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1. Elementary theory.

Montgomery’s philosophy, for which he won the Salem Prize, is to view n'
as an analogue of e¢(nx). I. M. Vinogradov invented the Method of
Trigonometric Sums, and Montgomery’s analogues are the Dirichlet
Polynomials, which I shall take as

2N
Fs, = 3 200
N+1
There are two big differences between Dirichlet and trigonometric poly-
nomials. The first is that if you multiply two trigonometric polynomials of
length N, you get a trigonometric polynomial of length 2N, with large
coefficients. If you multiply two Dirichlet polynomials of length N, you get a
Dirichlet polynomial of length at least N2. The second difference is that a
trigonometric polynomial with all coefficients one is known exactly, and is
usually small. A Dirichlet polynomial with all coefficients one is a partial
sum of the zeta function or the Dirichlet L-function, and so is rather

mysterious. In fact we have three related topics

Bounds for {(s) and L(s, ¥)

Dirichlet polynomials - t
Zeros of J(s) and L(s, y)

, S=o+it,6=0,

In Vinogradov’s method one proves that a trigonometric sum is small on the
minor arcs, and the major arcs correspond to rationals a/g with small
denominator. For Dirichlet polynomials we have no explicit major arcs, so
that the theorems take the form

|[F (s, x)| < V except on a set of cardinality < R.

[307]
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From another point of view we do have major arcs — the values of ¢ for
which {(o+it) =0, or L(s+it, x) =0 with o close to one.

To discuss the main ideas we need some more notation. There are two
useful norms you can put on the coefficients

2N
G(F)= Y, la(nl?,  A(F)= max |a(n),

N+1
so that

G < A*N.
Note how these behave under products:
A(F F)) S A(F,)A(F;) max d(n),

N2 <ngaN2

G(F,F,) < G(F)G(F,) max d(n).

N2 <n<4nN2

It is very convenient to use an extended Vinogradov notation

F (s vy Xp) <L G(Xyg, .nny Xp)
to mean
S gy vees Xp) = 0(g(Xy, vy X)(Xy ... X))

so that the notation swallows up divisor functions and powers of logarithms,
and we may write

A(F Fp) << A(F1) A(F),

G(F, F,;) << G(F,)G(F,).
Next we need a name for the exceptional set. Let U be a set of pairs
(s, x) where s = o+it, 0 < 6 < 1/4. The difference set of U is the set of pairs
(5+5', ¥x), counted according to multiplicity; we write it UZ?. It arises
naturally if we take the modulus squared of a sum over U. The main lemmas

will require that U be well spaced in a region of size D, given by |f| < T, the
modulus ¢ of y satisfies gqo|g and ¢ < Q. Here

D = Q*T/q,.
Well-spaced means
t—¢|21 if iy is a principal character.

' Let R be the number of pairs in U. If U is well spaced, R < D. We want
relations between R and V, where

V=V(F, U)=min |F(s, ).
v
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We often use the means
Ey(F, U)y=Y [F(s, x)*
u
usually with k=1 or 2. If we can find a constant B = B,(M, U) with
E,(F,U)< G¥*B for 2N < M then
R < (G/VH4?B,

Similarly, if we can find a constant B* = B*(M, U) with E,(F, U)
< A*N¥2B* for 2N < M then

R < (A2 N/V?Y)4i2 B*,

So the general programme is to find the constants B and B* as functions
of M and U. There are some fairly trivial bounds

RgBk(M: U)sR(%M)klzs
(%M_l)klng?:‘(Ma U)gBk(Ms U):

?

and
BfM,U)=2R for k=2.

The large sieve theorem of Montgomery gives a nice bound.

THeoReM. If U is pure (that means either q, = Q or each y is primitive)
and well spaced, then

By(M, U) < D+ M.

The proof is basically just working out the mean square of an integral.
In his book Montgomery makes two nice conjectures.

MEeaN VaLues CONIECTURE:

B, (M, U) << D+ M¥?2,
LArRGE Varues CONJECTURE:

B} (M, U) << R+ M.

He actually states the Large Values Conjecture with B? in place of Bj,
but Heath-Brown has pointed out that this bound cannot be true for B, if
Q > 1. The large sieve theorem is best possible if M » D or if R > D.

Some easy comments.

Dissection. I U is the union of sets Uj,
Bk(M’ U) < ZBR(M= Ui)a

and in particular
B, (M, U? < RB,(M, U).
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This was an essential trick in the first proof of the exponent 7/12 for
gaps between prime numbers.

Changing k. f j=2 1, k> 1
BJ(M, U) < Rl-—llk {Bjk(M’ U)}Uk,
B (M, U) <<< max R "*{B;(M, U')}*,

U su
and if k is an integer
B, (M, U) << B;(M*, U).

These elementary relations also hold for B¥.
A big nuisance is that there is no useful peak function like the Fejér
kernel in Fourier theory. The best that one can do is the following result.

PEAK FuncrioNn LEMMA. Given a particular F(s, y) with V = V(F, U)
B, (M, U) << (G/V?)** B, (MN*, U)
for any positive integer ¢ > 1.

For the proof we suppose that F, (s, y) attains the maximum in the
definition of B,(M, U), and then use

E,(F, F°, U) > V*E,(F, U).

A related lemma was proved by Heath-Brown, who happened to need it
at the time.

LocaLisaTioN LEMMA. Given M and U, there is an F(s, x) with N> M
Jfor which

E,(F, U)>»> GB,(M, U).

Again we suppose that F, (s, y) attains the maximum, If it is too short,
we multiply by a sum ) ¢(p)/p° over primes in an interval, and average the
coefficients ¢(p) round the unit circle.

The concept that brings the zeta function to the centre of things is that
of a Halasz majorant.

2 h
Hes, )= Yl
1

1s a Haldsz majorant for N, < n < N,, H(N, N,) if h(n) = 0 for all n, h(n)

o0
21 for Ny <n< N, and ) h(n) converges.
1

Hatisz Lemma. Let H(s, y) be an H(N, 2N) majorant. Then
{E,(F, U))2 < GE,(H, U¥.
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CorOLLARY. BT (M, U) < M2 B¥(M, U?).

Proof. Let (s, y) be a complex number of unit modulus and the same
argument as F(s, x). Write

B, (F, U)= SIF(s, 21 = 2705, DF s, 1) = La) ¥ s, 0 22
U

v U n

Applying Cauchy’s inequality, we see that the left-hand side of the lemma is

<G Z <G§h(n) Al
N+1 1 n

=G ¥ 00 ¥ i f ’z‘fl o),
(s, pyel (s" x")eU n=

which gives the result.

This lemma explains why difference sets are important. The best choices
one has for Haldsz majorants are partial sums of the zeta function and
Dirichlet L functions. Since we want bounds in terms of R and D which
measure the size of U, there will be some sets U which are worse than
others. In the bounds we have, the worst sets U on which to estimate B
would be the pairs (it, x) for which L(s, y) has a zero f+ir with § close to 1.
This would not matter if we could construct useful Haldsz majorants without
using the zeta function. At one time I thought that the Rankin Dirichlet
series associated with modular forms and Maass forms could be used, but
Shimura and Zagier have proved that every zero of {(s) is a zero of these
functions also.

Jutila has proved a lemma related to Halasz’s.

JUTILA'S DIFFERENCE SET LEMMA. Let H(s, x) be an H(N*, 2* N* majorant.
Then

Eq (F, UY) << A% E,(H, UY).
This lemma says more than just
B%, (M, U?) << B,(M*, U?)

since on the right there stands an arbitrary Haldsz majorant, and we have
more control.
2. Involving the zeta and L-functions

First we introduce a concept: the flat set U'" is the projection of U onto
¢ =0, consisting of pairs (if, ) corresponding to the pairs (s, ) of U.
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A contour integral gives
By(M, U) < B, (M, UY),

and if 0 € o < 1/log MR for each (s, x) in U, the converse is true,
B,(M, UY) < B, (M, U).

We write U'® for the flat set corresponding to the difference set U2,
Montgomery was very fond of this majorant:

o x(n) eZ—n/N

Hes, 0 =T EE—

2
=-2€—_ J L(s+w, ) T(W)N¥dw+e(x)e* I'(1—s)N' ™%,
i
Re(s+w)=1/2

where ¢(x) is ¢(g)/q if x is a principal character to some modulus g;
otherwise g(y) is zero. This gives

E(H, U) €« Nt + N¥2 | Y IL(s+3+it, PTG +in)Fde,

— o yll)

a0
E.(H, U%) < RN*+ N¥2 [ Y |[L(s+%+it, [T G+in)l* dr.
- o y(2)
There are many treatments possible, taking the integral to any convenient
region where we know a good bound for L(s, y). My opinion now is that
this is a time-waster. However, if you want to play this game you will find
Littlewood’s lemma useful.

LemMA (usually called ‘Riemann hypothesis implies Lindeldsf’),

L(s, ) <(q(dl +e)f
unless there is a zero f+iy of L(s, y) with

c
>0—— <P (= t|+e).
B log | ly—tl < ( g q(t|+e)
This lemma provides the connection between zeros and bounds men-
tioned in the first section.
When U is well spaced one treatment (Montgomery again) is to take the
integrals back to Re (s+w) =0, which gives

B,(M, U) < M+RD"2,

In my paper Large values of Dirichlet polynomials I 1 had an iteration
starting from a non-trivial bound, and 1 used this bound. Ramachandra
pointed out that it was always better to start the iteration from the large
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sieve bound
B,(M,U)<M+D.

The moral is that the most difficult result may not be the strongest.

The next lemma began as a proof of an approximate functional
equation, suggested by Montgomery and worked out in my thesis. It was
simplified in Large values of Dirichlet polynomials I and was stated explicitly by
Ramachandra.

FourTH POWER MOMENT. If U is well-spaced and flat, |t| < T and k= 1
Y. |L(s+3+it, x)f << B¥(DY2, U),
(s, x)eU
and similarly for U2
The proof sketched here follows Jutila’s simple version. We use a

fearsome Halasz majorant — strictly it is eH(s, x) which is an H(1, M)
majorant — given by

1—u\ Mo
= L(u, x)+s(x)l“(1 +—l—‘) +
g 1—u

MW
+— Lu+w, x)F(1+K)—-—dw.
2 g/ w
Rew= —g/2
For the fourth power moment we take

g=12 where I=logD; M=31iD'?; Reu=3.

We use this to estimate |L(u, y)|*. The terms in H(u, y) with n > 3M/2 are
negligible, so the sum over |H|* is bounded by B} as claimed, and so is the
£(x) term.

In the integral we put v =1—w, and use the functional equation

Ld+u—v, ) =(f/n)"" " 2Go-u)J(v—u)Lv—-u, ¥)

where f is the conductor of the character x, G is the gamma-function factor,
and J is the finite product over the primes that divide g but not f which is
needed to compensate for y not being a primitive character. Now

Re (v—u) =3(g+1),

safely within the convergence region. Let M’ be the greatest even integer with
M’ < D2 and write

M = @ =
Liu—z, ) = x(n) 5 x(n)

+ :
Uu—z u—2z
17 M +1 1
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The sum from M’'+1 to infinity turns out to be quite negligible. We move
the integral over the first N terms back to Rev =1+1/log D (the extra
1/log D avoids a pole at w =0), and the sum can again be estimated by
B¥(D'2, U). Since

B¥(DY?, U) << B%¥(D, U)< B,(D, U) « D

by the Large Sieve, the case k = 4 gives the fourth power moment of L(s, y)
in a discrete notation.

A slight modification of the proof of the fourth power moment gives a
result that looks very different. Instead of M =4D'/2, write down H(u, y)
with M =2N and M = N and subtract. The term in L(u, x) on the right
cancels out. The series on the left gives an H(N, 2N) majorant when we
multiply it by a constant. The integral is treated in the same way, with M’
= D/N. The &(x) term is negligible unless y is principal and ¢ is small.

INVERSION LEMMA. Let N € D, and let U be well spaced. There is an
H(N, 2N) series with

4 piN

H(s, ) << N'Y2 [ |} g(m)n= 124 gy

-4 1
Jor all (s, x) in U? except those with y principal and |t| < I*.
I used to call this the Reflection Lemma, but there is an analogy with
van der Corput’s method of estimating exponential sums, with Lemma A

corresponding to our Inversion Lemma, Lemma B corresponding to Haldsz's
Lemma to give

(B, (M, U))* <« MR+R*+ M'* Bf(D/M, U?).
We use this to obtain my bound for the exceptional set.

THEOREM. If U is pure and well spaced, and V = V(F, U), then

GN G*
R << —-

o156 DN

Proof. The case N > D follows from the Large Sieve. Suppose for
simplicity that U is flat. By Haldsz’s Lemma and inversion

R*V2 < |E| (F, U)\* < GE, (H, U?) <<< GRN +GR2+GN'? B¥*(D/N. U3,

If either of the first two terms is the largest, the result follows. If the third
term is the largest,

212

R
GN2 << Bf (D/Na Uz) << RBT (D/N, U) (diSSCCtiOl’l)

<< R¥2 (B¥(D/N, U)!12 (Hélder),
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so that
4
STy << BYH(D/N, U) << B,(D/N, U)
G :
<< 72 B,(D, U) (peak functions)
GD .
<K VI (large sieve).

Heath-Brown has used the Inversion Lemma to show that for
M > D*3*t (constant depending on &)

*(M, U?) <<< MR+ R?,

a best possible result. This implies the Large Values Conjecture for the
special case when U is an arithmetic progression.

At the other extreme, if U forms what Professor Erdss has called an S*-
sequence, we may combine Haldsz’s lemma and the large sieve. An S*-
sequence is one in which each non zero difference occurs at most k times.
With little loss of generality the pairs of U are of the form (it, x) where t is
an integer. If U is well spaced, so is the set U’ formed from the distinct
members of U2, In Haldsz's lemma we have

{E{(F, U)}* < GE,(H, U* <« GRN+kGE,(H, U').
By Hdlder and the large sieve, for N <D
{E{(H, U)}?> < min (R%, D)E,(H, U’) € ND min (R?, D)
and
GN (GN\?
R <—V—2—+(—I-/T) k'2D.

What we now need is a combinatorial method to fill the gap between an
arithmetic progression and a negative Sidon sequence.
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