)nV~({z}) = J(x) where

i=i(z)

J(w) = {LJI {t: lt_si,:c, < sz,si}'

For s e INJ(x) take y,, € G(s, u(s)). By similar arguments there exist
&, > 0 such that dist (yz_,, G(t,v)) < afor t—s8/ < e, , and lw—ul <e,,;
moreover, we can choose j(z) e N and 8;, € INJ (z) (with ¢ = i(z)+1, ...
.vey J(z)) such that

{=J(x)
INJ(@) e U {t: t—8ql <er, )

i=i(z)+1
Define W by putting
t=j(z)
gra'ph W = U U [si.:"'s:.a,d si.:+£::.s,-] x{yx.s;}'

ZEXO t=1



SOME THEOREMS OF SCORZA DRAGONI TYPE 639

Obviously I = W~ (R"), W is simple and g(W (), @{t, v(t))) < e for tel
and |v—ul < ¢ where ¢ = min{e,, : i <j(2), 2 € X,}. The multifunction
v—E(v)NV~ ({z}) is strongly upper continuous because its graph is closed
and I is compact. Hence there exists 4, > 0 such that E(v)nV~({z})
c J(x) for |v—u|| < 4,. Put § = min{e, §,: @ € X}. Fix v and ¢ satisfying
{t, v(?)) € D and {v—ulj < 8. Since for « € V(1) we have ¢ € J(x), it follows
that dist {z, W(t)) < |z—y,,!<p for some i<i(z) and so g¢(V(t),
W (1) < 8.

Proof of Proposition 5. Define an orientor field ¥, by putting F,(t, z)
= {0}. Choose &, > 0 and put D, = @. We will construct by induction
a sequence {4}, of finite subsets of N**! and for every y € 4, we will
choose r,> 0, %, € X satisfying X < | B(u,;7,) and a simple multi-

€d
function ¥V, with I c V;(R") such t;m-tk q(V,,(t),Fk(t, u(t)))< & holds
for tel and « eclB(u,;r,). Moreover, the above sequences will enjoy
the following two additional properties:

1. XnelB(w,;7,) < ‘H B(%,,4); 7(,5)) holds for k>0 and y € 4,.

(ref)edy )

I1. If (¢, 4(2)) € D, for some k>0, te I and % € B(t, ;) 7,4 With
some y € 4, and (y, ) € 4;,, then g(V,(t), Vi, (1) < €.

For this purpose put 4, = {1} and choose %, € X and 7, > 0 such that
X c B(u,;r,). Define ¥V, by putting V,(t) = {0} for t eI and V,(t) = O
otherwise. Next, fix k> 0 and suppose that we have defined 4, and
T,y %,y V, with I < V;(R") for y e A, satisfying X < |_) B(w,;r,) and

LY |

such that q(V,(t),Fk(t,u(t)))g g, holds for tel a,ndr Ue cl B(w,;7,).
Applying Lemma 4 (with F=F, @=F,,,,D=D, V=7V,
#wecl B(w,,1,), f= &, a =¢g,,) we get 8 = 4% and W = W], satisfying
the assertion of the lemma. By compactness of Xncl B(u,;7,) we can
choose m(y) e N and w; = u;, € Xnel B(w,;r,) (with ¢ =1,2,..., m(y))
such that

{=m(y

)
Xnel B(w,;r,) = |J B(ug; 6).
fe1

Define A, ;, = {{y, i) e N**?: y € 4, and ¢ < m(y)} and for (p, i) € 4,;,,
put ’r(m-) = 15;",',, ’u(?,,-) = U; and V(.y"-) = W“‘Vq. As
Xnel B('u,,; Ty) c U B(’u(y'{); r(y.‘))

(7.1‘)5Ak+ 1

holds for y € A, from the induction assumption, we get X < | B(u,; 7,)-
dedp 1
The other required properties follow from the assertion of +Lemma, 4.

Next, for k>0 let p, (with y € 4;) be a continuous partition of

unity on X subordinate to the open covering given by X = | B(u,;7,)
VEAk
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and satisfying additionally p, = 3 . We are going to construct
. (}',f)GAk.‘,
it. For every y € 4,, k> 0 let q:, be a l(5ont3inuous partition of unity on

X el B(u,;r,) subordinate to the open covering given by

X('\CI B(u,; 1',.) c U B(“()’-‘)’ r(,,_‘)).
(rei)edy )
Put g, = ¢} for 8 = (y,4) e 4;,, and gy(u) =1 for ueX and 6¢cA4,.
Let g, be a continuous extension of g, on X. We define p, by putting

Py (%) = @, (%) Qgy,,p,) (%) ... Q(,,p_",,,kﬂ,(u) for ue X

where y = (y1y ..., ¥p41) € 4. Obviously pg, ,(%) # 0 implies p, (%) # 0.
We claim that p,(4) # 0 implies 4 € B(%,;r,). For y e 4, this follows
since X < B(u,;r,). Fix k > 0 and suppose that our claim holds for all
yed,. Let e, and % € X satisfy p,(u) # 0. Take y e 4, and ¢ eN
such that é = (y,4). Then p,(4) # 0 and g,(#) = 0. By the induction
assumption we get u € B(u,;7,). Hence 0 # g,(%) = ¢,(%) = ¢}() and
therefore % € B(%,;7,). From our claim we get p, (%) = 0y (%) oo Gy, ppy (W)
provided that p,(%) # 0. Hence p,(4) > 0 and

2,(8) = D Dyaylw)

(YOﬂsAk_'_ 1

holds for all 4 € X because for p,(4) =0 the equality is obvious. It

follows that
Y o, = 3 pw) =.c. = X p,(u) =1.

vedpy vedy ved,

Define for every ¥ >0 and % € X a partition I, (%) (with y € 4;) of the
interval [a, b[ by putting

L(w) =[a+(b—a) Y ps(w), a+(b—a) I ps(w)-

ded 864
d<;!‘ 6<1{,

where the lexicographic order in A, is used. Then

Lw= U I, I,(u) #O implies % ¢ B(u,;r,)
(rf)edpyy
and if ¢eint I,(%) then ¢eint I, (v) for v close to . Using Lemma 3
we can choose a family o, (with y € 4,, k > 0) of piecewise constant func-
tions such that v,(?) € ¥, (t) and |v,(t) — vy, (1) < ¢(V, (1), Vi, (1)) holds
for tel and (y,1) € 4;,,.

For k e N and % € X define on I a piecewise constant function f(u)
by putting f,(4)(¥) = v,(?) if t eI, (4) for some y € 4, and f (%)(b) by
the following requirement: f,(%)(d) = f,_,(%)(b) if (b,u(b)) eD,_, and
Ju(u)(b) € Fy (b, (b)) otherwise. Then {fi},.n satisfies the first part of
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the conclusion of the proposition. For fixed u e X, ke N and t el the
mapping v—f.(v)(t) i8 constant in some neighborhood of % provided that
te | Jint I,(u). Therefore we put

yedy
Z, = U (IN U int I, (w)).

yedy
Proof of Theorem 1. Without loss of generality we can assume ¢, = 0

and x, = 0. Let m be an integrable bound for the funetion 1 + dist (0, F(- )
restricted to [—1,1]xB(0;1). Choose —1 < a < 0 < b < 1 so small that

b
f m(t) dt < 1. Denote I = [a,b] and ¥ = B(0;1). Apply Proposition 3

to F and define a multifunction @ from I x Y into R by putting G(t, z)
= F(t, 2)Nol B(O m(t)) for (1, 2) e I x ¥\NA(F) and G(¢, 2) = el [F(t, )N
NB(0; m(t))] for (t,2) e A(F)NIXY. Then G is F-measurable and
G(t,z) # O for (¢,r)elIxY. Fix ¢> 0. Applying Proposition 4 to @
we get a compact subset K = K(c) of I and a subset 2 = Q(0) of IxY
(open in I xY) such that u(INK)<e¢, KEXYNA(G) = KX¥YNnQ2 and
@lgxpno 18 lower continuous. Since the set (RxY)n2 is open in
R"! we can choose a sequence of compact subsets of R"*! such that
L,cint L., and JIL, = (RxY)nQ2. Put D, = K XRNL, for k e N.
Then | D, = K x ¥nQ. Define an orientor field F, by putting F,(¢, z)
= @(t, z) for (t,x) € D, and F,(l,z) = R" otherwise. Since D, is closed
F, is lower continuous. Define

= {v € C(I): v is absolutely continuous, v(0) = 0 and
[o(t)| < m(?) for a.e. ¢t el}.

Then by Lemma 2 and the Arzela—Ascoli theorem X is compact. Apply
Proposition b and define g, for all v € X and ¢ € I satisfying (t, u(t)) e
eKXXYNA(G) by g.(u)(l) = limf,, %)(t). Choose ¢ = ¢;—»0 and define

E; by E, = K(¢,) and E;, = .K(o,+,)\ U E;forieN. For (},4) e IxX
define H(u){t) by putting

g, (w(®)} i (¢, u(2) € B x TNA(@),
B (1) = {G (¢, u(t))  otherwise.

One can easily check the measurability of the multifunction {—H (u)(t).
We claim that for given 4 e X and a.e. ¢ e I the multifunction H(-)(?)
is upper continuous at «#. Fix % € X, Since, for given ¢ > 0, g¢.(-)(f) is
continuous at w for t € INZ, (Z, from Proposition 5) satisfying (¢, u(t)) €
e K (o) x YnA(G) (because, since L, < int L,,,, for k&, sufficiently large
we have (t, v(t)) € D, for k> k, and v close to %, and because the limit
passage determining g,()(t) is uniform), u(IN|JE,) = 0 and t-sections
of A{@) are open; therefore H(-)(¢) is continuous at « for a.e. ¢ € I satis-
fying (¢, u(t)) € A(@). Observe that I x YnA(F) c A(G) and that for a.e.

41 — Banach Center t. 14
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tel if (t,s) ¢ A(F) then F and hence @ is upper continuous at = and
G(t, o) is convex. Since, moreover, g,(%)(l) eG(t, u(t)) whenever defined,
it follows that H(')(¢) is upper continuous at  for a.e. ¢t € I satisfying
(t,u(t)) ¢ A(@). So our claim is verified and, morcover, the values of
H(u)(:) are closed, convex and nonempty for a.e. ¢t € I. Define a mul-
tifunction § from X into X by putting S(u) = {ve X: »(t) e H(u)(?)
for a.e. t e I} for u € X. The sets X and S(u) are convex (trivially) and
compact by Lemma 2 and the Arzela—Ascoli theorem. Let f(t) be the
point in H(u)(¢) uniquely determined for a.e. teI by dist(0, H (u)(t))

= |f{t)l. ¢
Then f is measurable and the function {— f f(r) dr belongs to S(u).

0

So S(u) # O. Let us prove that graph 8§ is closed. Take u,—>u, and v, —>v,
with 2, € S(%,). By Lemma 2 applied to {v.},,; we get

9o(t) € () el eo {0,(t): %k =14} = (M) eleo () Hw,)(t) = H(up)(?)

i>l i>1 k>i

for a.e. ¢ e I (the last inclusion follows from the upper continuity of H (-)(f)
since H (u,)(t) is a nonempty, convex, compact set for a.e. ¢t € I). Hence
9, € 8(u). By Kakutapi-Ky-Fan fixed point theorem [Be, p. 270] there
exists # € X such that = € 8(z), i.e. x is absolutely continuous, #(0) =0
and @(t) e H(z)(t) < F(t, z(t)) for a.e. tel. So « is a solution of the
problem (1).

CoROLLARY 6 (cf. [Ol]). Let F be an orientor field. Suppose that (i)
holds true and in (ii) replace the 7 -measurability of ' by the measurability of
F(-, @) for # € R". Assume, moreover, that F(t,-) is upper continuous for
a.e. t € R*. Then the problem (1) has a soluiion.

Proof. Let p be a locally integrably bounded function from R x R"
into [1, 4 oo[ continuous in @#, measurable in ¢ and such that for a.c.
tcR, dist(0, F(t, z)) < p(t,«) holds for all z e R*. Let ¥ be a dense
countable subset of R*. We define two multifunctions G and H by putting:

G(t,w) =(Yel U F(t,y) for (¢ 2) R,

keN ye¥
ly—z| <1k
Hio) — cl(G(z)nB(O;p(z))) if 2 4(6G),
(z) = {co(G(z)nclB(O; 2(2)) if ze RPINA(G),

where A (-) is defined in Proposition 3.
Then H satisfies (i) and (ii) from the theorem and for a.e. 1 € R we
have @ # H(t,x) = F(t, z) for all z € R".
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