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In this lecture series on the mathematical foundation of flow of glaciers and
large ice masses an attempt is made to present a rigorous review of the basic
problems that are encountered when one is trying to formulate a rational
model for the description of the physical behavior of these objects.
Polythermal ice masses constitute cold and temperate zones, in which a one-
component or a mixture concept are appropriate as the continuum mechan-
ical model. Problems then arise what equations must be formulated in the
two zones and at the cold-temperate transition surface. The first two sections
are devoted to the deduction of the basic model from the general postulates
of a continuum theory of binary mixtures. The results of these developments
are new and prove those of earlier authors to be wrong. In the remaining
four sections the cold ice model is then applied to the determination of stress
and velocity distributions and of the surface profile. The application of the
suggested approximate perturbation schemes to three-dimensional ice sheets
is new; it offers interesting results which can easily be subject to verification
in the field.

The lecture notes can, obviously not be complete, but mathematical
problems are clearly stated and up to date as far as 1981/82. Important
unsolved problems are indicated.

Acknowledgement. [ thank Prol. 1. Miiller for constructive criticism of
these lectures. It led to improvements in the text of section 2. I further thank
Prof. K. Wilmanski and the authorities of the Center for the invitation to
held these lectures.



278 K. HUTTER

Introduction

It is one purpose of glaciology to understand and describe how glaciers and
ice sheets flow and in what sense their behavior can be related to that of the
geophysical environment, the atmosphere and the substratum which the
glacier is situated on. Glacier and ice sheet motion is primarily due to the
action of pgravity, however thermal effects are equally important as they
cannot be ignored when stresses and velocities are determined. Typically, the
interaction between the geophysical environment and the glacier is from the
environment 1o the ice mass and not vice versa, in other words the thermal
conditions of the environment affect the motion of the ice mass, but the
feedback from the ice mass to the eavironment is generally ignored.

To date a realistic rational formulation of ice flow problems is still
hampered by uncertainities in boundary and body flow conditions. For often
there is only limited knowledge about the basal geometry; moreover, even if
the geometry is known, it is not clear what mechanical or thermal boundary
conditions should apply at the base. Second, ice in glaciers consists of
clustered randomly oriented hexagonal ice crystals which have grown from
snow by transformation processes through compaction under various stress
states and thermal conditions. If one therefore assumes creep flow to be
describable by an isotropic fluid model, this amounts to important simplifi-
cations, which often are found to be only qualitatively correct. Finally,
uncertainities arise because 1t 1s very difficult to measure the quantities
responsible for the driving of the system; these are accumulation due to snow
fall, ablation due to melting and the geothermal heat.

Conceptually, glaciers and ice sheets are similar physical objects. They
are usually grounded, but frequently they extend into the ocean or lake, and
then they are referred to as a shelf. Distinction between glaciers and ice
sheets is largely one of size, see Table 1 for scales, but typically glaciers are
situated on a bed with non-negligible mean inclination; they flow in one
direction, the downhill direction, and possess no ice divide. By contrast, ice
sheets may often be assumed to lie on a horizontal bed; they have summits
from which the ice flows in all directions. Such summits therefore act as ice
divides. '

Furthermore, glaciers are often confined to valleys; their flow 1s one-

Table |
Typical scales
glacier ice sheet
lenght 10--50 km 1000 km
depth 100-400 m 100-4000 m
celerity 100 m/a a [ew cm/a
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dimensional, and typical non-surging velocitics are in the order of 100 m/a.
Only rearly and when the glacier is going through a surging state are the
celerities an order of magnitude larger. By contrast, ice sheets spread in two
dimensions: their extent is in the order of 1000 km, and ice celerities are
smaller, from a few centimeters per year to several meters per year, depend-
ing on geometrical and thermal conditions. The description of such broad a
spectrum of physical conditions depends on a varicty of parameters, and it is
theoretically desirable that a single mathematical model is capable of explain-
ing all pertinent velocity scales.

In order to arrive al 2 mathematical description of ice How in large ice
masses that allows a quanttative exploration, one must {ocus attentiocn on a
sufficiently simplified modei Local phenemena both in space and time. which
manifest Lhemselves 1 stress concentrations, crevasse formation ete., must be
ignored. Time scales of relevance are years and not seconds, and this implics
that seismic waves will net be ceovered. Excluston of such phenomena
delimits the aplication of the mathematical model. but it will be shown that
even with such restriction the mathematical sotutions ¢l physically relevant
problems will be very diflicult.

Books and reviews on the topic treated in these lectures are by Colbeck
(1980), Hutter (1982, 1983), Lliboutry (1964, 1965. 1971), Paterson (1981) and
Shumskiy (1969). Paterson’s book is a good introduction into the physics of
glaciers, Hutter’s work is more mathematical.

In what follows we shall use symbolic and Cartesian tensor notation
interchangingly. Olten, restriction will be made to plane low. The Cartesian
axes are then denoted by x and y, respectively; x will be measured parallel to
a mean basul direction approximalely coinciding with the forward velocity
direction. Figure | is a sketch of an ice sheet or glacier with a grounded and
floating portion.
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Fig. 1. Geometry of an ice sheet with grounded and (loating portion {schematic)
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2. Field equations and boundary conditions

The mathematical formulation of mechantcal and thermodynamical state-
ments for large icc masses are complicated by the fact that glaciers and ice
sheets are in general polythermal: 1.e., they constitute two zones, “cold” and
“temperate”, in which the ice is respectively below and at the melting point.
In the cold zone heat generated by internal friction will affect the terhpera-
ture distribution, and the latter in turn will influence the motion. In the
temperate zone, on the other hand, frictional heat will melt some ice. Hence,
whereas for cold glaciers a fAuid model of a heat conducting viscous body
may be an appropriate thermomechanical model, such cannot be for temper-
ate ice whose description must bear some notion of a binary mixture of ice
with percolating or trapped water. In a polythermal ice mass there are
therefore four dilferent boundaries (see Fig. 1), namely the base y = yg(x), the
free surface y = yg(x, 1), the ice-water interface at the floating portions, y
= yw(x, t), and finally, the transition surface between cold and temperate ice,
Yy =yulx, 1)

It is our goal to formulate, firstly, the field equations in the cold and
temperate portions of the ice mass and secondly, to establish suitable
boundary conditions for the four different bounding surfaces. Clearly, exist-
ence of cold and tempcrate subregions in the entire ice mass complicates the
formulation. In the cold zone energy balance serves as an evolution equation
for temperature and forms a crucial physical statement. In the temperate
zone, on the other hand, energy balance is not as crucial except that
production of internal energy governs the mass production of the constitu-
ents ice and water. Here it is the balance of mass of water, which replaces the
energy equation. Further, the separating surface between cold and temperate
icc in non-material, in general, and thus capable of propagating at its own
speed. Depending on the thermal conditions, such surfaces may be created or
annihilated. Strictly speaking, the remaining boundary surfaces are also non-
material. For instance, at the free surface ice is added or subtracted by
accumulation and surface ablation, respectively; a similar statement also
holds for the ice-water interface where melting and freezing may occur
depending on the thermal conditions in the ice and the ocean. To date, no
clear formulation of this difficult boundary value problem exists, and we give
an attempt ol its derivation.

a) Body flow

a) Cold ice region. The common continuum mechanical model adop-
ted for cold ice is a non-Newtonian, viscous, heat conducting, incompressible
fluid. The field equation are therefore

divu=0,
(2.1 eu = —grad p+div ¢ + g,
of = tr(¢ D)—div gq,
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and express local balance of mass, momentum and internal energy. In the
above, u is the velocity vector, ¢ the density of ice, p pressure, ' symmetric
Cauchy stress deviator, g vector of external forces, ¢ internal energy, q heat
flux vector and D = sym grad u the stretching tensor. In the subsequent
analysis total stress will always be denoted by ¢ without an accent, thus
t=1t—pl.

The balance laws (2.1) are complemented by constitutive relations for
the rate of internal heat, heat flux and stress. Thermodynamic considerations
then permit the deduction of the most general admissible constitutive rela-
tionships for the class of non-Newtonian fiuids considered here, but for flow
of large ice masses these are further reduced and simplified. The laws common-
ly adopted are

¢ =¢c, T [or gc = ge(Ty)+oc,(T— Ty)],
(2.2) q=—xgrad T,
D=A(T) )T, o =3tr £

in which T is Kelvin temperature, T; a reference temperature. ¢, specific heat
at constant pressure and » the heat conductivity of ice. Further, f is a creep
response function, assumed to depend on the second stress-deviator invariant
i;; and A is a rate factor, which depends on temperature only. In view of the
small temperature range occuring in this geophysical approximation a con-
stant specific heat and a linear Fourier-type heat conduction law are suf-
ficiently accurate. The constitutive relationship relating stress deviator, and
stretching is solved for D as a function of ¢. It is a special case of the more
general Reiner-Rivlin type constitutive law

(2.3) D= -3g(ty, thy. Dy 1+ (=) +g(—)¢t?

in which 1 is the identity tensor, and ¢;, and f;,, denote the second and third
invariants of the stress deviator f. It is known that in non-circular channels
the constitutive relationship of the form (2.3) gives rise to secondary flow
unless §(-) =0 and f (') does not depend on t;;. Observations of valley
glaciers do not provide any clue as to the existence of such secondary Aow,
(side and middle moraines do not spread horizontally). Provided that the
constitutive relationship (2.3) rcasonably models ice flow under creeping
motion, it is therefore justified to set g(-) = 0 and to ignore a depencence of
f(-) on ty,. This brings us back to the law (2.2);. For time scales which are
in the order of years, Equation (2.2); is sufficiently accurate, see Hutter
(1982, 1983), Morland and Spring (1982). The crucial material parameters
are therefore f(-) and A. There is a considerable literature on the creep
response function f(-) (see Glen (1955); Hawkes and Mellor (1972); Hobbs
(1974); Mellor (1980); Michel (1979); Steinemann (1958)). Classically, f(x?)
= |x|"~ " with n =1, 7 — 4, depending on stress range; this power law is
called Glern’s flow law but is better known among metallurgists as Norton’s
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law, (1929). The slope singularity of the power law, d [ f(x?)x])/dx -~ x as x
—{, causes unwanted singularitiecs in many significant boundary value
problems. This is one reason, the other being experimental evidence, that the
power law is abandoned and a creep response function with finite slope at
the origin is used. Polynomials (Meier (1960): Lliboutry (1969); Colbeck and
Evans (1973)) and hyperbolic sines (Barnes et al. (1971); Assur (1980): Hutter
(1980a, b)) have becn suggested. Hutter (1980a) and Thompson (1979) use the
simplest possible polynomial extension.

(2.4) f(x)y=xi""2 ¢

accounting for quasi-Newtonian behavior at low stresses, [ having the
dimension of the inverse of a viscosity.

The other important parameter in the stress-stretching law is the rate
factor A. Usual functional relationships are ot the Arrhenius-type, see Hobbs
(1974),

Q"
2.5 A=A ex (-)
(2.5) A exp KT,
where Q is activation energy, k Boltzmann’s constant and 4 a constant. It is
through this factor that a significant thermomechanical coupling occurs.
When the above constitutive relations are substituted into the balance
laws (2.2) the ficld equations for the unknown ficlds w and T in the cold

portion of the icc mass are obtained. For instance, the energy c¢quation reads
(2.6) 0¢, T =% T+ 2A(T) f () -

The second term on lhe right hand side i1s the dissiparion, often called strain
heating. When (2.6) is viewed as a balance equation for internal energy this
term must be interpreted as the inrernal eneryy production.

f) Temperate ice region. Temperate ice is defined to be ar melting,
T = T,,. When such ice is subject to deformation, heat generated by viscous
deformation cannot simply give rise to temperature changes, because tem-
perature will be governed by the Claususs- Clapeyron equation. Most frictional
heat produced by the ice will be used up by melting, implying that in the
temperate zonc therc is not just temperate ice but a binary mixture of ice
and molten water. A proper descripiion must take account of this two phase
character of the matenal, but, of course, since the ice-water ratio 1s very
large, a mixture concept, in which the water content is treated as a tracer
may adequately describe the processes in the temperate region. Further, at
first glance an energy balance statement is not important cither becausc the
melting temperature of the mixture as a whole may be related to the total
pressure.

An adequate mixture concept is thercfore one with two mass balance
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equations for the mixture as whole and for constituent water, but only one
balance equation of momentum for the total mixture. If, furthermore, it is
assumed that all energy production in the mixture is instantly used up by
melting, energy production and mass production can easily be interrelated
with the aid of the latent heat of fusion.

It follows from general mixture theory (see article by I. Miiller in this
volume) that the blance equations of momentum and energy for the mixture
as a whole have the form (2.1), 3, whereby all quantities are now those of the
mixture. In particular, ¢ is total density, and the dot signifies total derivative
with respect to the baryceniric velocity,

(2.7) f= *(?—’-*—grad_/'-u‘
o

Balance of mass needs special consideration. To this end let g, and wu,

{x = 1. 2) be the constituent densities and velocities, respectively, and define.
as usual, total density and barycentric velocity as ¢ = ZQ, and ou = ZQI u.

x x
Then, a straightforward calculation shows that the balunce laws of mass

-
e

rdivig ) =€,  YE=0 (z=12)

z

(2.8)

2

T

-

for the constituents, in which &, are the constituent mass productions, can be
written in the following [orm:

ow, = —div j,+mn,,
(2.9) Jo = @, (i —u),
n, =€, —w, divu—m,(9+grad ¢ (v —u)),

where w, = 0,/o is the mass fraction of constituent a and w*—u is the
diffusion velocity. More convenient than working with two equations of the
type (2.9), is to use balance of mass for the mixture and that for constituent
water. This then yields

(2.10) 0+odivu=0,

o» = —div j+n (for constituent water).

Here and henceforth the subscript in the mass balance equation for constitu-
ent water will be deleted as the constituent water will always be ment. The
quantity o is then frequently referred to as moisture content.

A mixture is called incompressible when ¢ = 0. Such an assumption
simplifies the expression for n,, but does still not imply n, = €,, see (2.9);. In
order that such an indentity can hold the density must also be uniform. With
these preliminary considerations we are now in a position to define the field
equations that govern creep of ice in the temperate zone. The model that will
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be adopted is a binary incompressible mixture with uniform density for which
balance of mass and momentum reduce to the equations

div u =0,
(2.11) ou = —grad p+div t + gg,
ey = —div j,+C,.

These balance laws must be complemented by constitutive relationships for
the diffusive flux vector j,, mass production ¢, and stress deviator t'. As far
as diffusive mass flux is concerned it is most natural to postulate a Fick-type
constitutive relationship, j,= —v grad @, with a constant diffusivity v.
Considering the earlier assumption that all internal energy production of the
mixture is used up by melting we have €, = tr(¢ D)/L, where L is latent heat
of fusion per unit volume of the mixture. It remains to establish a constitutive
relationship for stress deviator, which is assumed in the form (2.2);, where A
now depends on moisture content rather than on temperature. Finally
pressure and melting temperature are related to each other by the lincarized
Clausius--Clapeyron-equation, dTldp = —¢,.

In summary, the constitutive relations completing the balance laws (2.11)
are(!)

(212) €, =tu(WDYL, j,=-vgradw, D=A)f()r.

Comparing equations (2.1) and (2.2) which are valid for cold ice with (2.11)
and (2.12), it is seen that, structurally, they are the same equations with the
same type of couplings. The continuity equation and the momentum equa-
tions are coupled with an equation for a “state variable™, temperature T and
moisture content ., respectively. Physically this equation is the energy
equation or the balance of mass for the water, but mathematically both
equations are ol parabolic or diffusion type.

Practically there is nothing known about numerical values of the
diffusivity v; except for qualitative considerations saying that v is small. Also,
only incomplete knowledge exists about the function A(w) see, however,
Lliboutry (1976). Most practicioners therefore assume 4 constant value for A,
achieving thereby a decoupling of the purely mechanical field equations [rom
the diffusion equation.

As stated before the energy equation need not be considered in the
temperate ice region, since temperature T, follows from the Clausius-
Clapeyron equation. Later we shall use an expression [or the heat flux vector

(") We may, of course also include a temperaturc or pressire dependency in the rate factor
A; thus more generally 4 = 4(w, T,,).
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in the temperate region. On the basis of a Fourier-type constitutive relation
one obtains

dT
(2.13) g=—xgrad T = —xgl; grad p = xc, grad p,
» being the heat conductivity of the mixture.

b) Boundary conditions. The boundary surfaces (see Figure 1) y = ys,
y = yg, ¥y = yw and y = y,, are not material, in general; they must therefore
be regarded as surfaces of discontinuity. At such surfaces it is assumed that
physical quantities may suffer a finite jump. In other words, whereas all
quantities are assumed to be sufficiently differentiable in the regions on either
side of the surface, this assumption is weakened when the surface is crossed.
Given the balance law

d
0 J¢du = §¢¢‘nda+fn¢dv+ jsd,dv

v v v ¥

holding for the material domain v with boundary dv (unit outward normal
vector n, see Figure 2) it is shown in texts on continuum mechanics that the

a) b)
av- A

v+

E-—»=(

Fig. 2. a) Body volume separated inlo two parts v* and v~ by a surfiuce & at which fields
may suller a finite jump. b) Small “pillbox™-like part of a body enclosing singularity surface,
explaining jump conditions

following jump condition must hold at the surface of discontinuity .%° moving
with normal speed v-n:

(2.14) 1P n]— [P (u—v)'n] =0.

Here the bracket stands for the difference ]]d)ﬂ =¢* " —¢ ,and ¢ * denote the
values of ¢ as the surface is approached from the positive (v*) and the
negative (v7) side of the surface, respectively. On materiual surfaces(') u = v

(') v'm is the normal speed, the singular surface is moving with.
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and the second term of (2.14) vanishes. Balance ol mass, momentum, energy
and entropy obey relations of the form (2.14) and can be written as(!)

letu—v)-n] =0,

in hl F .

lt-nj— ou(u—r)-nj=0,

(2.15) lu-t—q)-n]—To(e+3u* M u—v)-nl =0,
ﬂq;'ﬂﬂwﬂu—v»nﬂ =0,

in which # is entropy. The [irst of these equations determines the mass flux
from v~ into v*. Notice that when u = v, then ./ is material. On the other
hand a : =(u” —0v7 ) n s the volume flux through the surface, so that (2.15),
may also be written as

0 (u—v) 'm=9 a, =9 (u—v)" "n.

=

The diffusion equation for the moisture content (2.11); is also a local
balance equation which can be put into the form (2.13). Its corresponding
jump condition has the form

(2.16) lin]+iowu—v)n] =0

where & is the surface production of w.

Before we proceed we define a surface of phase change as a singular
surface at which the temperature is continuous. Thus, TT] = 0, characterizing
a diathermic wall. For such surfaces jump of energy and entropy can be put
into a different form, see Hutter (1983), namely (%)

al=1 lo u,,
(2.17a) lawn] = Je .
la-n] = —Tlnle"a,
where the exact form of the term [ ] on the right hand side of the first
equation 15 of no relevance here because it can be eliminated. By definition

the latent heat of fusion is given by L = TIy], so that from either one of
equations (2.17a) we obtain

(2.17b) lg-n]=1L¢ a, (on a surface of phase change)

This is a very appealing form of the energy jump.

() One additional and essential assumption in deriving (2.14) and in deducing (2.15) is
that there is no surface production term. It is thus assumed that the singularity surfaces are such
that neither mass, nor momentum, nor energy, nor entropy is producted. If there would be a
surface production the night hand side of equation (2.14) would carry Lhis surface production
lterm.

(*) Usual definitions of surfaces of phase change also have continuous tangential velocities.
This is, however, not essential for (2.17) to be valid.
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The above statements are of dynamic nature. However, for every moving
surface there is also a kinemaiic statement, Il S(x, 1) = 0 is the equation of
such an orientable surface, and this surface 1s material, it is known that dS/dr
= 0 represents this kinematic statement and forms an evolution equation for
S. For a non-material surface dS/dt cannot vanish, as there must be a mass
flux through the surface. However, the derivative of S following the surface
must vanish, implying that

) . éS _ _
A +grad S-v = T{+grad S-u+grad S(v—w)™ =0
& C
or
dsS\~ _ _
(2.18) ;,;) — —grad S-(v—w)" = llgrad S||((u—1v)" -n)
= |[grad S[ja,.

where n = grad §S/||grad S|| points into the positive side v* (thus defining the
sign of S(-)). Here the superscript (—) is important as the formula would
change, if it would be referred to quantities on the right side of the surface of
discontinuity.

Consider, for instance plane flow with § = yg(x, 1)—y = 0. In this case
(2.18) has the form

dvs | Ovs _ avs \’
(219) a—rs'-f-ﬁ—_:llx —u, Z\ﬁﬁ"(?:—) a, =4,

where 4 is the volume flux through the surface per unit lenght in the x-
direction and u; and wu, are the velocity components in the x- and y-
direction, respectively. Finally, note that if X(x, r) =0 is an identity for a
physical quantity which must hold on the singularity surface, then an
equation of the form (2.18) will also hold for 2. This will be used later.

With the above preliminary derivations presentation of boundary con-
ditions is straightforward. Two types of conditions must be considered, the
kinematic and the dynamic conditions, and these must be established for
both, cold and temperate ice.

a) At the free surfuce. Because of accumulation (nourishment due to
snowing) and ablation (wastage due to surface melting the [ree surface is
non-material, implying that the jump conditions (2.15) (2.17) and the kin-
ematic surface equation (2.18) or (2.19) apply.

Letting the ice region be v~ and the atmospheric side be v* the above
mentioned equations yield

]

S
(2.20) -Eér—s+grad Se-u” =|grad Sgl¢, on  Ss(x.0=0
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as kinematic equation in which ¢, is, in general a prescribed function of
position and time, and for a cold boundary

(2.21a)
Tt-n) = Tul o™ a,

i

E‘I'"B = —QITC(TO)"‘C,;(T— To)‘*‘%.llzﬁ"_ al"’ﬁ“?i' wontu @ ay

-

as jump conditions of momentum and energy. For the derivation of these
equations no simplifying assumptions have yet been invoked. As evident,
neither traction nor normal heat flux are continuous. Both are affected by the
accumulation function and the jump in velocity. We have already seen in
(2.15), that a, # 0 implies {u-n] # 0 and therefore [u] # 0. The physical
interpretation of (2.21), is that the jump of traction equals the product of
velocity jump and mass flux. On the other hand, (2.21), states that heat flux
normal to the boundary is balanced by atmospheric heat flux, a diffusive flux
of internal and kinetic energy and a term which can be interpreted as a
power due to diffusive momentum flux. In practice the terms on the right
hand side of (2.21) are ignored so that

(2.21b) [r'nj] ~ 0, ﬁqnﬁ ~0

is obtained.

In glacier and ice sheet problems the first of these i1s the stress free
condition. The second condition is often the result of a boundary value
problem for which on the surface T = T; and a, > 0 are prescribed functions
of position and time. On a temperate [ree surface T = Tg = T),, and «, can
be related to the heat flux. For the remperate free surface is a surface of
phase change at which (2.20) and (2.21), are still valid; (2.21),, however, must
be replaced by (2.17), or

(2.22) lg-n] = —oLu,,

relating energy jump and ablation rate with latent heat. Furthermore, the
jump condition of moisture (2.16) must hold, which reads

(2.23) (j-n] = ewa, +&

where the flux j© -n is assumed known from measurements of total melting
rate and surface discharge. Expected values for j* -n arc negative.

There are no physical arguments that would support the assumption of
a non-zero moisture production at the free surface. Hence we set @ = 0 and
thus obtain the mixed type boundary condition

(2.24) j ntowa, =j* -n,

valid at the temperate free surface. Quantities not carrying an index (—) are
- those on the ice side. This convention will be observed throughout.
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In summary, at a cold free surface (2.20) and (2.21) must hold, whereas
for a temperate free surface (2.21), 1s replaced by (2.24). Here (2.22) also
serves to the climatologist as an equation in obtaining ablation rates from an
energy budget.

p) Along the ice-water interface. Conceptually this surface 1s not much
different from the free surface as it separates again two fluids. Since melting
and freezing may occur the ice-water interface is also nonmaterial, but such
that [T] = 0.

Let Sy (x, t) =0 be the equation of the surface, then

S
225) 2% Lorad Syu=|grad Syllak  on  Sy(x,H=0

at

is the kinematic surface equation, where ay is the melting-freezing rate which
is positive for [reezing.

With the same simplifying assumptions as in the last section the jump
conditions of momentum and energy for cold and temperate ice are

(2.26) Te-a] =0 and  [q-n] = —¢Lay,

where it is assumed that traction and energy flux on the water side are
known. Typically,

(227) (t'n)waler = —Dult,
(q ) n)waler = h( rce - T\:valcr)’

in which h is a heat transfer coefficient whose value depends on the flow
conditions within the boundary layer beneath the ice. With Nusselt-, Prandtl-
and Reynolds-numbers defined as

N pz(ﬁ) , R=(,U_x) )
x x witer v water

such relations are of the form
(2.28) N = aP*R”,

(a, 2, B) being constants whose values depend on the flow nature (laminar
versus turbulent) of the boundary layer current, see Schlichting (1978). Note
that when T, = Ty, where Ty, i1s melting temperature, melting must occur,
aj, < 0; alternatively, when T, = T... < T, one has freezing, ai > 0. In the

interval T, < T.. < Ty, the ice is adjusting its temperature to the energy

(") U is the ocean current below the boundary layer, x fetch, v viscosity, ¢, specific heat, g
density and x heat conductivity, all for water at its given salinity.

19 — Banach Center Pubheations 15
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budgct: there is neither melting nor freezing, aj = 0. In summary, the
thermal boundary condition at the ice-water interface has the form

-4 '"lT water’ a'Ji, > 0'
(2.29) Loay = <0 =T, —T,.)—q nir,, ay =0,

h(TM— n-zllcr)_q. aniuc_ ’Thf' alJl-’ < 0.

T

ice

Evidently, either temperature is prescribed and then (2.29) relates the heat
flux on the ice side normal to the interface to the freezing or melting rate, or
else ajy =0 is known, and then the temperature on the ice side and its
normal derivative are related to the (given) water temperature.

The assumption in the above was that the ice at the lower boundary is
cold, or just reaches the melting point. This requires that T, < Ty,. When
T.... > Ty, there is a layer of temperate ice close to the ice-water interface.
In that case only (2.29), applics, but g-n is negligibly small; thus the heat
transfer law determines the melting rate in this case. The jump condition for
moisture (2.16) becomes [j-n] = —[w]aj provided that there is no surface
moisture production. Since on the water side we must have w = 1 through-
out, whence j =0, the boundary condition of moisture at the ice water
interface must be

(2.30) jn—ol-w)ay =0  (on the ice side).

This completes the boundary conditions for the ice water interface.

¥) Along the cold-temperate transition surface. A complete description
of polythermal glaciers must also include transition conditions at inner
surfaces where cold ice reaches the melting point. Let S, (x, 1) =0 be the
equation of this surface. As a surface of phase change, it is non-material and
thus the same jump conditions as before apply with [T] = 0. Let v~ be the
cold ice zone and v* the corresponding temperate zone. Hence, transition
conditions are

[T] =0, [u—(u-m)n] =0,
(2.31) le-n] =lue” i = 0.
lg'n] = —Lo™ aj,
li-n]+[w)e ay =a.
The first two equations are the conditions which must hold at a surface of
phase change when there is no jump in tangential velocity, the remaining
three conditions are the momentum, energy ans moisture jump conditions on

such surfaces. With @ = 0, which seems to be a natural assumption, (2.31); 4
can be combined as

lq-n] =[[—wL—]][D"n]]s
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relating energy jump, moisture jump and moisture flux. Since @~ =0 and

j~ =0 one has
+ - L . +
(2.32) (g:m)" —(gm)" =—(n)",

where (+) stand for the temperate and cold ice regions, respectively. (g -n)*
can be expressed by the pressure gradient, if the relation (2.13) is adopted.
Alternatively this flux is very small and can safely be ignored.

The above dynamic conditions must be complemented by kinematic
conditions. A first is

dSy\~ OSy
. = +grad S,,-u* = ||grad Syl a;
and forms the usual kinematic surface condition. Further conditions can be
deduced from any function f(x,t) which is continuous and satisfies the

condition f = constant on S, = 0. Such a statement holds for temperature,
T-Ty =0, so that

d(T—Ty)

(2.34) ( 1

) = llgrad (T— Ty)l| a
with dT,,/dp = —c,. Notice that an equation of the form (2.34) is necessary as
with (2.31)2.33) aj; is still undetermined; (2.34) is its defining equation.

We mention that Fowler and Larson (1978) have established a theory of
polythermal ice with the same field equations except that they ignore j in
the moisture balance equation and omit (2.34).

These authors also require at the cold-temperate transition surface that
apart from (2.31),,,3 also @™ =0 and [q-n] =0 must hold. It is evident
from (2.31), that these transition conditions contradict continuum mechan-
ical principles. Further, notice that with w* =0, Equation (2.32) becomes
singular and therefore meaningless. In this case the last two equations (2.31)
uncouple. Thus, a second set of possible boundary conditions is

[T] =0, [e~(u-n)n] =0, [w] =0,

(2.35) [#-a] = 0.
la-n] = —Le™ ay,
[i-n] = &,

with T = T,, and w* = 0. Moreover, the kinematic conditions (2.33), (2.34)
must hold, and a further condition would be

(2.36) (‘;—(:’) = |lgrad wl| ax.
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This system is, clearly, overdetermined even if (2.36) is interpreted as an
evolutionary equation for the non-vanishing moisture production @. For
because thc temperature and moisture field equations are parabolic, it must
follow from (2.35) that |g-n] and [j-nj cannot be simultancously prescribed.
Transition conditions with @ = 0 are therefore wrong.

&) At the buse. Physically the boundary conditions at the base are the
least understood of all. Depending on whether the glacier i1s cold or
temperate, different boundary conditions apply. On the cold portion it is
assumed that the ice udheres to the rock bed. Hence the no-slip condition
applies and there is no jump of momentum and heat flux,

On a rigid bed this implies
(2.38) u=0, g n+Q="=0,

where Q" is the geothermal heat flow into the ice. A jump condition for ¢
needs not be written down as basal traction can be determined from (2.37),.

Strictly, equations (2.37) and (2.38) are correct only on the true hasal
surface. This true surface is, however, never known, since one has usually no
information about the roughness on all scales. Neither is it important that
the true surface be known, since sufficiently far distant from a small
boundary layer the flow will not feel the small scale undulations. Let Sg(x, 1)
=0 be the mean basal surface on which small scale roughness is smoothed
out, see Figure 3. The question then arises what the correct boundary

OUTER FLOW REGION

—

ACTUAL FORM

OF y,(x] '

CITEA TS

SMOOTHED FORM=3my o~
OF y, [x)

Fig. 3. lce-rock bed, its actual and smoothed-out forms, explaining sliding friction

conditions should be on this mean surface in order that on the true surface
the conditions (2.37) and (2.38) apply. An exact solution of this problem is
not possible, as boundary conditions on the mean surface can approximate
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those on the true surface only in some asymptotic sense. The problem is one
of matched asymptotic expansions. Indeed, boundary layer theory shows that
to lowest order, equations (2.38) are asymptotically correct if the base is rigid
and the ice adheres to it.

Consider now that portion of the base where the ice is temperate. Here
the heat generated by deformation causes melting giving rise to the existence
of a layer of water separating ice sole and ice bed. Often this layer is just a
few microns thick and acts as a lubricant with negligible film thickness; its
effect is to change the boundary condition from no-slip to sliding. On the
true surface and for an ideal lubricant this sliding is frictionless. The
boundary condition at the mean surface is, however, a viscous sliding law, as
the outer flow far from the base feels the inner flow as a viscous drag whose
form and magnitude will depend on the roughness of the bed. When
sufficient water is available, ice sole and rock bed may separate causing the
glacier to become partly afloat. Water filled cavities are formed reducing
thereby the frictional resistance. Sliding with and without cavity formation
characterize therefore two types of boundary conditions that can apply at the
base, and the form of the boundary condition that applies must depend on
the type of sliding that applies.

The derivation of the frictional law is a matter of regelation physics.
Here we simply mention that it amounts to establishing a relationship
between sliding velocity and basal traction. Clearly the derivation of the
remaining boundary conditions must follow similar lines, but this has never
been done to my knowledge. For the purposes of this paper we therelore
assume the mean rock bed, Sz = 0, to be a rigid singular surface along which
the ice is sliding, and we explore the inferences which follow from the jump
conditions. To this end it should be ‘observed that because sliding is
permitted the basal surface does not fulfill the usual conditions of a surface
of phase change(!), but the occurrence of sliding at the basal boundary was
reason for us to define here a surface of phase change as a singularity surface
with no temperature jump.

With u™ =0 it is an easy exercise to derive from (2.152.17) the
following jump conditions

]
(u-n)” =@a$,
Y
(2.39) [t'n] = —u o az,

lg-n] = —Lo as,
[i-n)+[w]e” a5 = 0;

(') Such surfaces are defined as singular surfaces for which | T|j = 0 and Ju,| = 0 where u,
is the tangential velocity.
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in which surlace moisture production has been set to zero, and (+) and (—)
stand for rock and ice, respectively. The first of these relates melting rate to
normal velocity and the second the traction at the rock to the stress at the
ice sole.

It remains to derive the shding law. To this end let

(2.40) t*=t—(nt'n)l =f—(ntnl

be the tensor whose associated vector t*-n is tangential to the mean basal
surface S; = 0. A viscous sliding law which is compatible with the kinema-
tic condition of the bed must have a form

(2.41) u= —F((t* n)? )r*- n+[[ ]

where F i1s a scalar valued function, which depends upon shear traction
vector and other quantities characterizing the sliding, as e.g. w, p, T, etc. The
term on the right-hand side involving ag is added, because the sliding law
must satisfy (2.39),.

Very little 1s known about the function F. For sliding without cavity
formation F(x) = Cx"™ "2 with C and m depending on the roughness of
the bed and on the creep response function, see Lliboutry (1979), Weertmann
(1979). For sliding with cavity formation rigorous derivations of functional
relationships for F do not exist, but the work of Lliboutry (1979) suggests
that F may become multi-valued, or at least singular, see Figure 4, thus
giving rise to a run-away instability.(')

a) b) c)
UA u 4\ u ‘\

T

T T

Fig. 4. Sliding velocity as a function of basal shear traction. a) Regular “Weertmann-type”
sliding law. b) Sliding law with a range of basal traction for which u is multi-valued. ¢) For a
critical value of shear traction sliding velocity grows fast

Note that the law (2.41) includes both the no-slip and the viscous sliding
boundary conditions. When crossing the transition point “cold-temperate”,
see Figure 1, F must drop from a finite value to zero. This can be achieved

(') A rigorous treatment of sliding without cavity lormation is given by Fowler (1981).
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in various different ways yielding substantially different results (see Fowler
and Larson (1978), Hutter and Olunloyo (1981a, (1981b)).

In summary, the boundary conditions at the base of a temperate ice
region are (2.39) and (2.41). In practical applications they are further simpli-
fied. For the normal velocity is much smaller than the tangential velocity and
the impulsive term ¢~ u~ ay may also be ignored in the boundary condition
of stress. Further, geothermal heat is much larger than the conductive heat
flux in the ice. (2.39) and (2.41) are therefore generally used in the simplified
form

. = = — * .12 LYk
(242) [t-n] =0, u F((¢*-n)?, zt n,
B = )

Qgculh = LQa;-a [[jn]] + [J:w]] oa 0

where (j-n),,, is the moisture flux into the rock and w,, is the moisture
content on the rock side, both assumed as known.

3. Dimensionless variables

The non-dimensionalization of the basic problem involves the finding of
typical dimensional quantities to serve as scaling factors for the various
dimensional variables in the problem. We shall now restric considerations to
plane flow; and shall further only treat wholly cold ice regions in which the
base may just reach the melting point. Boundary value problems for po-
lythermal ice masses have not been attacked so far. The problems illustrated
here however serve as a guide-line for further studies. Non-dimensional
variables will be introduced as follows

D
(x,y) = D(x, y) t = —1,

U
3.1) (Lxxs Lys Ly, P) = 09DIay, T/, 0}, P),
(u, v, a) = U(u, v, a),
T=T,+T1,9
in which
D = typical depth, 100-500 m,
(32) U = typical forward speed, 100 m/a,

T, = [reezing temperature at atmospheric pressure,
T, = typical temperature range, 20°C.

With the choice (3.2) non-dimensional variables have order unity, except
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those for shear stress and accumulation rate, which are smaller. Substituting
(3.1) into (2.1) and (2.2) yields
divu=0,
Fu= —grad p+dive'+g,
D =G exp(AO)f(ay)a,
3 = DF? 3+ 2Ef(a;) 0},

(3.3)

where operators are with respect to dimenstonless (x, y, t). In (3.3)

1+2Z f(e*g*D*x)
= — 9, =1 t ! 2, = v -
1+7Z9 on =73tr(e) () f(0?g®> D?

and Roman letters are dimensionless characteristic quantities defined as
follows.

T,
Z= _TB = 0(107') (temperature ratio),
s
UZ
F= D < 107% (Froude number),
g

D _
G=_-Aexp (—Q)Qng(ngz D?) (Glen number),

U kT

0 Z .
A=—=—"_-0() (Arrh

KTT 1+ Z O(1) (Arrhenius number),
D= <1072 (thermal diffusion number),

ocDU

gD _ .
E = T <10° " (energy dissipation number).

0

The names given to these are only suggestions and are not commonly
used. We have also assigned orders of magnitudes, which are obtained when
typical values for the characteristic parameters and for the physical constants
are substituted. These suggest that acceleration terms may safely be ignored
in (3.3); and show in the energy equation that dissipation may be an
important term, perhaps more important than the conduction term. This
latter term can not be ignored, however, because it would change the energy
equation from parabolic to hyperbolic causing inconsistencies with boundary
conditions. To the Glen number no value has been assigned above. This
number depends inversely on the forward velocity and must therefore be
large for flat ice sheets, but smaller for steep glaciers. Typically, G = 0(10?)
or large for ice sheets, but G < 0(10") for glaciers. This difference in order of
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magnitude of G for the two types of large ice masses will result in different
asymptotic solution procedures, one allowing for ice divides, the other not.

In what follows attention will be limited to grounded, cold ice sheets.
For these the boundary conditions at the base Sy = 0, read

u= —F(6*n? )a*-n, u'n=0,
34 o3
(34) i — Qpeomn> when heat flux is prescribed

and at the free surface Sg =

oS
T’s+grad Scu = |lgrad S| a3,

(3.5) on=—p""n,

J =9, when temperature 15 prescribed.

In these expressions .% () is dimensionless sliding law, # = F/U, and Q,,, a
given dimensionless geothermal heat flow. Similarly, all other quantities are
dimenstonless. The accumulation ablation rate function ag has orders of
magnitudes of transverse dimensionless ice velocities and is O(107!), or
smaller. But it is an important quantity responsible for ice sheet or glacier
geometry.

In (3.4), the sliding law has been written for temperate ice (ignoring the
term involving agz) although attention is focussed on cold ice. The point is
that .# (-) may either be the zero function, or else the base may just reach
the melting temperature, thus allowing shding. In the following we shall
choose

(3.6) F (6% -n) = C[(6* n)*]™ V2,

with m = (n+1)/2 for Glen’s flow law. This is the Weertmann-type sliding
law.
From now on all variables will be dimensionless.

4. Simple solutions

In this section we seek exact solutions for the boundary value problem
formulated in Setion 3 in the limit F = 0. This is the Stokesian approxima-
tion and extremely accurate as F < 1078 so that lead order solutions need
not be perturbed.

We [ocus attention to plane flow and a strictly parallel sided ice slab so
that base and free surface are defined by y = yg(x) and y = ys(x, t), respect-
ively. Field equations and boundary conditions assume the following form:
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Field equations:

ou av_

PR
faﬁ+—a—r+sin =0
ox Jy =5
?i.pfagy——cos y=0,
ox &y
@4.1)
u ,
b* =131G exp(AB)f(oy)(o,.—0)),
X
u &
6—y+5—x = 2G exp (AO)f(ay) 7,
a3 a3 o9 2 Vol
E_*_ax u+ay v =DFP* 3+ 2E exp(Af) (o)) oy,

in which o, =%(6,—0,)* +12.
Boundary conditions:

dys Oy
(4.2) a:+ﬁfu—v=a§ on y=y=H
3 = s,
and
u=~Cit", v=0,
4.3) 9 on y=29_.

E = _Qgeolh’
This boundary value problem must also be complemented by initial

conditions. Let us seek a solution of (4.1)(4.3) for which all fields are x-

independent. The mechanical part of (4.1){4.3) has then the solution

T =sin y(H-y),
ay =0, = —COs -y(H_y)_p‘"“’
y
(4.4) u = C(sin yH)" +2G [exp(A0)f(t?)dx,
[H
v=20,

H() = [ad () dr,
0
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and the thermal problem reduces to

09

5 = DV? 3+ 2E exp(A0)f(o}) a1,
(4.5) 3 =9, on y = H(t),

09

H: = _Qgcmh’ on y= 0’

with initial condition 3(y, 0) = J,.

Several remarks are in order. First, within the constitutive class con-
sidered here stresses are materially independent. Shear stress is proportional
to depth and surface inclination provided that sin y ~tan y ~ 9. This is a
well-known formula in glaciology. Second, forward velocity consists of a
sliding and a gliding portion and both would be known, if the temperature
field across depth were known. Third, because shear stress does not change
sign and u is expressed in terms of this stress only, the forward velocity can
not change sign, restricting this solution to regions far from ice divides.
Fourth, transverse velocity must vanish, but in order that this solution is
consistent accumulation can at most vary with time. Then thickness will vary
with accumulation. Steady state conditions necessarily require ay = 0.

With known stress distribution, (4.5) is simpy a non-linear two point
boundary value problem for temperature, the nonlinearity arising from strain
heating. In steady state this boundary value problem was solved first by
Yuen and Schubert (1979). Once it is solved the u-velocity component can be
evaluated.

The easiest way to solve the steady state two-point boundary value
problem (4.5) is to assume basal temperature and geothermal heat flow as
prescribed quantities. Forward integration then fixes H with the condition 9
= Js. In a final step u(H) from (4.4) may then be calculated. One interesting
feature of the function u(H) is that there are thermal conditions for which
u(H) 1s multi-valued (tripple-valued), see Figure S. A linear instability ana-

A

u

H=
Fig. 5. Plot of forward surface speed against depth H
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lysis has not revealed a clue as to which of these solutions would apply, for
according to this instability analysis all solutions are stable. A non-linear
analysis might resolve this question but is very difficult and has never been
attacked so far. Another interesting result of the numerical solution of (4.5) 1s
that for almost all situations strain heating has a very small effect on the
temperature distribution across depth. Temperatures according to (4.5) are
thus nearly linearly distributed; this contradicts observation.

A more general solution of (4.1}-(4.3) should therefore be found. The
new assumption is that stresses and temperature are still x-independent but
that velocity components are allowed to vary with x. For simplicity steady
state is assumed. Equations (4.1), 3 still imply

(4.6) r=siny(H—y), @, = —cos y(H—y)—p"™,

¥

but o, # o, in view of (4.1),. The velocity field can be determined from
equations (4.1); 4 s which imply

8u+6v_0 (’Zu_o Pu +ﬁ"v_0
&x o ox ix? Mxdy  oxr
cdu v

-+ — 1s not a function of x.
dy  0x

From these, together with one basal boundary condition, and the kinematic

surface condition

1 L

as ds

4.7) u= Hx+h(y), v = H}
is obtained. Since du/dx = ag/H is non-zero the flow is extending and
compressing, depending on whether ag 2 0. In a glacier a§ > 0 in the upper
part, but ag <0 in the lower portion. Thus, a glacier is extending in the
upper accumulating part and compressing in the lower ablating part. This is
broadly corroborated.

The solution (4.7) is still incomplete. We shall not complete it because
the shding condition

a.L
u(0) = = x+h(0) = C(r)"
Lv——_l Nt
function of x independent ol x
makes an inconsistency explicit. Nevertheless, glaciologists accept the solution
and determine the temperature profile from the boundary value problem
al d8 d* 9
— 2y =D-—;+2E exp(AD)f(a}) 0],

H  d dy?
(4.8) d g

9

I = s, =H,
s, ony dy

_Qgcmh' on y = 03
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in which the stress deviator invariant can be determined by combining
equations (4.1), s:

L
(4.9) (‘E—)+exp(2A9) i2 (o) (sin y*(H—=y)*—ay) = 0.

Equation (4.8) is of convection-diffusion type, the convective term being the
new essential element as compared to the previous boundary value problem
(4.5). It has been mentioned before that strain heating does not affect, in
general, the temperature distribution. An approximate solution to (4.8) thus
is

H
) 1 fladl
(4]0) 9 = '95+ Qgeolh €Xp| —sgn (aS)i ﬁé déa

y

and temperature distribution is typically as shown in Figure 6b, c; profiles as
shown in Figure 6b are more realistic than solutions of (4.5), but do not yield

a) b) c) © o d)

Fig. 6. Skeich of temperature profile: a) when strain heating is ignored according to the

boundary value problem (4.5): b) with transverse advection. al >0 according to (4.10):

¢} same as b) but «y < 0; d) inversion profile (observed frequently) but not predictable by
(4.8)

inversion profiles as sketched in Figure 6d, which are frequently observed, see
Robin (1955).

Finally we mention that there is a physical situation for which a
solution of this type is consistent. This is an icé shelf, for which no sliding
law applies. Creep velocities at the lower boundary may then well be x-
dependent without violating any boundary condition, see Weertmann (1957),
Hutter and Willlams (1980).

We close this section by pointing out how the above solutions have
been or should be generalized. One physically important application is to
geometries of a nearly parallel-sided ice slab. Accordingly, the base is
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assumed to be nearly flat with small amplitudes about a mean bed with
inclination y. The question then arises, how the bottom undulations are
transferred to the top. An approximate solution of this problem using small
perturbation theory has been given by Hutter et al. (1981). On length scales
which are comparable to the ice sheet or glacier lenght the nearly paraliel
sided ice slab is not realistic, because surface geometry is only determined to
within small amplitude deviations from the parallel-sided slab. The solution
procedure that must be taken for such larger scales will be explained in the
next section. Here it suffices to point out a typical feature of the foregoing
solutions. Stresses and velocities were determined first, by assuming that the
temperature distribution is known, and the temperature was subsequently
determined in a second step. This procedure resulted in a mathematical
decoupling of the mechanical and thermal problems. Because observations
suggest that stresses and velocities depend on temperature but that exact
knowledge of the temperature distribution appears not to be vital, such
decoupling of the thermal and the mechanical problems can be achieved by
using temperature estimates in the solution of the mechanical boundary
value problem and iterating on temperature in the temperature problem. For
a detailed explanation of the procedure the reader is relerred to Hutter
(1983).

5. Singular perturbation solution technique

Slab problems are central zone analyses, not completed to the margins;
validity of their solutions is necessarily local. Our interest is now in solutions
on lenght scales comparable to the lenght of the glacier, and the surface
profile will be treated as an unknown. Complete solution of the boundary
value problem (4.1}{4.3) is difficult to find, however, so that approximate
solution procedures are sought.

Let L and D be length scales in the longitudinal and transverse
directions of the glacier, respectively. For most if not all glaciers and ice
sheets the aspect ratio D/L is small; furthermare, and except for localized
features, basal and surface profiles vary slowly with x. These observations
suggest that the so called shallow ice approximation may be introduced into
(4.1)H4.3) by the stretching transformations

(5.1 E=¢x, t=ea, V=— U=u, at=—,

where ¢ 1s a small positive number whose value is in the order of the aspect
ratio or of a representative surface slope. It will be demonstrated that ¢ can
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be related to G. Substituting (5.1) into (4.1) yields the new form of the

mechanical field equations

U v_o
o oy
%4- — +sin 0
& 66 a Y=Y
(5.2) aa%+%?-—cos y =0,
oU ,
£ 6v = lZG cxp(AG)f(a")(ax—ﬂ-})i
au av. )
a—y‘}'azg =20 CXP(A())T(J")T.
The corresponding mechanical boundary conditions have the form
Ovs  Oys
—+——=U—-V=ad,
a Q& as
ays 2y _
(5.3) t+s(a,—a,)E+O(e )=0, on y=yg(, 0

ay—2£ra—ys—+p“"“+0(£2) =0,

&
and
d m
U=¢C (Ct—s(ax—ay)d%ﬂ+0(sz)) ,
(54 dr on y=yg(<),
V=U=-2
dé

where { = sgn(U + O(e?)). Frequently the function x™ in (5.4), will be re-
placed by the more general sliding law #(x). It is this form of the field
equations which makes the decoupling of the thermal and mechanical
equations mentioned in the last section evident. For, since ¢ is small, one can
consider solutions in the limit as ¢ - 0. The form of such asymptotic
solutions allows us to differentiate between glaciers and ice sheets. This
differentiation hinges upon the order of magnitude of the mean inclination
angle. Accordingly we define a glacier as a large ice mass for which y
= O0(1)("); alternatively an ice sheet has mean bed inclination with small

(") In practice y= 10" may be regarded as O(1).
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angle, y < O(g). Scrutiny of the scalings (3.2) which are typical in these cases,
shows that G = O(1) when 3 = O(!), but G is large when y < O(g).

a) Steep glaciers. In this case ¢ is the only small parameter arising in
the stretched equations (5.2). A reasonable choice for it is then £ = D/L, since
G = 0(1). To lowest order, that is in the limit as ¢ — 0 the solution of the
boundary value problem (5.2)-{5.4) is easily seen to be
' = sin y(ys—¥),

o\ = o = —cos y(ys—»)~p'",

¥s
U'® = C(sin y(ys— )" +2G | exp(A0)f(z>(»)t(y)dy.

B
With the aid of (5.2); and (5.4), a formula for V'@ could easily also be
deduced. We shall not do it here because an expression for V will not be
needed in the sequel. Notice that (5.5) has the same form as (44),,; in
which all fields were assumed to be x-independent. However, equations (5.5)
are based on a much weaker assumption and form the zeroth order terms of
a more complete perturbation expansion.

> 5]

(5.6) (O .n U VY= Y (02, ..., U, VY,

v=0

which has first been considered by Hutter (1980b, 1981a). In particular yg
may vary with &; (5.5) thus generalizes the earlier solutions of the strictly
parallel sided ice slab to slowly varying ice geometries and suggests improve-
ments by use of (5.6). Notice that, since '? does not change sign and because
i > 0 for © # O the sliding velocity cannot change sign, implying that there is
no ice divide. Moreover, (5.5); shows that when y is small, then 7 ~ yD, a
formula which should be improved. Such corrections can be deduced by
substitution of (5.6) into (5.2)(5.4) and collection of terms of O(g). The result
is the boundary value problem:

Field equations:

(5.5)

e
v - e e
60;“ . 6ys
ay = sSin '}’E,
’ (0)
(5.6) o = ot 4 2 v

G exp(AD) (<% @&
UM
Oy

Ut gy

&t o =0.

= 2G exp(A0) {(r @)V,
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Boundary conditions:

0
T“) — 0’ o';” = —-2‘,,'(0J —yi =0 on y= ys(‘f, t);

)
(5.7) «

a.
UD = Cm(c Oy~ 1 2, Vm:umaig on y=yg(d)

Since the zero-th order solution (5.5) is known, equations (5.6) and (5.7) can
be integrated with the following solution for ¥, ¢!" and U'V:

p

) = cos 22 (y—ys),
o
Y
o) = —sin yalg-(y—ys),
(5.8) ’
) ) m—1 oys
U™ = —Cm(sm ')’(YS"J’B)) cos Y‘é‘&‘(}’s","n)'*‘
ys
.2 2 dys
+2G | exp(A0)f(sin y*(y—ys)*)cos y Y (y—yp)dy
yp

and with ¢'" as given by (5.6);. Again we refrain from explicitly demonstrat-
ing the form for V.

The above first order solution was constructed in order to explicitly
demonstrate the nature of the perturbation solution. As evident the stresses
and velocities could be determined by mere quadratures, provided that the
geometry y = ys is known. For the applied glaciologist this is a useful result,
for he often knows the geometry from tellurometric measurements, and then
can deduce from the above formulas the stress and velocity distributions.
Formula (5.6); for longitudinal normal stress, however, points at a weakness
of our suggested perturbation approach. For when §(0) =0, ¢!}’ becomes
infinitely large, violating the basic assumption of a convergent perturbation
series. Such a singularity arises for Glen’s (Norton’s) flow law at the free
surface and can be interpreted physically as an infinitely large apparent
viscosity, but can be avoided if the creep response function

x4

1+k

is used (Hutter (1980a, 1981a,b)), since for (5.9) §(0) = k/(1+k) # 0. Of course,
introducing a finite viscosity law to avoid the perturbation scheme to become
invalid is not ideal. A further singular perturbation schemes would therefore
be needed. Multiple variable expansions are the appropriate approach, but

(5.9) f(x) =

20 - Banach Center Publications 15
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maliched asymptotic expansions have been used (Johnson and Mc Meeking,
see Hutter, 1983).

Of the compound solution shear stress and forward velocity component
are of certain interest. From (5.5) and (5.8) it is easily seen that these are
given by

(0) 4 1) ; s
T=T7"+4€T  =|SIn y—& COS }'_f-- (ys—¥),
&
(5.10)

yg
L’!S = (U(0)+’:U(”)surfucc = U (y59 8_5_}5')-

Interesting in these formulas is that for small y basal shear stress is given
by t ~ Hag, where H is depth and ag the surface slope (relative to the
horizontal). Further, by including O(z)-terms the surface speed is a function
not only of the surface coordinate yg, but also its derivative ¢-Cyg/¢E. This
observation 1s important. Improvements of the formulae (5.10) could be
obtained by continuing the perturbation scheme to include second or even
higher order terms. This has been done by Hutter (1980a). Such calculations
show that the surface velocity Ug will have the form Ug = U (ys. & ¢yg/ ¢,
e?- 0% yg/0E2, .. ). In other words, with increasing degree of approximation Ug
depends on higher and higher derivatives of the function describing the {ree
surface. The mathematical implications of this will be considered in a
moment.

In the above the temperature distribution and the surface profile are
assumed known. By substituting (5.1) into the thermal equations of (4.1)4.3)
the thermal boundary value problem is obtained. It reads

o9 09 9 1_¢*9 E 0% 9
il o l/g’ — D—_‘ - 2 ’ ’ -
ar‘+U i + o= :P%7 +2£ exp(AQ) i (ay) a1, +eD ik

(1)  9=9 on y=ys( 0,

d$ ,09dyg Q ( ¢ dyg
- 12 seoth B

2
_— - 1_.-... — v = . .
5 dé) on y=ys(l. 1)

dy o de
Assuming that stress and velocity estimates have been obtained with a first
iterate the two-point-boundary value problem (5.11) allows determination of
a corrected temperature distribution. From earlier discussions it is known
that steady state temperature profiles obtained by a balance of transverse
convected heat with heat conduction match observed temperature profiles
reasonably well. Inspection of (5.11) thus suggests a solution procedure which
does not strictly [ollow the usual standard procedures of perturbation
schemes. Indeed, in steady state (5.11) is structurally different from (4.8) by
the inclusion of a longitudinal convective term. This term is partly respon-
sible for inversion profiles as illustrated in Figure 6d, see Hutter (1982b). It
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follows, that an O (g?)-approximation of (5.11) is the necessary minimum, if
observed features in temperature profiles are to be predicted from (5.11). A
complete solution of the boundary value problem has not been given yet, but
a numerical scheme has been suggested by Hutter (1983).

There remains determination of the surface profile. In this regard scru-
tiny of the above developments reveals that of the original equations (5.2)-
(5.4) all but the kinematic surface equation (5.3), were used. One could
regard this latter equation as rhe prediction equation for the surface profile,
because U and V may be regarded as known functions of yg and its
derivatives. However, simplifications can be introduced leading to the so
called kinematic wave equation. To derive it, we start from the continuity
equation and the basal boundary condition,

U ¢V dyg
0{:+0y =0, V_Udf on y = yg(l).
Integrating the first of these from y =+, to y=ys and interchanging
differentiation and integration with Leibnitz’ rule in appropriate terms one
obtains
_ "
¢ oys

52 Udy—U(ys) a +V(yp) =0,

Y8

which, when combined with equation (5.3),, yields

ys
(5.12) D, _w 9= |Uupd.
o o¢
YB

This is the kinematic wave equation, see Whitham (1974). In view of the
perturbation solutions for U the flux Q may be regarded as a known
function of the glacier geometry, Q = Q(ys, £-dys/d¢, ...), the number of
arguments depending on the order of approximation in the perturbation
scheme. Hence

dys 0 &
(5.13) %t_i+(£~gg—+sb aé’;s+0(82)=ag
with |
@: aQ D-=__6Q__.

N E’ s \
a( % )

both coefficients being functions of ys and ¢ dys/d¢ - ¢ is a wave speed and D
a diffusivity, and (5.13) is a non-linear (in fact quasi-linear) parabolic partial
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differential equation of the convection-diffusion type. When restricting calcula-
tions to the zeroth order terms (i.c., terms of O(g) are ignored) (5.13) reduces
to the simple forward wave equation. Choosing for qualitative considerations
an uniform temperature distribution (exp(A0) may be set equal to unity) the
third of equations (5.5) reveals @ as a function of glacier depth, H = ys—yj,
thus implying '

cH cH
—+CH)—=ai(&, H, 1),
(5.14) f ¢ . .
€(H) = #'(sin yH)sin yH + 7 (sin yH)+ 2 sin yH*{(sin y° H?)
sliding gliding

where .# is defined in (3.6).

C(H) is the speed, at which surface bulges travel downglacier; it can be
compared with the surface particle speed U (H), (5.5);. Exploring the two
formulas for Glen's flow law and Weertmann type sliding with realistic
values of the phenomenological constants then shows that the surface wave
speed is about four times the surface particle speed. This compares favorably
with observation. In this lowest order approximation (5.14) is also the
equation geverning the steady state surface profile. Forward integration from
one margin to the other should in this simplified situation determine the
profile geometry. For a sliding law with #(0) =0, €(0) =0, (5.14) may be
singular. The ncar-margin behavior of the steady state version of (5.14) must
therefore by analysed by looking at power series solutions of the form

(5.15) H=k(&-E)’(1+0(E~CuD)) as &~ (u
The free constants k and & depend on the margin behavior of € and a?, but
it can easily be shown by substituting (5.15) into (5.14) that, when £ (0)
= bounded and u¥ # 0 at & = &, that 6 < 1. In this case margin slopes are
infinite; the perturbation scheme breaks down as the assumption of slow
variation of glacier geometry is violated close to the margin. A separate
margin solution must be constructed with the unstretched equations which
will match the above outer solution.

There is one exceptional case for which such a matching procedure is
not necessary. To illustrate it let .#(r) =Ct™ and assume that C is a
function of position and becomes singular as the margin is approached as
follows:

(5.16) C=C*[{-Cul " a8 L=y

The near margin-power solution has now a finite slope at & = £y, (6 = 1) and
(5.15) becomes

la;“l /m+ 1)
(517) H =sgn(a}) ((m+ D) C¥sin™ }’) IE—Cul  as oy

Integration of (5.14) can be commenced at the left margin, say, with the aid
of (5.17) and then continued using the steady state version of (5.14). However
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a numerical value for C* should be determined. This is possible as margin
velocities can be related to C* and margin ablation: the reader may show
this with the aid of equations (5.5) and (5.16). Measuring margin velocities
and margin ablation thus determines C*.

The above discussion pertains to the steady state version of (5.14), which is
valid when O(g)-terms are ignored. To within terms which are linear in ¢,
equation (5.13) applies. Here, diffusive terms are included; such terms are
known to smooth out processes and might, perhaps, yield regular margin
behavior. The problem was analysed in detail by Hutter (1983): he shows that
the differential equation is singular in general at the margin so that again a
margin solution of the form (5.15) must be sought. Margin slopes turn again
out to be singular unless C is singular as indicated in (5.16). Inclusion of
diffusive terms has thus not led to profile gcometries which would, in general,
be uniformly determined from a steady state analysis of (5.13).

Consider now the rime dependent problem. This relates to waves on
glaciers which manifest themselves in three iypical forms, namely surface
waves, seasonal waves and surges. Surface waves are undulations of the
glacier surface which travel downglacier at small speeds of (typically) three to
four times the surface particle speed. Such surface waves were analysed by
Bliimke and Finsterwalder (1905), Finsterwalder (1907), Weertmann (1958),
Nye (1960, 1963a,b), Lick (1970) and Lliboutry (1971). A more careful new
analysis is due to Fowler and Larson (1978, 1980b) and Fowler (1980).
Seasonal and surge-type waves are very fast waves, which manifest them-
selves as fluctuations of surface velocities rather than surface bulges. These
waves are not yet clearly understood, but one stipulation is that they arise
when the sliding function .# is becoming multi-valued (Figure 4b) or its
slope 1s approaching infinity (Figure 4c). Fowler (1980) gives an approxi-
mate analysis of the latter situation and the interested reader is referred to
his paper.

Surface waves can be studied with the aid of (5.12) or subscquent
equations. Associated boundary conditions follow from a C-integral of (5.12),
see Fowler and Larson (1978), Hutter (1983). Herc in this lecture we focus
attention to a glacier with non-moving steady head, &) =0; then the
boundary condition is simply ys(Say) = vp(&y) or H(Cy) = 0.

To lowest order, equation (5.14) applies subject to the boundary con-
dition H(&y,7)=0 and the initial condition H(E) = Ho(éy) for
&y < Eo < Epp- The characteristic form of this initial boundary value problem
is

dH dé

g, S =GH

dr as, dt— ( ):
(5.18) H(ty, T) =0, t>0,

0
H(éo) = Ho(éo)a éM < Szo < é;f
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It has been studied in detail by Fowler and Larson (1980a). This study
tndicates that smooth solutions do exist up-glacier, i.e, from the head
downward, but that generally shocks are formed before the head is reached.
This can convincingly be seen from (5.14) or (5.18) when these equations are
solved for vanishing a¥. In this case

(5.19) H = Ho(¢ - C(H)T)

is the exact solution defining H implicitly. If €(+) is a monotone increasing
function of its argument, (5.19) implies that a surface bulge will oversteepen
with time eventually resulting in a multi-valued function H(&)('). Where this
arises, shocks are formed, which are discontinuities of surface bulges. The
problem of evalualing the conditions at the shock, can, however, not stem
from (5.12) or (5.18) alone because the latter assume differentiability. A clue
as to the approximate form of the equation describing conditions across the
shock is obtained, if it is recognized that (5.12) is the local form of the
volume balance for the glacier as a whole, whose global form is

53 )
c
(5200 - T jYSdé_(Q(Ez)—Q(C1))= Jasdf,
&1 &y

see Figure 7. £, and £, are two positions marking an interval which encloses

TIME - DEPENDENT

Fig. 7. Explaining the volume balance for the glacier as a whole

the shock at ¢ =¢&g. Mathematically, (5.20) is more general than (5.12)
because the fields need not be differentiable functions of position and time.

(") If H, > H, then C(H,)> C(H,). Waves of points with large H are faster than those
with small H explaining the over-steepening.
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By simply invoking such differentiability assumptions (5.12) is obtained.
However, when y¢ may suffer a jump at & = &g, (5.20) implies

&2 <2
rs . . ds i} ,
j —é§JC+u}'s(Cs, 7 "—i_(Q(Gz)—Q(Cl)) = jas"é-
t dt
¢y 4

or when {, =&, =¢s

des _ Q)

5.21 = o
-2 dt  Jys(Zs)l

where ;O and {yq are the jumps of Q and yg across the shock. The shock
front &g travels with speed (5.21).

It is not our purpose to dwell on the exploration of solutions of (5.18)
and (5.21). The analysis parallels usual procedures of weak solutions of
hyperbolic equations that result from conservation laws. see Dafermos (1974),
Courant and Friedrichs (1948). On the other hand, carrying the perturbation
solution to Of{e)-terms alters the equation from its hyperbolic form to the
parabolic convection-diffusion equation (5.13). This new equation can also be
shown to be singular as the diffusivity vanishes at the margins. Although
unsteady solutions of this convection-diffusion equation have not been
constructed so far, experience with the steady equation indicates that close to
the snout the smoothening effect of the diffusive term is probably not
suffiently high to override shock formation close to the snout. Moreover,
addition of a further spatial derivative supposedly necessitates a further
boundary condition. To date, the matter is not clearly understood, but
Fowler and Larson (1980) conjecture that in view of the singuiarity of the
equation no further boundary condition will be needed. The resolution of
such equations are important ones, as can be seen from (5.13), which suggests
that with higher and higher order perturbation terms taken into account
higher and higher derivatives will cnter the kinematic wave equation. This is
corroborated by Hutter (1980a) who shows that when O(¢?)-terms are
accounted for third order derivatives will enter equation (5.13). Eflects
attributed to these terms are classified as dispersion, and Hutter’s calculations
indicate that they are not negligible.

b) Small bed inclination. We return to equations (5.2)(5.4) and as-
sume small bed inclinations, y < O(g). At least two terms in (5.2), are then
O(e) and if we assume that 1 1s O(1) this equation would to lowest order
reduce to d1/¢y =0, or 1 =0 in view of the boundary condition (5.3),. This
must be wrong, for the flow must be clearly shearing. Hence we assume
T =0{(e) so that transverse shear stress gradients can be balanced by
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longitudinal pressure gradients. From (5.2)s it then follows, since éU/dy
= 0(l) by construction of the scaling,

Gi(o;)t = O(1).

Further, since G 1s large, (5.2), implies to lowest order ¢, = g,, thus o, = t.
The last equation must therefore imply

(5.22) GO(f(r?)0e) = O(1),
and because

k for polynomial law (2.4),
0N =150 o b =9

for Glen’s flow law,

we have

1
-~ for polynomial law (2.4),
£

(5.23) G=

= for Glen’s flow law.
£

This scaling has first been introduced by Morland and Johnson (1982).
Accordingly the stretching parameter is related to the “Glen number” G
which for small bed inclinations has been shown to be a large number. With
(5.23) and to lowest order we have indeed g, = g, proving a posteriori that
this assumption was correct when constructing (5.23). Subsequent calcula-
tions will be performed for Glen’s flow law. Introdicing sin y = ey, and cos ¥y
~ 1, (5.2) have then the form

U U

wtey ="

P
e—?'+ﬁ+8}’o+0(£z) =0,

G 0Oy

o d

(5.24) e i+ 52 —1+0() =0,
o dy
Uu 1

g+l = =3 exp(AD) f(oy) (0, —ay),
ou ov -n !
5,4.32 P = 2" "exp(AO)f(ay)t.

Boundary conditions (5.3), (5.4) are unchanged. A systematic approximate
solution procedure for (5.24), (5.3), (5.4) would be a perturbation expansion of
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the form (5.6). Here, only lowest order solutions are considered. From
(5.24); 4 and (5.3); we deduce

(5:25) o = o = (v y5)— "™

Shear stresses now follow by integrating (5.24), subject to boundary
condition (5.3),:

A
(5.26) T= ecz(%—%yf)(ys—y), { =sgn (vo—%s)-

This formula is important. It shows that 7 is indeed O(g) and, since
e(yo— Cys/CE) ~ ag, where ag is the surface slope measured from a horizontal
line. the classical shear stress formula is obtained, namely t = (ys—y)ag.
Moreover, 7 vanishes at positions ¢ =¢; where surface slopes are horizontal
(v = dyg/EE). For a shding law with .# (0) = 0 these are the positions where
the sliding velocity vanishes. It will be shown in a moment that £ = £; marks
the position where the forward velocity vanishes at all depths, corresponding
to an ice divide. With the shear stress being determined, (5.24); implies to
lowest order

i[f = 2" "exp(AO) f(r2 ()t (y) = 0(1)
and after integration, subject to (54),
N
(5.27) U® ={C(Lt(yy) +26~" [ exp(AB(1)F(r> (1) (v)dy
yB

in which 1 is given by (5.26). It immediately follows that U® = 0 whenever
1t = 0 corroborating that { = ¢, marks positions of ice divides. With the
continuity equation and the second basal boundary condition an expression
for V' could equally be derived.

More interesting is to explore the kinematic surface equation; it can also
be written in the form of the kinematic wave equation, see (5.12)

ys 0

(5.28) E/’F-+ %

= a;,
with

ARy

(529) Q ={C(lt(yp)" (ys—ya)+2& " [ (3s—y)exp(AD(R) (x> (1) T () dy.

B
Notice that Q = Q(yg, Vs— Vg, 8ys/¢E). Equation (5.28) is therefore of the
convection-diffusion type, as shown in (5.13). Because ys—yy and dys/d¢
enter the lead order equations, (5.28), (5.29) yield and equation for yg rather
than the depth variable H = yg— y, as it was the case for the lowest order



314 K. HUTTER

solution of the steep glacier. Thus, the bed profile is not simply superimposed
on the geometry of the flat bed. Further, the convection diffusion equation
(5.28) (5.29) may be singular at the margins depending on whether the sliding
coefficient is bounded or singular at the margin. Local solutions at the
margin [ollow again by assuming power series cxpansions

(5.30) ys—yp=kIE=E* (1 +0(S=Epl)).  as &y

in which k and 4 can be deterimed by substituting (5.30) into (5.28), (5.29).
The steady state equation then shows singular behavior at the margin as
0 <1, or dyy/¢i— oc unless the sliding coefficient is singulur as C
= C*(ys—yg)~ ™ in which case margin slope, margin ablation af and margin
velocity UYY are related by

I

drg Oy
(5.31) US;‘)’([;?—((%_‘;')=G§ at ¢ =

In other words, measuring margin ablation, margin velocity and bottom
slope will yield the surface slope &yg/cC.

To integrate the steady convection-diffusion equation two cases must
thus be differentiated. In the first 6 < 1, and the small slope assumption
breaks down close to the margin as the conditions of the shallow ice
approximation are no longer fulfilled. A separate margin solution of the full
equations must be constructed. At a small distance [rom the margin this
solution provides the initial conditions, namely values for yg and dys/d¢ for
the integration of the convection diffusion equation. The second margin
subsequently follows from the condition ys = yg. This matched-asymptotic
expansion procedure has not been analysed in detail to date. In the second
case, namely when (5.31) holds at the margin integration is started at the
margin by (5.31)

yielding the initial condition for the subsequent forward integration. This
numerical integration has been performed by Morland and Johnson (1982).
For details the reader is referred to that paper. They show that with
integration from the upper margin a flat horizontal surface far distant from
the margin is obtained; on the other hand, when integration is commenced
at the lower margin (the snout!) a surface profile results which realistically
models ice sheet geometries. However close to the other, upper margin
Jdys/0 turns out to be large, thus again violating the assumptions of a
shallow ice approximation. In- the neighborhood of the head again an
independent solution that is matched to the outer solution should be found.
This has not been done yet. For further results the reader is referred to
Morland and Johnson (1981, 1982) and to Johnson (1981).
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6. Three-dimensional flow effects in ice sheets

Ice sheets spread in more than just one direction, and flow is only ap-
proximately planar. Here in this final section we investigate 'the inferences
that can be drawn from the application of the shallow ice approximation in
the full three-dimensional flow problem. To simplify matters the ice sheets
will be assumed to be wholly grounded, and a temperature dependence of the
creep law will be ignored.

The ice sheet is assumed to be embedded in an Euclidean 3-space with
Cartesian coordinates x, y, z; x and z horizontal, and y is vertical. Thus,
y = yg(x, z, 1) and y = yg(x. z) denote, respectively the free surface and the
rock-bed. Governing equations are equations (3.3). When restricting atten-
tion to the mechanical equations and when invoking the shallow ice ap-
proximation

v §

- bl —_ aAA
6.1) ¢=¢x, {=ez,r=¢t, V=- U=u, W-——-w,y=n,a'sl=—q
£ >

these equations read

o, G0y Py 0 o

—&+& £g, =

" ar T Tag TR T
(o 00 N g

o o on &

(Oix O 0P 0Oy 0
— t =& ote—+€eg3; =0,
2 Tam ca ta T

U v oW

Tt =%
oU '
£ ;f = Gi(t,)o%.
(6.2) oU oV
_a;’..;_gz—a—é— = 2Gi (1)) Toy»
ou W '
Ea_é’_*_s—a_é_ = 2G§ (1)) Tyz»
AV . ,
g%ﬁ- = Gj(t,) 7,
av oW
2 +—_—= 2G T t’z,
E 6C a" f( ll) y
‘W

8—6_@'— = Gf(ty) a;,
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in which
(6.3) =dol+o+a )+t i+l 12

is the second stress deviator invariant, and g,, g, and g; are components of
the gravity force; for a horizontal bed ¢, = g, = 0, g, = 1. Alternatively, the
boundary conditions at the [ree surface and the base, (3.5) and (3.6), can,
respectively be shown to have the form:

At the free surlace: v=y5(&, (. 1)

iyi a"s U (/}S W—V = ag'
a  oé ﬂg
oy a ay
(PO S Tyt S = g™ 2

< ’ (RN ]
(6.4) ' ‘ -

a} }s alm

Try ,é —p+oy)—cry,, e = —p"",

Cys , CYs o C
—&T sz)T +t ( p+az)75'7_ pdl (‘}Q

At the bottom surface: y = yg(&, {);

0y 0yVp
—U+—W-V =0,
o 174
F .. ) 1.,
U= —~—|o? rg——r Y Oyf .
o€ &
(6.5)
F 87.} eyﬂ
eV = .I:U_( ot P —ay+1), —::),
F 0 %
W= -—( :,E—L—t‘ +a‘;cﬁ)
& 174

where %7 is a function of (¢*-n)* and

Cyn 2 dyp 2
w- \/l+(ax) +(az).

Equations (6.2) to (6.4) are now in a form suitable for the lowest order
approximation to be treated here. Before such an approximate treatment can
be given, the parameters must be expressed in terms of G. To find this
relationship, let us return to equations (6.2), ;. For vanishing g, a lowest
order force balance in the {-direction requires the transverse stress gradient
(1.,/0n to vanish unless 7,, 1s O(e). In this case transverse shear stress
gradients can be balanced by the horizontal pressure gradient Jp/éé.
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Similarly in equation (6.2);; here transverse shear stress gradients ét,./on can
balance the horizontal pressure gradient dp/d. only provided that 7,, = O(e).
We assume such order of magnitude relationships hold; they are plausible from
the basic approximate shear stress formula according to which the shear
stresses are proportional to the surface inclination angle, which is small after
all. 1t then follows from the sixth and the ninth of equations (6.2), since
¢U/én and ¢W/on are O(1) that

(6.6) GO(f(-)1.) = 0O(1), GO(f(*),.)=0(1).

Assuming further {and momentarily) o,, g,, a, and t,, to be O(¢) or smaller it
follows that f(-) is O(k) for a finite voscosity law, but f(-) = 0(¢""!) for a
power flow law with exponent n. Hence (6.6) implies

kl for a finite viscosity law,
£
G= i

— for Glen’s flow law.

£

Considerating this relationship between G and ¢ we shall now simplify the
boundary value problem by ignoring all terms of order higher than and
equal to . From (6.2)s5 5,10 it then follows that o,, g,, g, and t,, are all
O(e?) thereby corroborating our earlier assumption, so that to lowest order
we have

6y=0,=0,=T1,, =0.

Therefore, the field equations reduce to

-r 0,
op
_op —g,=0,
n g2
oT, dp -
Z__—_ + 0,
(6.7) o & "
. gg+a_y +iv_v_ =0
& on & ’
aUu
~ =2F(T2+TH T,
on ( )
N RT+THT

&
in which T, =1,./¢e and T, = t,./¢ are O(1) and F is defined by
(6.8) F(+T) =& "feX(T2+ 1)) [=0(1)].
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A similar reduction is possible with the boundary conditions. Deleting for
the moment the kinematic surface condition (6.4); the boundary conditions
of stress at the free surface reduce to

(6.9)
p=p", Ti= —P'“%)f T = —p""“%? on y=ys(, 1),
and those at the base become
V= Ua;%+ w%,
(6.10) U=C[T2+T2m 2T,

W = C'[T;Z-F TZZ](m— 142 T;_,

where (" =¢"C is O(1) for viscous sliding to be significant.

In order to explicitly demonstate the integrability of equations (6.8)-
(6.10) let us look at the simplified case in which g, = g3 =0, g, = 1. We shall
also ignore the influence of the atmospheric pressure which is negligibly
small anyhow. It then follows from (6.7), and (6.9),

(6.11) p=(ys—n).

With this result (6.7); 5 can now be integrated subject to the boundary
conditions (6.9); ;. This yields:

)
(6.12 L= L=-Poson.

By considering the equilibrium equations and associated boundary
conditions of stress it has therefore been possible to determine the complete
stress distribution. Equation (6.11) gives the overburden pressure, which
increases linearly with depth and (6.12) provide formulas for the horizontal
shear stresses. These formulas are very important ones as they generalize the
famous shear stress- formula for two dimensions according to which shear
stress is proportional te surface inclination and depth. Qur nondimen-
sionalization and the stretching transformations have been such that to
lowest order these dependencies are recovered. Indeed, (6.12) states that the
two horizontal shear stress components are proportional to depth and
surface gradient in the direction of the stress component. Moreover, T, and T,
may change sign at positions where dys/d¢ and dys/d{ go through zero. (6.10)
then implies that the corresponding component of the sliding velocity will
vanish. Later on it will be shown that U and V vanish at all depths in
positions where dys/d¢ = 0 and dys/¢{ = 0, respectively. This result is of very
practical significance, for it implies the following important facts which can
be tested by observation:
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() At any given position the horizontal velocity vector does not
change direction with depth, or the ratio of the two horizontal velocity
components are only functions of &, { but not n.

(n) At any'position the direction of the velocity vector is that of the
steepest descent of the surface profile.

(i) A dome or a trough is the location of zero velocity.

The proof of these statements is straightforward.

In order to determine the velocity field the results (6.11) and (6.12) are
used in (6.7)s o, which can be written as

cU
—— = —2F(: rz(n) — 1) = ge(n),
on
(6.13) 5
W _ 2
e OF (¥ (n)) Us n) = g (n),
where

a2 _ 2 dys f’ﬁ ?
(6.14) e =(s—mn (( 6) +(a€))-

The right hand sides of (6.13) are known functions of # (and &, { and  whose
dependence is not indicated). Defining

L n
(6.15) g = {g.(indn, g = [ g,(Md7,

14 YB

integration of (6.13), subject to the boundary conditions (6.10), 5 reveals that

dys
UE ¢on = —gm-Cl2al™ 'gtv —¥ah
(6.16)

a
W Lon 0= —gm=Clrisl"™ '3 Y5 (ys= o)

proving that U and W vanish whenever ¢y/0¢ and ¢y/¢ are zero. By, finally,
integrating the continuity equation, the transverse velocity component V
could also be determined.

We conclude by deriving the differential equation for the surface profile.
To this end the two dimensional analogue of the kinematic wave equation
(5.13) is needed. We leave it as an excercise to the reader to show that the
kinematic surface equation

) () )
9s (.VsU ﬁW—V=a§‘,

a Tt
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together with the boundary condition (6.10), allows deduction of the two-
dimensional kinematic wave equation

5)’3 é’Q ‘7Qg
6.17 YL %
( ) ﬁt 65 >+ 5C dg,
with
»s ys
Q::= | Udn, Q= | Wdn.
B B

As seen from (6.16) this equation is of the convection-diffusion type. Defining
s

g = jg“('r)dn, g” = [ " (mdn,

B
its steady state analoguc has the form

dys Oy
(6.18) a(m(} s ”)+C|:r(ya)l"' Y(ys—ya)’ é)

8¢ S &
¢ dys @ oy
+&(Q(2’(,Vs, gg ay:)+c 2 (val™ " (vs— yn)z—gfs)= —of

in which the structure of a second order equation becomes evident. It
involves yg and yy separately and can not be written as an equation for the
dilference (ys—yg).- So, the bed profile is not simply superimposed on a
corresponding flat bed surface profile. However, (6.18) is singular at the
margin unless C’ is singular as (ys—7g)~ ™ as the margin is approached.
When solving (6.18) a procedure should therefore be known how (6.18) is
handled close to the margins. This is not easy, since the problem is not well
posed. Boundary conditions can only be presented along part of the closed
boundary from which integration proceeds into the ice. The remaining portion
of the boundary is then obtained from the condition yg = yz. The method,
how this integration is best performed is still unknown and awaits its
resolution.
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