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1. Introduction

In this paper we formulate some basic results of hereditarily indecomposable
compacta and ol piecewise linear mappings of the arc to itself. In parucular,
we will show that if X is an arbitrary hereditarily indecomposable com-
pactum which is covered by a chain cover # ={U,,...,U,} and if
f:41,2,...,m} > 1,2, ..., n) is a pattern, then there exists a refinement
¥~ of # covering X such that ¥ follows pattern f in %. These results
generalize and simplify arguments due to Bing and Moise. As a consequence
we provide a—hopefully easier —proof of the fact that the pseudo-arc is
unique, homogeneous and hereditarily equivalent.

By a compactum we mean a compact metric space. A continuum is a
connected compactum. A continuum X is decomposable provided it can be
written as the union of two of its proper subcontinua. A continuum is
indecomposable il it is not decomposable. A compactum is hereditarily
indecomposable provided all of its subcontinua are indecomposable. A chain
is a collection of sets # = {U,, ..., U,} such that

UinU;#0 < li—j < L.

A continuum X is chainable provided for every & > 0, there exists an open
chain cover % of X such that mesh % < ¢ A hereditarily indecomposable
chainable continuum P is called a pseudo-arc. Knaster [6] has shown that
such a continuum exists.

In proving several properties of the pseudo-arc, Bing and Moise (and
several other authors) used the fact that the pseudo-arc can be obtained as
the intersection of a nested sequence of “crooked” chains. The arguments
involved are quite complicated. We will prove several properties of heredita-

* This paper is in final form and no version of it will be submitted for publication
elsewhere.
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rily indecomposable compacta using new techniques. In constructing covers
following an arbitrary pattern in a givcn'covcr % of the hereditarily
indecomposable compactum X, we do not use the fact that X is obtained as
a nest of crooked chains. Hence X need not be chainable, connected or even
1-dimensional. These results generalize and simplify arguments due to Bing
and Moise. Rather than attempting to generalize known results about the
pseudo-arc, we have chosen to give a basic proof of some of its most
important properties. The results in this paper can be generalized to obtain
stronger results on homogeneity of the pseudo-arc and on patterns in
hereditarily indecomposable compacta (see for example the remark [ollowing
Theorem 5). Several results seem to have some interest of their own (see for
example [5] and [12] for some applications). Some of the results of this
paper are implicit in the work of previous authors. For completeness we
have placed in the last section proofs of some theorems which are known
(but which we could not find, in the form in which we needed them, in the
literature). If A = X, we will denote by Bd(A) and Cl(A4) the boundary and
closure of A, respectively.

2. Piecewise linear functions

If m <n are positive integers, then we denote by [m, n] the set {m, m
+1, ..., n}. A function f: [1, m] —[1, n] is called a (hght) pattern provided
fE+D)—fOI <1 (fG+1)—f{) =1, respectively) for i=1,...,n—1. We
call 1 and n the extreme points of the range of f and 1 and m the extreme
points of the domain of . We write f: X —» Y to indicate that f is a function
from X onto Y. Let f: [1, m] —»[1, n] be a pattern, where n > 2. We say fis
a simple fold if there exist integers r; and r, with 1 < r; <r, < m such that f
i1s one to one on each of [1, r{], [ry, r;] and [ry, m] and, if 1 <r; <r, <m,
then f([ry, r20) = f([1, ry]) 0 f([ry, 1]. We say that fis an end-fold if either
r,=1orr,=mIf f1s a simple [old and f is not an end-fold, then f is said
to be an interior fold. A pattern F,: [1, m] — [1, p] is called monotone
provided Fg'(j) = [a;, b;] = {x] a; < x <b;} for some a;, b;e[1, m] and
each je[l, p]. Let f: [1, m] -»[1, n] be a pattern, then f = f* o F, where F,
is a monotone pattern and f* is a light pattern. We will denote by |A| the
cardinality of the set A. A proof of the following theorem is given in the last
section (see also [13]).

1. THEOREM. Let f: [1, m]—[1, n] be a pattern. Then there exists an
integer k such that f = F,o...0F, 0oF, where

(1) Fy is a monotone pattern,

(2) each F; is a simple fold, 1 <i <k,

(3) if £ (1) (respectively f(m)) is an extreme point of the range of f, then
FioF,_y0...0Fy(1) (respectively F,0...0Fy(m)) is an extreme point of the
range of F,o...0Fy for each i =0, ... k.
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3. Crookedness in hereditarily indecomposable compacta

Let v =V,,....,V,} and % = U,, ..., U,} be chain covers of a com-
pactum X. Let f: [1, m]—[1, n] be a pattern. We say that ¥~ follows pattern f
in % provided V, c Uy, for each i =1, ..., m. We will call f a pattern on %.

One of the most fundamental properties of a hereditarily indecomposable
compactum X is that given a chain cover % of X and a pattern f on %, there
exists a chain cover ¥ of X such that ¥~ follows pattern f in %. The proof of
this fact will use Theorem 1 and the following [undamental theorem due to
Krasinkiewicz and Minc.

2. TueoreM (Krasinkiewicz and Minc [7] and Krasinkiewicz [8]). Let X
be a compactum; then the following are equivalent:

(I) X is hereditarily indecomposable;

(IT) for every pair of disjoint closed subsets A and B of X and for every
open set U intersecting all components of A, there exist closed subsets M and
N of X such that:

(1) X =MUN,

(2) A<M, Bc N,

(3) M~nNc U\AuUB;

(ITT) for every pair of disjoint closed subsets A and B of X and for every
pair of neighbourhoods U of A and V of B, there exist closed subsets X,, X,
and X, of X such that:

D) X=XouX,uUlX,,

2) Ac Xy, and Bc X,,

3) XonX, =0,

4 XgnX,cVand X, nX, < U.

The above theorem was proved for X a continuum, but the proof is
valid for X a compactum.

A cover # ={U,, ..., U,} of a compactum X is said to be taur if and
only if Cl{U)NCI(U;) # @ implies U, nU; #Q. If % is a cover of a
compactum and Ue, then we denote by iU, %)

= U\CI( {Ve @) V # UY).

3. THEOREM. Let X be an hereditarily indecomposable compactum and let
% =1{U,,..., U, be an open taut chain cover of X such that there exists a
continuum ZcX such Zni(Uy, U #Q#Zni(U,, 4. Ler
f: 1, m]—>[1, n] be a pattern on 9. Then there exists an open taut chain
cover ¥ =1V, ..., ¥V} of X such that ¥ follows pattern f in .

Moreover, if xqei(U,, %) and f(1) = 1, we can construct ¥~ such that in
addition xqei(V;, ¥").

Proof. By Theorem 1, f= F,0...0F; 0F; where each F; (1 <i<k)is a
simple fold and F, is monotone. We will inductively construct a sequence
v, (i=k+1,...,0)of open taut chain covers of X such that ¥", . = % and
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¢, lollows pattern F; in ¥;,, (i=0, ..., k). Then ¥, is the required cover
of X.

Case 1. F, 1s an interior fold. Put ¢ = F, and let domain g = [1, m].
Hence there exist integers r; and r,, 1 <r, <r, <m, such that g is one to
one on each of [1, r,], [r,, r.] and [r,, m,] but not on the union of any two
of these sets. Since g is an interior fold, we have either g(1) =1 and g(m,)
=n or g(l) =n and g(m,) = 1. Without loss of generality we may assume
g(1)=1 and g(m) = n. Put )

A = Cl [Ul (WA Ug(rz)“l () i(Ug(rz)’ j”)] and
B =Cl[i(Uy,,, Yo Uy, vyv...0U,)
Then A and B are disjoint closed sets. Put U= () U,and V= {J U;.

isg(ry) izgiry)

By III of Theorem 2, there exist closed subsets X,, X, and X, of X such

that X = X,uX,uUX,, Ac Xy, B Xy, Xgn X, =0, Xogn X, = Vand

X,nX,cU. Let H and K be open sets such that
XonXycHcCl(H) Uy, ,nU

glr)— 13

X1nX; e KcClK)c Uy nUpepy s

and
CI(H)n X, = CI(K)n Xo = CI(H) nCI(K) = Q.
Define a chain cover ¥, = [V, ..., V, | by
U; n Xo,\Cl(H) j<ry,
[XOUX1\C](K)]mUr1 j=r
VJ"=< szl‘anl r <j<r2a

[XZ o XI\CI(H)] m Ug(rz) J =Tz
CUjo 2y~ N X\CH(K) J>r.

Case 2. F, is an end fold, put F, =g. There is nothing to prove if g is
one to one. Let [1, m,] be the domain of g. Hence there exists an integer r,
1 <r <m,, such that g is one to one on each of [1, r] and [r, m] but g is
not one to one on their union. Since g 1s an end fold, we have either
g(We{l, n} or gim)e!l, n]. Without loss of generality we may assume
g(1)=1. Define A=Cl{U,u...0Uyp)-1ViUypm,, %] and P=
CI[i(U,, 2)]. Let Y be a continuum in Z such that

YNi(Up, ) #Q # Y N Upymy, Y NCli(Uyp,, %) = 1)

and let B=Y U P. Then 4 and B are disjoint closed sets. Let U = U,. By 11
of Theorem 2, there exist closed sets M and N such that Ac M, B N, X
=MuUN and Mn N c U\Au B. The rest of the proof of Case 2 is similar
to that of case | and » omitted.
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Case 3. F, is monotone. Using the fact that X is normal, it is easy to
construct the required taut open chain cover ¥,.

In either case we can construct a taut open chain cover ¥, such that
¥, follows pattern F, in ¥, ., = %. Replacing by ¥, and F, by F,_; we
can construct a taut open chain cover ¥",_,; of X such that ¥, _, follows
pattern F,_, in ¥°. If xoe€i(U,, %), then it follows from the construction
that xoei(V{, ¥ u i(V,,{j, ¥";) where V{ and V,;’;j are the end links of ¥; for
each j=k, k—1,...,0. Moreover, if f(1) =1, xgei(V?, ¥).

4. LEMMA. Let X be a hereditarily indecomposable compactum and let %
= {U,, ..., U,} be a taut open chain cover of X. Suppose xq€i(U,, %) for
some p, 1 < p < n and there exists a continuum H — X such that xoe H and
HA[i(Uy, ) wi(U,, %)) #@. Then there exists a taut open chain cover
v =V, ..., V) of X such that V, c U, for eachi =1, ..., n, an integer m, a
function f: [1, m] — [1, n] and a sequence X;, 0 <i < m of subcontinua of X
such rhat

( XO—Q) xoechch...CX,,;,
(

j=i

3) X, m(Vﬂ,), ¥)£Q and X, nCl[i(V;, ¥)] =@ i<m
(5) f(me!l, n and f(j)¢ (1, m} for each j < m.

Proof. We will inductively construct a sequence of taut open chain
covers ¥ ;= {V{,..., ¥} of X such that V/*!' < ¥/, 1 <t <n, functions
fi 11, /1—-1[1, n] such that fjJ[1,j—1] = f;-, and continua X; satisfying
(1)44). Put ¥", = %, X; = {xo} and define f, (1) = p, then (1)—(4) are satis-
fied. Suppose that ¥}, f; and X; have been constructed satisfying (1)—(4) for
j<u and f,(Hé¢{l,n}, 1<j<w Put a=min(f,([1,u])} and b
=max | f,([1, «])}. If there exists a continuum Z such that X, < Z,

b+1

ZOi(Vi L, V) AQ(Z ni(V,, ¥)#~Q)and Z U Ve (Z < U 173)

j=a—1
put ¥ i1 =%, Xu+1=2Z and define f,,,: [l u+1]—-11, n] by
Surrl[L,ul = f, and fi, 4+ =a—-1 (foo:(u+1)=b+1, respectively).
Then (1){(4) are satisfied. Hence, suppose that such a continuum
Z does not exist. Put P=Bd(V})n V., and Q =Bd(V)n V% ,. Let Y
be a subcontinuum of X which is irreducible with respect to intersecting X,
and Pu(Q, then X, < Y. Without loss of generality we may assume that
YN P#@®, choose yeYnP. Let ¢ be one half of the minimum of the
Lebesque number for the cover ¥, and the distance from y to X,. Define
U=S(y, e cClU) = L \X, and ¥, =W Y by
irt=vr ol j#a VT =VACHU) figr [ u+1‘ﬂ[1 "] by
Soril[l, 4] = f, and f,+,(u+1) = a—1. Since Y is irreducible with respect to
intersecting P U Q and X, there exists a proper subcontinuum Z < Y such
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that X, < Z, ZnU #Q and ZNn[PuQ]=0. Put Z = X,,,; then (1)+4)
are satisfied. By induction we can continue this construction until (5) is
satisfied.

5. THEOREM. Let X 'be an hereditarily indecomposable compactum and let
U = {Uy, ..., U,} be a taut open chain cover of X. Suppose that xoei(U;, U)
for some jell, ..., n} and there exists a continuum Y — X such that xoeY
and Y n[i(U,, W)vwi(U,, %] # Q. Then there exists a taut open chain cover
¥ ={V, ..., Vu} of X such that ¥ refines % and xoci(Vy, ¥) U i(Vy, ¥).

Proof. By Lemma 4 (and considering a refinement of % when necessary)
we may assume that there exist an integer m, a function f: [1, m] - [1, n]
and an increasing sequence of continua X; (i =0, ..., m) such that

1) Xo=0, xoeX;cX,c...cX,,

(2) X, c U Uy, for each re(1, m],

3) X, ni(Uy, 0 #@ and X, nCl[i(Uy,, %] =0, for ecach
te[l, m],

@ f()=j

(5) f(mei{l, n! and f(1)¢ {1, n} if t <m.

If v =1V, ..., ¥} is a taut open chain cover of X, define d(¥") to be
the length of the shortest subchain ¥  of ¥~ such that #” covers a continuum
Z with x,eZ and

Znli, ¥)vi(V, ¥)] # Q.

Note that by (3) f'is one to one, and hence by (5) d(%) = m. If there exists a
taut open chain cover ¥ of X such that ¥ refines % and d(7") = 1, then it
is easy to see¢ that there exists a refinement ¥ of ¥~ which satisfies the
conclusion of the Theorem. Hence it suffices to construct a sequence of taut
open chain covers ¥, of X such that ¥7,,, refines ¥', and d(¥ )
<d(¥,). Put % =v",. Since f(m)e{l, n}, we may assume without loss of
generality that f(m) = n. Since f is one to one,

|IRange f| =|domain f|=m=d(¥",).
Put a = min{f([1, m])}; then m=d(¥";) =n—a+1 and a > 1. Put
B=Cl[ U U vi(U,_y, %] and U=i(U,, ).

t<a—2

Then B and X,, are disjoint closed subsets of X and U n X, # @. Hence, by
I of Theorem 2, there exist closed sets M and N such that X = M UN,
Xn,cM, BcN and MnN c U. Define v, = {V#, ..., V&_,) by

U,NN s<n,
V2={U,, s =n,

Uy, "M s>n.
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Then 77, is a taut open chain cover of X and ¥, refines ¥". Moreover,
2n—a
X,.-; is a subcontinuum of X such that xge X,_;, Xp-; =  V? and

s=n+1
Xpr ViV o 170+ Q.

Hence d(¥ ;) < 2n—a—(n+ )+ 1 =n—a<n—a+1=d(¥",). The theo-
rem follows now easily by induction.

Remark. The notion of a simple fold (on an arc) as defined in Section 2
may be extended to simple folds on more general spaces. For example, a
map f: G, » G, from a graph G, onto a graph G, is an interior fold
provided G, = Xyu X, U X, where

(1) X; is a subgraph of G,, i=1, 2, 3,

(2) X;n X; is finite if i # j,

(3) f]1X; i1s one to one i =1, 2, 3,

(4) f(Xy) = f(Xo) N f(Xy),

(5) S (X,) separates C1(f (Xo)\f(X,)) from CI(f (X,)\f(X,)) in G,.

End folds can be defined in a similar way. If we replace % by a taut
open cover % whose nerve is a graph G, and f by a composition of interior
folds from a graph G, onto the graph G,, then Theorem 3 remains valid (i.e.,
there exists a cover & of X such that & refines €, the nerve of & is G, and f
is a pattern of & in ¢ (some of the elements of the cover & may be empty).
Other extensions of results in this section using these more general folds are
also possible. See [14] for some related results.

4. Chainable hereditarily indecomposable continua

In this section we will show that the pseudo-arc, P, is unique, homogeneous
and hereditarily equivalent. Given a chain cover # = {U,,...,U,} of a
compactum X we denote by F(#) the set U,. We will use the following well-
known theorem (cf. [1]).

6. THEOREM. Let % and ¥"; be sequences of taut open chain covers of
continua X and Y, respectively and let xoe X and yoe Y be points such that:

() |2 =Y,

2) hm mesh(%;) = hm mesh(¥;) =

(3) both U ., and 1/,+1 follow a pattern f; in U, and ¥";, respectively,
(4) xo€i(F (%), %) and yyei(F(¥), V).
Then there exists a homeomorphism h: X - Y such that h(xq) = y,.

7. THEoREM. Let X and Y be hereditarily indecomposable chainable
continug and let xoe X and yoeY. Then there exists a homeomorphism
h: X —»Y such that h(xg) =y,
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Proof. By Theorem 5 there exist sequences %; and ¥; of taut open chain
covers of X and Y, respectively, such that for i=1, 2, ...

(1) %,,, refines %; and v, refines ¥,
(2) xoei(F(U?/,-), %1) and }’OE’.(F("”F.')’ "V.'),

1 1
(3) mesh(%,, ,) <; and mesh(¥5,,) <-.
i

i

Moreover, we may assume that |%;| =|¥",]. Let p, be a pattern such
that %, follows pattern p, in %, and p, (1) = 1. By Theorem 3, there exists a
taut open chain cover ¢; of Y such that (; follows pattern p, in ¥°, and
Yo€i(F (), ¢,). Let n, be an index such that ¥, refines ¢, and let q, be a

pattern such that ¥, follows pattern q, in ¢; and q, (1) = 1. By Theorem 3

there exists a taut open chain cover #, of X such that x,ei(F(#,), #,)
and %, follows pattern g, in %,. Let n, be an index such that #%,, refines

%', and let p, be a pattern such that %,, follows pattern p, in #°, and

p2(1)=1.
P, q, P,
z//1<—- Y ,y—— Y —— ;ynz-— cea X

A

b, aq, P,
P (e J e [, e Y
1

By induction we can construct sequences W¥,, ¥, W, U
U,,,...and ¥, G, v, , Oy ¥

n3’ rlz’
Y respectively satisfying the conditions of Theorem 6.

ny> ﬂﬁl’
... of taut open chains covers of X and

ﬂl’

8. CoroLLARY. Let P be a hereditarily indecomposable chainable con-
tinuum, then P is unique, homogeneous and hereditarily equivalent.

5. Compositions of simple folds

In this section we will prove Theorem 1. Without being stated explicitly, this
theorem has been used by previous authors. Since every pattern is the
composition of a monotone pattern and a light pattern, it suffices to prove
the theorem for light patterns.

Proof of Theorem 1. The proof is by a double induction, first on n and
then on m starting with n=2.

Let n = 2. Clearly the theorem is true for m = 2. Suppose the theorem is
true for all light patterns g: [1, s]»[1,2] where 2<s<m Let
S:[1,m}—>[1,2] be a light pattern.

If m is even, then without loss of generality we may assume f (1) = 1 and
f(tm) = 2. By induction ' = f|[1, m—2]: [1, m—2] —»[1, 2] may be written



ON HEREDITARILY INDECOMPOSABLE COMPACTA 415

as a composition of simple folds, /' = F;0...0F}, where Fjo...0F; (1) and
Fio...oF;(m—2) are (distinct) extreme points of the range of F;0...0oF, for
i=1,..., k. Without loss of generality F;o...oF;(1)=1 for i=1, ..., k.
Let m, =|domainF] and n =|RangeF] for i=1, ...,k. Then f
=F,,,0F,0...0F, where F;: {1, m;+2]—»[1, n;+2] is defined by

Fi()) for j<m if 1 <i<k,
m+j—m  for j=m

Fi(j)z{

and F,,,: [1,4]—>[1, 2] is defined by

o1 oif j=1,3,
P =9 ¥ 224

If m i1s odd, then without loss of generality f(1) = f(m) =1 and f(m—1)
= 2. By induction f’ = f|[1, m—1]—[1, 2] may be written as a composi-
tion of simple folds f'=F,0...0F] where (without loss of generality)
Fio..oF;(1)=1 and Fjo...oF (m—1)=max |RangeF;o...0F]} for
i=1....,k Let m; =|domainF;} and n, = |Range F}| for i =1, .... k. Then
S =F 0F0...0F, where F;: [1, m+1]—>[1, n;41] is defined by

Fi() for j<m o 1<i<k,
m+1 for j=m+1

F.'U)={
and F,,,: [1,3]—1[1, 2] is given by

1 if j=1,3,

Fk+1(j)={2 if j=2

Suppose the theorem is proved for all ight patterns with cardinality of
the range < n. There is nothing to prove if m = n. Suppose, therefore, that
the theorem has been proved for all light patterns g: [1, s]—»[1, p] where
2<p<nand p<s<m Letf: [1, m]—>[1, n] be a light pattern. There are
essentially four cases to consider. We prove in detail only the first two cases.
The other cases are similar.

Casel.f()=1,f(m=nand |l < f(j)<nfor 1 <j<m Then f(m—1)
= n—1. By induction /" = f|[1, m—1]: [1, m—1] »[1, n—1] is a composi-
tion of simple folds f'=F,0...0F; where Fio...cFj(l)=1 and
Fio...oFj(m—1) = max {range F;o...oFy} for i=1,..,k Let m
= |domain F;| and n; = |[RangeF;|. Then f =F,0...0F, where F;: [1, m;

+1])-»[1, n;,,] is given by
L FQG) b jsom,
F.()) =
iU {n,-+l if j=m+1.

Case 2. f(1) = f(m) = 1. Let r be an integer such that f(r) = n. Then f*

’

= f|[1, r]: [1, r]-—>[1, n] is a composition of simple folds ' = F,o...0F)
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where Fio...oFj(1)=1 and Fjo...oF|(r) = max {Range Fio...oF}} for i
=1,...,k Let

m; =|domain F; and n; =|RangeFj|.

Define g: [1, m—r+1]—-[1,n] by g(j) = f(j+r—1). Then g = G,0...0G]
1S a composition of simple folds such that Gjo...0oG{(1)
= max {RangeG;o...0G)} and Gjo...oG (m—r+1)=1 for i=1,..., p.
Let r,=|domainG]| and s =|RangeG]| for i=1,...,p. Then f
=HoF,0...0F 0G,0...0G; where G;: [l,r+r—1]—>[1l,r+s5-1] is
defined by

Gl-(j)z{j for j<r

<
. ] fori=1, ..., p;
r+5,—Gi(j—r+1) forj=r

Fi: [1,mj+n—1]—-[l, ny+n—1] is given by

F(i P<m
F.-(j)={ 'U). J "™ for i=1,...k
mtj—m; j=m
and H: [1, n,+n—1]—[1, n] i1s given by
- j if jgnkzns
H(j) = _
U) {2n—j if j=zn,.

Case 3. f(l)=1,f(m)=nand f(r) =1 for some r with 1 <r. Let 1 <s
< r such that f(s) = max |Range f|[1, r]}. The proof uses the inductive
hypothesis on the intervals [1, s], [s, r] and [r, m].

Case 4. f (m) i1s not an extreme point of the range f. Let r be the smallest
integer such that f([1, r]) = [1, n]. The proof uses induction on the intervals
(L, r] and [r, m].

Footnote. The first author was supported in part by NSF grant number MCS-8104866 and
the second author was supported in part by NSERC grant number A5616.
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