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1. Imtroduction

Since the appearence of the fundamental papers of Rankin [20] and Selberg
[22], in which the convolution of Dirichlet series associated with modular
forms is introduced, many papers have been written in order to establish
analogues of the prime number theorem and related problems for the coeffi-
cients of certain modular forms. In fact, the methods of Rankin and Selberg
enable one to obtain zero-free regions for the Dirichlet series generating
functions of such coefficients. These regions are indeed crucial for the proof
of prime number theorems.

Let us recall some results on the subject.

Let I denote the modular group SL(2, Z) and let S, (I') be the space of
cusp forms of weight k for I'; if geS,(I') we set

(1) g(@) = Y a(ne*™™.

n=1

We will always suppose that g is a normalized eigenfunction for the Hecke
operators T'(n), le.

(2) a(l) =1
and
(3) T(n)g = a(ng

for every ne N. We recall that under these assumptions we have a(n)e R (see
for instance the book of Ogg [14])).

If geS, (I satisfies (1), (2) and (3) we write L (s)= ) a(mn~° Then
n=1

[405]
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Goldstein [4] and Moreno [12] obtained some equivalent conditions for the
validity of the Riemann hypothesis for L, (s}, namely, that all the non-trivial
zeros of L,(s) lie on the critical line ¢ = k/2. These conditions involved the
summatory function of the arithmetical functions u(n, g) and A(n, g), the
coefficients of the Dirichlet series for L, (s)”' and —L,/L,(s), respectively.

Unconditional results for the above quantities have been obtained by
Moreno [10], [11], Anderson [1], Hahnel [6] and Grupp [5]. Moreover
Niebur [13], Rankin [21] and Grupp [5] obtained the prime number
theorem for a(p)>.

The aim of this paper is to, obtain the following analogue of the Siegel-
Walfisz theorem on the uniform distribution of primes in arithmetical
progressions.

Let ¢ ,(x, q;a) = Y a(n?A(n); the result is the following

nsx
n=a(modq)

THEOREM. Ler ge S, (') satisfy (1), (2) and (3), N be a real positive number
and (g, @) = 1. Then there exists a positive constant c, depending only on N,
such that

(4) V,2(x, 45 a) = x*/¢(q)+ O (x* exp(—c/log x))

uniformly for q < (log x)~.

We shall give only a brief sketch of the proof.

The author wishes to thank the Banach Center of Warsaw for its
hospitality during the Semester on Number Theory.

2. The Rankin-Selberg convolution

Let geS,(IN satisfy (1), (2) and (3); it is well known that

-2 (5]

is an entire function, |a,| = p*~ "2 and a(p) = a,+4,.
Now let

) Lio)= Y aln™,
n=1

2y-1 = \—2 2\ —1
(6) ng(s):l;[(l—%") (1—9’%:2) (1-9;5) .

The relation between (5) and (6) is given by
Lyogls) = {(25—2k+2)L 5(s),

where {(s) is the Riemann zeta function.
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In [20] and [22] the analytic continuation and the functional equation
of L,g,(s) were established. Several authors studied the analytic properties of
the convolution of Dirichlet series associated with cusp forms for various
congruence subgroups of I'; we recall the papers of Ogg [15], Shimura {237,
Zagier [24], Li [7], {8], Asai [2], Manin and Panchishkin [9] and Panchishkin
(1e], C17]

Let y be a Dirichlet character (mod g); we are interested in the twisted
convolutions

=]

Lo(s, =% am?x(mn~*

n=1

and

azx(p))‘l( o, & x(p))‘z( o‘t’x(p))“
sarlS D) 1;[( v P D

again related by
Lyag(s: 1) = L(25=2k+2, x) L2 (5, ).
If ¥ (mod g) is induced from y, (mod ¢;) we have the usual relation

2 = ( ) 2 =2
LS, x)=ﬂ(1—a’);(p))(1—a”a";1 p) (l_a,,);(p))Lm(s, .0,

rlg

We will need the following lemmas.

LemMa 1. Let g be as in the Theorem. Then L,g,(s, ) is an entire
function, except when y is the principal character y,, and in this case
L ..(s. o) has a simple pole at s =k with residue

2 N2 —2
r,= C(z)k“H(l—;—i)(l-a—’p?) (l_o;_:)

pla

where a is given by (1.4) of [20], part 1L

qRg

LeMMA 2. Let g be as in the Theorem. If y is primitive (mod g), L,g, (s, X)
has a functional equation of the following form. Set

Peqls, X) = Q*I'(s+k—1)I'(s) Lygg(s+k—1, 2,

where Q is a suitable positive real number satisfying ¢* €Q <q*. Then
P00 (S, X)) =W, Ppe,(1—5, )

where |W,| = 1. Moreover, ®,g,(s, X) is holomorphic over C, except for at most
a finite number of simple poles.
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Proof of Lemmas 1 and 2. The proofs are contained in the above
mentioned papers for most cases, according to the factorization of g into
prime powers (recall that the twist of a modular form for I" belongs to some
congruence subgroup of I'). In the remaining cases one may carry out the
proof following the method of [9], with some additional complication in

details.

LemMMA 3. Let g be as in the Theorem. There exists a positive constant c,
such that Lyg,(s, x) # 0 in the region

o>k—cflog(q(lt|+2), s=o+it,

except for at most a simple real zero o < k, which may occur only when y is
a real non-principal character (mod gq).

Such a real zero, if it exists, is called “exceptional”.

Proof. 1t is easy to see that for ¢ > k we have

' I L
-3 Lg@g (O', xo)_4 Re LT (O._’_u, x)_Re—g®—g(O'+2lt, x2)>0
Lg@g L0®9 Lg®g

We use the De la Vallee Poussin-Landau method (see the book of
Davenport [3], Ch. 14) and exploit the estimates contained in Perelli [18],
expecially Theorem 1 and the lemma in the proof of Theorem 2 (note that all
the results in [18] are stated in a normalized form). This yields the classical
inequality about real and imaginary parts of the zeros, from which the
lemma follows.

LEMMA 4. Let g be as in the Theorem. There exists a positive constant ¢,
such that if z 2 3 there is at most one real primitive character y (mod gq), with
q <z, for which L,g,(s, x) has a simple real zero B, satisfying

ﬁo > k“Cz/log AR

Proof. The proof is deduced from the proof of Lemma 1 in analogy with
the argument given by Landau and Page in the classical case of Dirichlet L-
functions (compare [3], Ch. 14).

LeMMA 5. Let g be as in the Theorem and y a real non-principal character
(mod q). Then for any ¢ > 0 there exists a positive number c(g) such that
Ligg(s, x) # 0 for s > k—c(e)/q".

Proof. This lemma follows at once from Theorem 2 of Perelli and Puglisi
[19]. In that paper the real zeros of a class of Dirichlet series are investigated
(again in normalized form). Moreover the theorems in [19] are in the present
case unconditional, since Hypothesis S—T of {18] is not needed in the proof of
“complex” zero-free regions, i.c. in Lemma 1.
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3. Proof of the Theorem

From (4) we have, for ¢ > k,

E @
0= Y Al g®g)x(mn*
9 ®g n=1
where
(@™ +a™?logp if n=pm,
A , — p P .
(n, ®g) {O otherwise.
Let

Yoee (X, ) = Y, A(n, g®g) x(n);

n€x
then from |a,| = p*~'2 we get
1
— 1(a) Wyeq (X, 1)+ 0(x*~172).
(P (q) x(n§d q) 9@
We now derive the explicit formula for g, (x, x} when x # ¥,.

L; ®g

(7) V,2(x, 4;a) =

As usual we express Y, g,(x, ) in terms of — (s, x) by means of the

7 ®g
truncated form of Perron's formula. Shifting the path of integration to the

x* :

— and we estimate the
9@y S

integral on the path of integration using for instance the results of [18]. We

thus obtain the “finite” explicit formula with a remainder, which contains
some constants depending on y. Such constants are then estimated by using
the logarithmic derivative of the Weierstrass product for &,g,(s, x) and
Lemma 3. The above reasoning holds when y is primitive, but the transition
to non-primitive ¥ is made in the usual way. We thus obtain the following
formula: let 2< T < x and g # xo; then

Ko . x° x* log? gx
I T Ry maP +0( =
uniformly in g, where B, is the exceptional zero and ' means that 8, and
2k—1— B, are excluded from the summation.

The final step of the proof is to sum (8) over non-principal characters
and to use the estimates of Lemmas 3-5 and the estimates for the number of
zeros in the critical strip given in [18]. The contribution of this sum is
absorbed into the error term of (4), while the main term of (4) is obtained by
applying the same techniques to y,g,(x, %o). Note that all the ingredients
needed for the estimation of iy, g, (X, o) are obtained analogously to, but
more simply than those for ¥,g,(s, ¥).

. L
left, we compute the residue at the poles of ——22%

+ xk~3/% Jog qx)
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