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Introduction
Let the function

e ! for x=1[0, 0],
0 otherwise

Jo(x) = % (1)
where 6 > 0, be a uniform density. The problem is to determine n, the size of
a random sample from fy(x), such that an estimator 6, based on this sample
satisfies the condition

Py (|60, <d} >1-7, (2)

where d > 0 and ye(0, 1) are specified in advance. In other words, we shall
determine a confidence interval for the parameter 6 with a fixed width 2d,
uniformly with respect to . The problem of a fixed precision estimation of 8
seems to be very simple, but this is not quite true.

In most problems of estimation, estimators based on samples of fixed
sizes have precisions which depend on unknown parameters and estimators
with prescribed precision are not available without resort to sequential
sampling in two or more stages, as in Stein’s procedure for the estimation of
the mean of a normal distribution with unknown variance. Since the
parameter @ in the uniform distribution U(0, 0) is the scale parameter (ie.,

fo(x) = éf(%), where f is a density function), it follows from the Blum and

Rosenblatt lemma ([3]) (sece also [7]) that it is impossible for a fixed,
nonrandom sample size to construct a fixed precision confidence interval for
0. Two-sample procedures solving this problem are given in [2] and [4].
Another fixed precision sequential estimation procedure is presented in [3].

In this paper we shall consider some class of stopping rules for a
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sequence of independent random variables, distributed identically, uniformly
on (0, 0) (i.i.d. U(0, 6) r.v’s) and we shall show that in this class of stopping
rules there exists no optimal stopping rule (optimal in the sense of minimal
» expectation, uniformly with respect to 6) which satisfies condition (2).

»

Result

Consider the statistical space (R}, BY, {Py, & > 0}), where R is a positive
half-line, B! is the family of Borel subsets of R. and P, is a uniform
distribution with probabihty density [unction fy(x) defined in (1). The prob-
lem consists in fixed-precision estimating . Let X,, X,,... be a sequence of
iid. U(0,0) rvs and let d >0 and ye(0, 1) be given. There are many
functions of the random sample that could be used as the estimators of 8,
but we shall use the largest observation in the random sample of size n,
because the largest order statistic is the minimal sufficient statistic for 6. The

. . . n+1 .
unbiased estimator of 6 is equal to ——max(X,,...,X,), but neither
n

1 : .
1max()(l,..., X,) nor max(X,,..., X,) is uniformly better for all values
n

of 6 (in the sense of minimizing the probability Py{|6—80,| > d}). Since we
always have max(X,,..., X,) <6, we usually use

0, = max(X,,..., X,). (3)
The class C of stopping rules under consideration is described as follows:

DEerINITION 1. A stopping rule o belongs to C if and only if there exists
a nondecreasing sequence of positive reals (A4,, n > 1) tending to infinity and
such that
c=inf{n>1: §,<A,, Pyas. (4)
for all 6 > 0.
Let us notice that the assumption A, — o0 1s equivalent to the assum-
ption that
Pyf{o <o} =1 (5)

for each @ >0 and, moreover, that the monotonicity assumption is not
important. Indeed, il a stopping time of form (4) is given, where a sequence
(A,, n =2 1) is not nondecreasing, we may replace that sequence by the
sequence B, = max(A4,,..., 4,), which is nondecreasing, and determine the
same stopping rule. In view of the equivalence between a stopping
rule ceC and a sequence (A,, n= 1) in Definition 1 they are identified
(6 =(A,, n = 1)).

Our interest is in finding a random sample size required for a fixed
precision estimation of the parameter #; for this reason we define a new class
D of stopping rules.
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DEFINITION 2. A stopping rule o belongs to D if and only if 6€C
and

P, 0-0,>d <y (6)
for each 6 > 0.

Lemma 1. The class D of stopping rules is nonempty.
Proof. 1t is easy to see that the stopping rule 6, = (A2, n > 1), where

dyA 6
A9=—"N" n>1land 4=, (7
NCN m
belongs to C. Moreover, from (4) we have 9 ,0; then
P, (60, o >dl = ZP,,{B 0,>d, 6y =n}
© d, @ 4
< Zl 0 0 >d 0,00 S Z PB 9—0n>dF
n= n=1 n
_ Y Pd, < e}— Y [AYAS+AT = f .
CE T A S\
for all 0 > 0, and the lemma follows. n

LEMMA 2. For all natural numbers n (neN)

d3y

8
o ®

A, €

provided ¢ =(A,, n= 1)eD.

Proof. Let me N be fixed. The condition ¢ €D yields (6) for all 8 > 0. If
we put 0 = A, +d, then

Py{c =n} for n<m,

Py{0-6,>d, 6 =n} =
010=0,>d, o =n; {O for n>m,
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It 1s easy to see that the stopping rule
d.\/y
R 1) belongs to C, 9)

but it will be shown below that t¢ D (Theorem 1).

LemMMA 3. Let the stopping rules 0 =(A,,n=1) and ¢ =(A,,n>=1)
from the class C be given. If A, < A, for all neN, then

(i) Pelo<a'}=1;
(1) Ego0 < Ey0';
(ili) P,{0—8, >d < Pa{0—8, >d)
for all 6 >0.

Proof. Let us notice that for all ne N the following inclusions are
satisfied:

lo'=nl {0, <A} cif,<A,)clo<n)
and so
Polo <o’} =Pg(U {o<n o =n})=Py( {0 =n})=1
n=1 n=1
for all 0 > 0. (i1) and (ui) follow immediately from (i). .

LemMA 4. If v =(B,, n = 1)eC and for some ke N and all 8 < B, +d
we have Pyi0—8, > d} <y, then there exists a stopping rule v’ = (A,, n > 1)
from the class D such that
A; =B, forall i<k. (10)
Proof. For i <k we put A; = B;. Let us notice that, for all 8§ < B, +4,
P, {6-0, >d, v >k} =0, and so P,{0—8, >d} does not depend on (Bj, j
= k+1)
Consider the case 6 > B,+d and a stopping rule s, defined by a
sequence (A;,..., A+, Bysr+1,-.-) where
A=A, =...= A, reN. (11)
Simple calculations give us

k
Py{0—0, >d, s, <kj=Y Py{0—0;>d,s =]}
j=1

~

Py{0,<0—d,0, > A,y,....0_,>A;_,,0,< A}

N i

k
O_j j‘..-j' dxl‘...'dxj= Z B_J|Cj|lo

..... Ij)ECj(Al,...,Aj)} j=1

M"’ EM!‘

Jj

]
—
=

]

—

j
as 6 — oo, where C;{4,,..., A;) denotes a subset of X [0, 4;] and |C}] its
i=1

Lebesgue’s measure.
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It is obvious that for 0 = A, +d we have

k
. R IC|
P00, >d =P, .y(A+d—0, >d,s,.<kl=Y I _
61 r ! Ag+d 17k r ’ j=1 (Ak+d)J

Y,

then for all 8 > A, +d

i@<i 1G] (A+d) _y(A+d)
¢ A+ 0 0

i=1

By analogy we obtain

Pyl0—0, >d,s, > k|

= z Po{g.’(()—d, 01>A1,""gk>‘4k’ ék+r+l>Bk+r+l'}"‘

j=k+r+1

---,01—1 >Bj—l'-0j<Bf}

< Y P -{éj < 0—d, there exists i < k, suchthat X; > A,}

J=k+r+1

@ _ ji—1 N R N . k+r
< 3 (9 d) (k)ﬂ d— Ay _ kB d— A, (9 d)
j=kaerr \ O I 0 d 0

This implies of course that

P, {0—0, >d} <

'}'(Ak+d) H—d_Ak (G_d k+r
o Tk 7

for all 8 > A,+d. Consider the function

YA+d) | 0—d-4, (H—a')“'

o) =— d 0

It is obvious that there exist re N and real é > 0 such that A(0) < y for all
Pe(A,+d, A, +d+35].
Now we put

Aiirst = A +0 = Ay, +0 (12)

and ¥ = h(A;,,+,+4d) <7y. From the proof of Lemma 1 it follows that the
sequence (A2, n > 1) defined by (7) satisfies the condition

an A? i
.'=Zl (A?"‘d) -

Finally, we define the sequence (4;) for i > k+r+2. Namely, we put

Apirva =Aisrra = = Apo1 = Argrsy (13)

31 — Banach Center t. 16



482 A. SIEROCINSKI

and
=A

o

forall j>=m, (14)

where

) @ AO i
=inf{n>k+r+1: Y (A°-.l-d) <y—7, A,??AH,H}.

We shall show that the stopping rule " =(4,, n > 1) given by (10)+(14)
satisfies (6), so that 7”eD. Indeed, for 0 < A, ,,,, +d this follows from the
fact that P, {# —0,, > d} does not depend on (A;, j > k+r+1). Moreover, in
the case § > A,,,,,+d we have

P, {6—8., >d}
= Po{0—0, >d, U <k+r+1}+Pg{0-8,. >d, 1" >k+r+1)

-~

~ e
<y+P {00, > df, " > k+r+1}

Tee

Y © (A
’+Z { A+d9} Z(A+d)+y\y "

THEOREM 1. There exists no stopping rule t* € D satisfying

Eot* <E90' (15)
for all €D and all 6 > 0.

Proof. Assume that there exists a stopping rule t* =(AF, i> 1)eD
such that (15) holds for every oD and all § > 0. From Lemmas 2 and 4 it
follows that A¥ =dy/(1—7). Namely, if ¢ =(4;,i > 1) and A, < A%, then
Egt* =1 < Eyo for all 8e(A,, AY).

Now, assume that 43 > AT and consider 6 < A%+d. Then

0—d
T for 0 < Af+d,
Po {9—9,: > d} =
AY (0—d)(0—d—A})
i e for Oe(A¥+d, A3 +d].
Since |l/[(A‘1“+d)+] =y and ' [(A¥+d)*] > 0, where
(0 d)(B—d— A}

Y(0) = for Oe(AY+d, A3 +d],

02

it follows that 43 = A}.
By similar arguments to that used above we obtain

o

A¥ =
3_

g
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Let us consider a stopping rule t; =(A4;, i = 1)eD such that A} =0 and A,
= A%. The existence of ¢, follows from Lemma 4. If we put 8 = A% then
simple calculations give us

Egt* = 1Py {0, < A1} +3- Py {0, > A1, 0, < 43}

dll\/—( \/5)=3+ﬁ
Cl-vay 1+ 1+

>2=2P9{t1 =2}=E0t1

The last inequality contradicts assumption (15) and the theorem follows. m

Consider again inequality (8) in Lemma 2. It is impossible to improve
this inequality. Indeed, if a stopping rule s, =(4% n> 1), where 4} = ...

...=AF_;=0and A = d\’}/)-;/(l — \’ﬂ) for n > k, satisfies the assumption of
Lemma 4, then there exists a stopping rule w, = (BX, n > 1)e D such that B}
= Af. We can say that the stopping rule ¢t defined by (9) is an envelope of
class D (see also Lemma 3). Now consider a stopping rule

‘J:E(—E n= I)EC (16)
Iny’

The stopping rule T and the sequence (§,, n > 1) satisfy the assumptions of
the Anscombe theorem (see [1]). From this theorem it follows that

lim P, {0—6, >d} =7
40
for all 8 > 0. Since the inequality

o4
lnv 1—\6

holds for all ne N and y€(0, 1), from Lemma 3 if follows that the stopping
rule ¢ is asymptotically consistent, i.c.,

im P, {0—0, > d} <y

d—0

for all 8 >0, but t¢D (Theorem 1).

At the end of our considerations notice that stopping rules from class C
have the following interesting property:

Assume that 0 < 0,; then a stopping rule o =(A,, n = 1)e C is bounded
from above by

S=infln>1: A, > 6,).
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