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The terms cell-like set and cell-like mapping were first introduced by R. C.
Lacher in 1968 [La]. Briefly, a finite dimensional continuum X 1is called cell-
like if for some n, X can be embedded as a cellular subset of R”. This means
that X = () B;, where B,,, = B;, and each B; is an n-cell in R" Subse-
i=1

quently, Lacher proved that being cell-like implies having finite dimension
and the shape of a point. A map is called cell-like if 1t i1s proper and each
point inverse has the shape of a point; as a consequence of this definition the
requirement that point inverses be finite dimensional is dropped altogether.
I shall use the term cell-like map below to refer to certain results that were
proved prior to the introduction of the term. For the purposes of this article,
restrict spaces to those that are metrizable except {or certain complexes that
arise in definitions.

Decompositions of R* into cell-like sets were studied extensively in the
1950°s by R. H. Bing. For these decompositions, the quotient map q: R* —» Y
is a cell-like map. The reader is referred to [Bil], [Bi2], [Bi3] for some of
Bing’s work on the subject. We may replace R*® by any manifold M" and
consider g: M — Y, a cell-like map. The guestions usually asked are

a. Under what conditions are M and Y homeomorphic?

b. Under what conditions are M xR" and YxR" homeomorphic?
Already in 1925 (see [Mo]) R. L. Moore proved that if M = R?, then so also
is Y. But the examples given by Bing show that no such theorem is true
when M = R>.

During the 1960’s and 1970’s an extensive literature developed about
these decomposition problems. Many examples were given of nonmanifolds
Y whose product with some R" (usually R) is a manifold. The “double
suspension” problem was solved as were many other difficult ones. A survey
article [Dal] by R. Daverman shouid provide the interested reader with

* This paper is in final form and no version of it wil be submitted for publication
clsewhere.
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some background. As a footnote, it should be mentioned that M. Freedman’s
proof in 1981 of the 4-dimensional Poincaré conjecture made use of the
proof techniques that had been developed for the study of decomposition
spaces.

In a 1981 paper [Da2], Daverman showed that if the quotient space Y
of a cell-like map g: M" — Y is finite dimensional, then YxR> = M xR* It
is notl known whether R?> can be replaced by R; this is a challenging
problem. A perhaps more challenging problem is to determine whether the
quotient space Y must be finite dimensional, the so-called cell-like map
dimension raising problem. [ shall return to this shortly (consult also the
survey article [Dal]).

Topological dimension theory is an old subject which was apparently
mature in 1941 with the first printing of the Hurewicz and Wallman book,
Dimension Theory [HW]. (Several rivals have since been published.) The
experience of this author shows that, although there is a vast literature
determining a theory of dimension for finite dimensional (metrizable) spaces,
the literature for infinite dimensional spaces cannot be said to determine a
theory. This fact came to my attention while working with R. Schori and J.
Walsh during the late 1970's on the cell-like map dimension raising problem:
can a cell-like map of a finite dimensional space have range (such maps are
always surjective} which is of higher dimension? From work of George
Kozlowski [Ko], if the dimension rises, then it must rise to infinity. It was
also known that any space containtng subspaces of arbitrarily high finite
dimension could not be the target ol a celi-hke dimension raising map. So
naturally the question of whether every infinite dimensional space or com-
pactum must contain subspaces of arbitrarily high finite dimension came to
the fore. We were confronted with a paucity ol examples and a lack of
theory.

From a study of [Bi4], [He], [Za], Schori, Walsh and I developed a
systematic approach [RSW] to constructions of (weakly) hereditarily strongly
infinite dimensional compacta. For such compacta, every closed subspace is
either O-dimensional or strongly infinite dimensional. Yet there was still the
possibility that nonclosed subspaces of arbitrarily large finite dimensions
would exist. But then in [Wal], Walsh showed how to construct compacta
whose only finite dimensional subspaces were of dimension 0. This closed off
any hope of a quick negative solution to the dimension-raising problem.

Walsh's example of an infinite dimensional space containing “no finite
dimensional subspaces” gave rise to more speculation about the nature of
infinite dimensional topological spaces, and questions of how they could be
classified. A space is called strongly infinite dimensional if it contains an
essential family (A, B;)] i =1, 2, ...}; this means that each (A;, B) is a
disjoint pair of closed subsets and if S; i1s a closed set separating A4, and B,,

2 4]
then N S; # @. It is known that a space having dimension n has an essential
i=1
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family {(A4;, B;)] 1 <i < n| and cannol have an essential family of larger
cardinality, while infinite dimensional spaces always have essential families of
arbitrarily high cardinality. The term weakly infinite dimensional is used for
infinite dimensional spaces which are not strongly infinite dimensional. Any
countable dimensional space (an infinite dimensional space which can be
written as a countable union of 0-dimensional subspaces) is weakly infinite
dimensional.

The Hilbert cube Q is strongly infinite dimensional, while any subspace
X of Q which is a countable union say of simplexes of arbitrarily high
dimensions is countable dimensional. There are examples of strongly infinite
dimensional subspaces of  which are totally disconnected. Nevertheless,
according to [Rul], [Ru2], each strongly infinite dimensional space X
contains a hereditarily strongly infinite dimensional closed subspace Y. This
means that each subspace of Y is either 0-dimensional or strongly infinite
dimensional. The results [Rul], [Ru2] therefore go much further than that of
[Wal] and apply to noncompact spaces as well. Recently, J. Krasinkiewicz
(see this volume, pp. 357-404) has generalized the results of [Rul] although,
as yet, his techniques do not apply to noncompact spaces as in [Ru2].

As stated earlier, there is not a theory for infinite dimensional spaces.
Until the publication of Roman Pol's example [Po] in 1982, the existence of
an infinite dimensional compactum which was neither countable dimensional
nor strongly infinite dimensional was not known. Pol's example remains a
singularity. There is yet no effective method for obtaining different types of
examples and therefore no clue about how to classify spaces of infinite
dimensions in a dimension-theoretic way. It should be mentioned that Pol's
example does satisfy Property C which was introduced by W. Haver, and is
the subject of study by Addis and Gresham [AG]. Also, there has been some
classification of countable dimensional spaces (see for example, [EP], [En]).

There 1s a type of dimenston, cohomological dimension, which cannot
increase under cell-like mappings. Cohomological dimension (c-dim) may be
defined in terms of an Eilenberg-MacLane complex K(Z, n) = K,,. This CW-
complex can be obtained by starting with an n-sphere S", and attaching an
infimite collection of cells so that all homotopy groups of dimension greater
than n are “killed off’, while for kK <n, n,(K,) = n,(S"). Then say that
¢-dim X < n if for each closed subset 4 < X and each map f: 4 — K,, there
exists a map F: X — K, extending f. By definition, c¢-dim X = min (k|
c-dim X < k! (c-dim X = o if there are no such k). It is known that if
dim X < o, then ¢-dim X = dim X.

In [Wa3], John Walsh presents a theory which relates the study of
cohomological dimension to that of cell-like maps. There he proves the
beautiful Edwards—Vietoris theorem: There exists a compactum of infinite
dimension and finite cohomological dimension iff there exists a cell-ike map
of a compactum of finite dimension onto a compactum of infinite dimension.
This result has been improved by mysell and P. J. Schapiro in that we have
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removed compactness, but we do require our spaces to be separable [RS].
These results show the strong relationship between a homotopy-theoretic
question concerning cohomological dimension and a geometric-topological
question involving cell-like maps. We further were able to show as a result of
this connection that each separable space of cohomological dimension n
embeds in a topologically complete space of the same cohomological dimen-
sion.

Some progress has been made in determining that under certain condi-
tions a cell-like map cannot raise dimension. Notably in [KW], [KRW] it is
proved that a cell-like map of a subset of a 3-manifold or of a 3-dimensional

polyhedron with 1-dimensional fibers does not raise dimension. Also, 1t was
already known that cell-like maps of l-dimensional spaces or ol 2-dimen-

sional ANR’s could not raise dimension. In [Wa4], Walsh proved that every
integral homology 3-manifold has dimension 3. Apart from results such as
these, current thinking is to look for a counterexample. Because of the results
mentioned in the preceding paragraph, instead of trying to find dimension
raising maps, one could search for a space of finite cohomological dimension
but of infinite (topological) dimension.

The search for counterexamples for the cell-like dimension raising
problem is to a large extent thwarted by our ignorance of the nature of
infinite dimensional spaces. For example, we do not know whether all
strongly infinite dimensional compacta have infintte cohomological dimen-
sion. In [Wa2], we find calculations showing that many “known™ examples
have infinite cohomological dimension. | carried these calculations further in
fRu3], [Rud]; there I considered both compact and noncompact (totally
disconnected) spaces. For some of the examples. 1 could prove the cohomo-
logical dimension to be infinite. For others, both compact and noncompact,
the cohomological dimension is not known although one would suspect it to
be infinite.

Such a program of selecting certain types of examples for consideration
is unlikely to succeed by itself. Certainly it can help eliminate contenders and
it can provide some direction or insight into which way to approach the
problem. A study of the classification of infinite dimensional spaces is in
order. To this time, dimension has typically been defined in terms of
mappings into certain objects and the ability to extend such maps, or in
terms of coverings. Property C is defined in terms of coverings and perhaps
provides a clue for new ways to make definitions via covers. On the other
hand, an approach based on mappings, if the right class of target objects
could be found, might yield the desired results in a systematic way. (The
reader might consult [Anl], [An2] for information about the relation

between cell-hke maps, proper hereditary shape equivalences and Prop-
erty C))
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