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A METHOD OF REDUCTION OF CONSTRAINTS

8. ROLEWICZ

Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland

Let X, Y,, Y,, Z be real Banach spaces. We assume that Y,, ¥, are
ordered by convex cones K,, K,. Let D he an open set in X. Let f be
a real-valued function defined on D. Let @,, G;, H map D into ¥,, Y,, Z;
G,: D-»Y,,G,: D->Y,, H: D—»Z. We assume that f, Gy, ¢,, H are conti-
nuously Fréchet differentiable.

We consider the following problem:

(1) J(@)—inf, 6G,(2)<0, Gy(2)<0, H(z)=0.
We form the Lagrangian

(2) L(@y 915 P2y ¥) = [(2) + 91 (G1 (@) + 92 (G(0)) + v (H (@)

Let z, € D. Let G,(x) = G3(x,) = 0. We assume that at x, the necessary
optimality condition of the Kuhn-Tucker type holds. It means that there
are linear continuous functionals ¢, € Y3, ¢, € Y3, v €Z*, ¢, >0, ¢, > 0
such that the Fréchet differential of the Lagrangian is equal to 0:

(3) d(L(qujuq’z"f’)") =0
(see [1]).

The main result of the paper is a proof of the fact that under certain
conditions problem (1) can be reduced locally at x, to another problem
with a smaller admissible set, namely to the problem

(4) f(@)~>inf, Gi(2) =0, G,(2)<0, H(a)=0,

This result permits us to reduce problems concerning sufficient condi-
tions and necessary conditions of higher order for problem (1) to similar
considerations for problem (2).

TaeoreMm 1. Let X, Y,, Y,,Z, f,@,,G;, H be as above. Assume that
at m, the mecessary oplimality condition of the Kuhn—Tucker type holds,
f.e., there are g, € Y1, g2 € X3, ¢, > 0, 92 = 0, v € Z* such that we have (3).

[469]
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Suppose that ¢, 18 uniformly positive, i.e., there 18 an L > 0 such that
for y=0
(9) iyl < Ly (9)
(see [2]). Suppose that the differential
(dG1(wor )y 4G, (20, ), dH (3, *))

18 a surjection of X onto ¥, x ¥, xZ.
Then there is a neighbourhood @ of the point x, such that for each x € Q
there is an @c Q suoh that

(6) G,{%) =0, G,(7) =Gyu(2), H@) =H() =0
and
(7) f(z) = f(z).
If, moreover, G,(x) # 0, we have
(7" f(@) > f(=).

Proof. Since (dG, (2, *), dG,(,, *), dH (2,, *)) is a surjection, by the
Ljusternik theorem [3], there are a constant ¢ > 0 and a neighbourhood
@, of z, such that for all z € Q there is an x, such that (6) holds and

(8) lw— =, < CllG ().

By the continuity of Fréchet differentials there is a convex neighbourhood
@, = @, of z, such that for x € Q,

H
(9) |Id(L(mr‘Pn‘Pzr'P)1')||\<~m‘-
Observe that (9) implies that for any z, ¥y € Q,
1
(10) WL (s @1y P2y ) —L(Y, @1y @2y YIS 3CL e — il

By the intersection theorem [6] there is a neighbourhood @ < @, of =,
such that for any # €Q there is an & € Q such that (6) and (8) hold. By
(4) and (6) and (8) we get
(11) flx) “f(aA;) = —¢ (G1(m)) -+ [f(m) T ¢, (G,(.’D)) +‘Pz(02 (97)) +
+ o (A (@))] — [£(@) + 1 (61 () + 92 (G2 (@) + v (H @))]
= _?’1(31(-’”)) + 3. (Gl(m)) = —ip (Gl(m))
= %Iq’l(Gl("B)) I
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Formula (11) gives trivially (7). By (6) we obtain (7'). Taking X, Y,,
Y,, Z finite-dimensional, we obtain the result of paper [6]. As a conse-
quence of Theorem 1 we obtain

COROLLARY 1. Suppose that all the hypotheses of Theorem 1 are satisfied.
Then a point x, 13 a solution of problem (1) if and only if it is a solution of
problem (2).

Now we shall give examples showing when the hypotheses of Theorem

1 are satisfied.

ExampPLE 1. Let X be a real Banach space. Let ¥,, ¥,,Z be real
finite-dimensional spaces. It means that @, (x), G,(z), H (z) are of the follow-
ing form:

G,(z) = (g}(w)’ cevy 911»(417))’
(12) G:(z) = (g1(2), ..., gn(2),
H(z) = (hl(m)r ceey hl(m))-
The differential (dGl(w,,, '), dGg (2, *), dH (x,, -)) is a surjection if the
gradients
VgL (Te)y .oy VOR(T0);  VEHTG)y -ony VR (T0);  Vhy(my), ...y V(@)

are linearly independent.

ExAMPLE 2. Let ¥, be an n-dimensional real space with the standard
order. A functional ¢(y) is uniformly positive if and only if it is of the
form

n
(13) o(¥) = D Wy,
]
where
(14) A>0, i=1,2,..,n.

ExAMPLE 3. Let Y be L*(2). Let ¢(y) be of the form
(15) p() = [oMyadt.
92

Then ¢ is uniformly positive if and only if
(18) essinfe(t) > 0.

ExAmPLE 4. Let ¥ = L?(2), 1 < p < 2, with the standard order.
If Y is infinite-dimensional, then there is no uniformly positive functional
in Y. This follows trivially from Theorem 1.5 of [2].
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The following examples show that the hypotheses of Theorem 1
are essential.

BxamrLi B. Let X = R®. Let ¥, = R Let
g, = @, — Dy, gs = &)+,
gy = m1+w§’ f= “3’1_2-'5:-

Observe that at the point 0 we have the necessary optimality condition.
Namely,

I lomzy +HGtlzmzy + 92l2mz, + Golzma,) = O.
Since

{z: g;(¢) =0, ¢ =1,2,3} = {(0,0,0)},
mi{f(z): g;(¢) =0,4¢=1,2,3} =0.
On the other hand, for any neighbourhood @,
inf{f(z): z€Q, g;()<0, ¢ =1,2,3}<0.
The reason is that

(g; |.'t—07 9;':-0 4 g;lx—o)

is not a surjection on R°.

ExawvrLE 6. Let X, Y,, ¢, ¢, f be as in Example 5. Let h(x) : = g,.
In the same way as in Example 5 we obtain a counterexample showing
that Theorem 1 does not hold if (@¢'|,—; , H'|;,) i8 not a surjection.

The essentiality of uniform positivity results from the following
ExawpiE 7. Let X = R3, g, = x,,
gy = —@y—a;, [ =,
Of course (gilywo, g2/z=0) i8 @ suUrjection on R* and
flgmo +0-G1lz0z) +193l5mzy = 0.
Observe that for any neighbourhood @ of zero
inf{f(z): €@, g;(x) <0, ¢ =1,2}<0.
On the other hand, g,(z) = g.(x) = 0 implies that # = 0 and
(17) inf{f(x): g,(2) =0, g.(z) =0} =0.

Let X, ¥,, Y,, Z, f, G,, G;, H be as above. Suppose that at x, the neces-
sary condition of optimality of the Kuhn-Tucker type holds, i.e., there
are g, € Yy, @€ X3, 9. >0, 9, >0, v € Z* such that (3) holds. Let

(18) T = Kerd(G,(a,), ) n{h: dG,4(2y, h) < 0} nKerd(H (), *).
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Let K(x), # € X, be a function uniformly continuous on bounded sets and
homegeneous of order a, a > 1.

THEOREM 2. Suppose that for all e D c X
(19) WL (@, @1y P2y ¥) —L(@0, @1, Pa, V)il = K (2 —24)l,
sign [L(z, @1, @2y ¥) —L(oy @15 @2y v)] = sign K (z ~m,).

If K(h)>c¢> 0 for h €T, then @, ts a local solution of problem (1).
If K (hy) < O for some hy € T, then 3, 18 not a local solution of problem (1).

Proof. Let
(20) D, = {h e X: dist(h, T) < e|h|}.

By the uniform continuity of K (k) on bounded sets there is an &> 0
such that

(21) |K(h)| = 4¢|h||® for helD,
Observe that there is a 4 > 0 such that
(22) {w: Gy(z) = 0,G,(x) < 0, H(z) = 0} nB(a,, 6) = D,NB(x,, 9),

where, as usual, B(x,, 6) denotes the ball with radius é and centre at z,.
Inclusion (22) and inequality (19) imply that z, is a solution of problem
(4). Thus it is also a solution of problem (1).

Suppose now that there is an h, € T such that H(h,) < 0. By the
uniform continuity of K we can find an A such that

Gy(wo+h) =0, Gy(2e+h)<0, H(x,+h)=0
and
(23) K (k) < 3 K (h,).
This trivially implies that z, is not a solution of problem (1).
Now we shall apply Theorem 2 to mathematical programming.

COBOLLARY 2 [4] (see for example (4)). Let f, g1, ..., g, be twice conti-
nuously differentiable. Suppose that the gradients Vg,, ..., Vg, are linearly
independent.

Suppose that there are Lagramge muliipliers Ay, 25,y ..., 4, =0 such
that the Lagrangian

(24) Lz, 3) = f(2)+ ) kgi(o)

has differential equal to 0 at z, and the Hessian (the second differential)
at x, can be estimated as follows:

(25) &L (o, 1), b) = cllblf,
where ¢ > 0 and h € T. Then z, i8 a local solution of problem (1).
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Proof. Polynomial operators are uniformly continuous on bounded
sets. Let
Y, =1in{Vy,: 4 > 0},
Y, =lin{Vg,: 4 = 0}.
Let P,, P, be projections onto Y, and Y,, P, +P, = I. We put @, = P,G,

G, = P,G and we use Theorem 2.
If X is finite-dimensional, we can replace (25) by

(25") d*{L(x,4),k) >0 for heT, h #0,

using compactness arguments.

In Corollary 2 linear independence of n gradients Vg,,..., Vg, is
required. In fact it is not essential. The proof of this fact is based on the
following

LeMmA 1. Let a,,...ya, be linearly independent elements in a linear
space Y. Let be Y and
(26) a,+a,+ ... +a,+b #0.
Then there i8 an index i such that the vectors
Ayy ooy @yy Ggtbyay,, ... a,
are linearly independent,

Proof. If b ¢lin(a,,...,a,), we take ¢ = 1 and ftrivially a,+b, a,, ...
...y @, are linearly independent.

Suppose that b elin(a,,...,a,). Then b =g,a,+ ... +8,2,. Since
(26), there is a f; # —1. In an obvious way

Qyyoney @1y Ggtb, 804, ...,a,

are linearly independent.
Now we can prove

COROLLARY 2’ [4]. Let X be a Banach space. Let f, g, ..., g, be twice
continuously differentiable real-valued functions. Let g,(zy) = ... = g,(2,)
= 0. Suppose that there are Lagrange multipliers 4,, ..., A, = 0 such that
the Lagrangian

(24) L, 2) =f(@)+ Y Lgi(a)

t=l

has differential equal to 0 at z, and the Hessian at x, can be estimated as
in (25). Suppose that Vf # 0.
Then x, i8 a local solution of problem (1).
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Proof. Liet k = dimlin (Vg,(z,), ..., Vg, (z,)). We assume that Vg, (z,), ...
...y Vgi(®,) are ordered in such a way that Vg,(z,), ..., Vg,(2,) are linearly
independent and o '

>0, ¢=1,2,...,1, 1<k,
A=0, i=1+1,...,k,
>0, ¢=k+1,...,m,
A=0, ¢t=m+1,...,n.

(27)

Using Lemma 1, we may assume without loss of generality that the gradi-
ents

VG, () s VG_1(@0)y D) 4YG:(30), V8141 (Z0), -+, Vi)

(=]
are linearly independent.
Now we shall consider the following optimization problem:
(28) f(@)—>inf, g(x)<0, ¢=1,2,...,k,

where

%(2):= gi(®), i #1,

29 n
(#9) 9:(x) =2ﬁvi9{(‘”)-

t=]

Of course the admissible set in problem (28) is bigger than the admissible
set in problem (1). Therefore, if x, is a solution of problem (28), it is a solu-
tion of problem (1). Applying Lemma 2, it is easy to verify that if

(30) d*(L(zg, 1), B) = ¢k}, ¢>0, forall heT,,

where

I=1 \d
(1 T, = () Kerdlg,(zo), ) nKer( Y hd(gi(z), )0

fm=]
Nk d{gy(2o), h) <0,1=10+1,...,k},
then 7', = T, where T is given by formula (18).
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