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1. Imtroduction

Let us first describe briefly the optimal stochastic control problem we
consider: the state of the system we want to control is given by the solution
of the following stochastic differential equation:

dy,(1) = o (1), v(t, @) AW, +b(y, (1), 0(t, w))d,

@ Yz(0) =z €0,

where 0 is a regular domain in RY; W, is a Brownian motion in R?, a(z, v)
is a matrix-valued funection from @ x V; b(x, v) is a vector-valued function

from OxV; V is a given closed set in R™ (for example) and »(¢, ) is
any adapted process taking its values in V. The precise assumptions and
meaning of (1) will be given below.

We then introduce a cost function J(z,v(-)) for any control v(:)
(=2(t, 0)=>V):

@) (o, 00) = E[f fa.0), s@)exp{ [ —c(y.(5), v(s))ds}],

where f(z, v), ¢(x, v) are given real-valued functions from OxV and T,
is the first exit time of the process y,(t, ) from 0.

We want to minimize J (2, (+)) over all admissible controls, i.e., over
all possible adapted processes taking their values in V:

(3) u(w) = i?fJ(w,v('))
of-
and u is the optimal cost function (or criterion) of the problem.

[313]
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Using the heuristic argument of dynamical programming (due to
R. Bellman), one expects % to satisfy the following equation (called the
Hamilton—J acobi—Bellman equation — HJIB in short—):
(4) sup{A (v)u(z)—f(x,v)} =0in ® «u=0 on 00 =1I}
velV

where A (v) is the 2nd order elliptic operator (possibly degenerate) defined
by

(5) A0) = — D) ay(@,0)9— D b(@,v)d+e(x,v)
1. ]

and where the matrix a(z, ) is given by a(z, v) = Yo (x, v) 0T (2, v).

If one knows a priors that u(x), given by (3), is of class C? in @, then
by using It6’s formula it is not difficult to check that (4) is satisfied (see
W. Fleming and R. Rishel [56], or [1], [7]). On the other hand, if there
exists a solution # € C*(0) of (4), then necessarily 4 = 4 in @ (see [6], [1],
for example). Of course, there is no reason why « should be of class C?
and actually simple examples show that this is in general false.

In this note we want to present very general (and nearly optimal)
results obtained by the author concerning (i) the derivation of equation
(4) in a convenient sense, (ii) the question whether a given solution of (4)
in a convenient sense is the optimal cost function %, (iii) the regularity
of u.

The first general results in this direction were obtained by N. V. Kry-
lov (see below for the references) and we want here to extend those results
in two aspects: (i) we assume a very weak form of non-degeneracy of the
matrices a(z, v), (ii) we introduce a new uniqueness class,

II. Notations and assumptions

We define an admissible system o = (2, F,F,P, W, v(t, w), y.(t) as
the collection of a probability space (2, F, F¢, P) with the usnal properties,
a Brownian motion in R?W, (with respect to F*), of a progressively measu-
rable stochastic process »(t, w) taking its values in V¥, and of a strong
solution y_(?) of (1) (for z € (5)

We assume that o(x, v), b(z, v), f(z, v), c(z, v) satisfy the following
conditions:

p(z,v) e W»2(0) VveV and suplplypzee< +oo,

(6) vel

@(x, v) is continuous in ve V for « €0
for g =0y I<I<N,1<j<p), by A<i<N), o, f;
(7) A =infe(x, v) > 0.

xe0
veV
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Finally the infimum in (3) has to be understood as the infimum over
all admissible systems.

Remark IL1. Let us notice that the probability space and the Brow-
nian motion are not fixed above. But actually it is proved in [18] that if
we fix (2, F, F, P, W,), then the corresponding optimal cost funetion
is equal to u given by (3) — in particular, it is independent of the chosen
probability space.

HII. Main results

Our first result concerns the derivation of (4):

THEOREM I1I.1. Under assumplion (6) and if the following s satisfied:

8) Iv>0,Vzel, VoeV, VEcRY: Za,.,.(w, v) £ > v £,

TR
then there exists A, (depending explicitly on | D¢l o for lal =1,2; ¢ = 0, b)
such that, if A > Ay, then we have w € W' (0) and

(9) Aw)u e L*(0) YoeV and sup(A(v)ulpee < + o,
veV

(4') sup{d(v)u(z)—f(z,v)} =0ae. in ¢, u=0 on I,
eV

In addition, u <8 sems-concave, i.e.,

u
o2

(10) ¢ > o, <C in 2'(0), VEeRY, |§ =1.

Remark ITI1.1. If @ = R¥, assumption (8) disappears. If ¢ and b do
not depend on z, then i, = 0.

Remark II1.2. This result extends previous results due to N. V. Krylov
[7]-[11], M. Nisio [22]; H. Brézis and L. C. Evans [2], P.-L. Lions [12],
L. C. Evans and A. Friedman [3], P.-L. Lions and J. L. Menaldi [20],
[21]; M. V. Safonov [23]-[25].

The result is proved in P.-L. Lions [18] (see also [17]) by a combi-
nation of methods of partial differential equations and of probability
theory: a pure analytical proof of Theorem ITI.1 in the case where the
matrices a{x,») are non-degenerate can be found in P.-L. Lions [13]
(see also [14]); a pure probabilistic proof of Theorem III.1 in the case
where @ = RY can be found in P.-L. Lions [15] (see also [16]).

Remark II1.3. Since we want a solution # which satisfies ¥ = 0 on
I' = 00, it is natural to assume (8) (variants are possible, see [18]). Of
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course, this assumption is not satisfied in the case of deterministic control
(i.e., o(®, v) = 0): in this case, however, similar techniques may be used
to obtain very general and optimal results (see P.-L. Lions [19]). Let
us also remark that if @ = RY, Theorem III.1 contains the deterministic
case.

Remark I11.4. The assumption that A is large is in general necessary,
a8 is shown in the example of Genis and Krylov [6). Nevertheless, in the
special case where the matrices a(x, v) are non-degenerate on 5, we may
just assume 4> 0 (this is proved in L. C. Evans and P.-L. Lions [4]).

Remark II1.5. It is not difficult to build various examples which
show that the regularity obtained in Theorem III.1 on u is optimal.

We now turn to a uniqueness result:

THEOREM III.2, Under assumptions (8), (7) and (8), we have:
(i) If w e Wh(0)NC,y(0) and if w satisfies

(11) A@w<f(r) i 20 VoeV; w<0 on T,

then w(r) < u(z) in 0.
(ii) If 10 € W"(0) and satisfies (9), (4') and

(12) Aw<<g n  2'(0) with gelLy,(0),

then w(z) = u(z) in 0.

Again it ig not difficult to show, by various examples, that this result
is optimal. Functions w satisfying (12) are called semi-super harmonic
(SSH in short).

Remark IIL.6. Of course, under the assumptions of Theorem III.1,
# is the maximum subsolution (i.e., satisfying (11)) of (4); and % is the
unique SSH solution of (4').

Remark II1.7. It is possible to replace (12) by

(12') Aw<g in 9'(0) with geIf (0),

loo

where A is any 2nd order, uniformly elliptic operator with smooth coeffi-
cients; then the conclusion of Theorem ITI.2 is preserved.
We finally mention a regularity result:

THEOREM III.3. Under the assumptions of Theorem IIL.1, and if in
addition we assume that there exist an open set I = 0, ke {l,...,N},»> 0
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such that
( Veel, In>1, 3(v,...,7,) € V" 3A(6y, ..., 6,) € 10, 1[",
n
6; = +1
(13) Z v
Zﬂ,au(m v) & 2|54|2 VéeRY,
ijl fm]

then we have

dtu

14
(14) 0 0;

eL*(I) Vi<i,j<k.

ExampLE ITLL. Take V ={1,...,N}, p = N, o,;(z, ) = V28,.8;,
b(x,v) =0, ¢(w,v) = A > 0. Then (4) becomes

2
(15) max {— aq: + iu —f(2, m)} =0 a.e. in R~
1<m<N amm

Then the combination of Theorems ITI.1-II1.3 shows that the correspond-
ing cost function w%(wx) is the unique solution in W**(RY) of (15), as
soon as f(xz,m)e W»=(0) (V1< m< N).

Theorems ITT.2 and III.3 are proved in P.-L. Lions [18] (see also
(17], (8], [11]).

Remark II1.8. All the results presented here are easily adapted to
the case of time-dependent stochastic integrals, of stopping time problems

(see [18]), and also of impulse problems and jump diffusion processes
(works in preparation).
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