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INTRODUCTION

This paper is a contribution to the theory of essential mappings (in the sense
of Hopf [Ho]). We develop the theory for mappings into products of
manifolds and give several applications of the results. Our theory unifies and
generalizes some old and new ideas worked out by other authors in the cited
works.

The essential mappings are usually understood as mappings into finite
dimensional cells. Here we adopt more general approach, closer to Hopf’s
original point of view, considering mappings into arbitrary manifolds or,
naturally extending the definition, into (countable) products of manifolds.
Instead of manifolds one can consider more general spaces but there is no

* This paper is in final form and no version of it will be submitted for publication
elsewhere.
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need in this paper lor doing that. The author intends to undertake this
subject 1n a subsequent paper. Essential mappings have interesting and long
history and numerous applications. There is an exlensive literature on this
subject f[rom which we list only a few items: [A], [A-P], [Bo]. [G-T], [Ho],
[Hol, ].

1. Terminology

All spuces are assumed to be metrizable. Such spaces are hereditarily normal
and countably paracompact. The former property says that any pair of
separated subsets can be enlarged to a pair of disjoint open sets. The latter
one says that any countable open covering admits a closed shrinking. Since
our spaces are metrizable all cartesian products considered in this paper are
countable. By a munifold we mean a topological manifold (boundary permit-
ted) which is a continuum. A cell is a homeomorph of the unit cube /"

2. Contents

Chapter I: Here we present a detailed discussion of basic concepts of this
paper. Membranes and separators and other dual families in the sense of
Section 5 are introduced and studied. The main result (Th. 6.1} says that if
an essential mapping is given by (wo coordinate maps then any near
separator of either of them is a membrane of the other. Archetypes of some
results of this chapter are to be found in the papers by Henderson [He],
Bing [B,] and Rubin- Schori-Walsh [R-S-W], where they are expressed in a
different language.

Chapter 11: Here some applications of the theory developed in Chapter 1
are given. In Section 1, generalizing a theorem of Borsuk, we prove among
others the following: if Y i1s a subset of M xI, where M 1s a manifold,
interesting each subcontinuum of M x [ joining M x(0) and M x(1) then Y is
a membrane of the projection M x I — M. Section 2 contains some results on
totally disconnected spaces with other interesting properties. We construct
such examples referring once more to an old trick which was so fruitfully
applied by other authors: Mazurkiewicz [M], Knaster [K], Lelek [L],
Rubin-Schori-Walsh [R-S-W], Pol [P] and Todorov [T,]. This time we
are able to prove certain homotopy properties of the examples (implying
their dimensional properties studied by these authors). Here is the trick: Let X
be a space, let P be a topological property and let . be a family of subsets
of X such that any Y < X which does not satisfy P is disjoint with some
member of .. Then any subset of X which meets each member of ¥ satisfies
P. Many other results are derived by using this trivial observation. In
Section 3 we prove the following generalization of a theorem of Mazurkie-



FSSENTIAL MAPPINGS ONTD PRODUCTS OF MANIFOLDS 379

wicz on noncutting subsets of euclidean spaces. Let A be a subset of R" with
dimA <k <n-—2. Then for each x, ye R"A and each ¢ > 0 there exist a
continuum Y < R™A4 containing both x and v and an ¢-mapping f: Y
— §" %=1 such that Y in an irreducible membrane of f. See [H,], [H;] and
[T,] for related results.

Section 4 contains some results on coincidence points. As a corollary we
get a result on the set of fixed points ol a homotopy defined on a cube. In
Section 5 we show that there exists a nondegenerate continuum such that
every its subset with dimension > 0 admits an essential map onto every
countable product of manifolds. Certain new results on infinite-dimensional
Cantor manilolds are contained in Section 6. We prove a theorem on
decompositions of strongly infinite-dimensional compacta into countable
families of arbitrary sets. As a corollary we obtain a far reaching generaliza-
tion of the Hurewicz theorem on decompositions of the Hilbert cube into 0-
dimensional sets. Also in this section we provide a solution to a problem of
R. Pol.

The paper ends with a list of open problems.

3. Notation

By I we denote the unit interval. The letters M and N themself, or with
lower case subscripts, will always denote manifolds of dimension = 1, unless
the opposite is explicitly stated. These letters with upper case subscripts, as
[or example M,, denote cartesian products ol manilolds indexed by the set J,

i.e. M, = || M, (when we use this symbol it is understood that the nature of
jelt
the manifolds M; is immaterial). The two symbols for cartesian products will
be used interchangeably. By ¢M or M we denote the boundary of a manifold
M; by int M or M we denote its interior. More generally, by M, we denote
the product [] Mj, where M, i1s as above. If J is a set then |J| denotes its
jedJ
cardinality. A mapping f: X — [[M; is often denoted by its coordinate
jeJ
mappings, f = (f;), where f;;: X - M;, je J. If K is a nonvoid subset of J
. PK
then fx: X — [| M; denotes the composition xXZ11 M;— [ M;, where
) jek jed jek
the second mapping is the natural projection.
By 2¥ we denote the space of all closed subsets of X with the Vietoris
topology: the empty set @ is as isolated point of this space.

4. Remark

An earlier version of this paper appeared under the same title in 1984
(Preprint 310, Institute of Mathematics, Polish Academy of Sciences). The
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present expanded version differs at many essential points from the original.

I would like to express my gratitude to R. Pol and H. Torunczyk for
their valuable suggestions.

Chapter 1

THEORY OF ESSENTIAL MAPPINGS. MEMBRANES AND SEPARATORS

1. Essential mappings

Consider a mapping f: X — M into a manifold M. A mapping g: X - M is
said to be an admissible deformarion of f provided there is a homotopy
H: (X,f "(éM))x1— (M, M) such that Hy = f and H, = ¢. If, in addi-
tion, H is a homotopy rel. f~'(¢M) then g is called a é-deformation of f. If
M is closed (i.e. ¢M = @) then the deformations do not differ from ordinary
maps homotopic to f.

Analogous notions are defined for mappings into products of manifolds.
Namely, let (f}): X — l_[MJ-. A mapping (g;): X — ﬂMj is said to be an
jed jet
admissible (¢-) deforma{ion of (f;) provided each gj,jje J, is an admisstble (¢-)
deformation of f;. If ail manifolds M; are closed then (g;) is simply a

mapping homotopic to (f)).
The following is a basic notion of this paper. A mapping f: X — [[ M,
jeJ
is said to be essential provided every admissible deformation of f'1s surjjective
(comp. [Ho], [A], [Bo], [G-T]). This definition involves the presentation of
the target space as a product of manifolds. An independence of essentiality
on the presentation is discussed in Section 3.

1.1. ProrosiTion. Let f: X — M, be essential. Then we have

(a) f is surjective,

(b) every admissible deformation of f is essential,

(¢} fx = pxof is essential for every (nonvoid) subset K of J. =

1.2. ProPosITION. A mapping . X — M, is essential in the following two
cases:

(@) f|A is essential for some A X,

(b) X is compact and fy is essential for every finite subset K of J. =

1.3. LEMMA. Let f- X — M and let A be a closed subset of X such that
f|A is not essential. Then for every ye M, there is a (-deformation g of [ such
that y¢g(A).

Proof. Let h: (A, Anf~ " (éM))— (M, éM), tel, be a homotopy con-
necting f]A and h, such that h,(A)# M. Let ze M\h,(A). There is a
homotopy ¢,: (M\(z), dM\(z)) = (M\(z), OM\(2)), tel, such that ¢, =id and
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(pl(M\(z—)) # M. Let we A;l\}pl(M\(z)). There is an isotopy : idy ~ ¢, rel.
cM on M such that ¢, (w) = yv. Let

F: (A, An [~ EM)) x] = (M, M),
be defined by the formula

hy, (: for 0 <
F(x, 1) = 2(x) or 2

< 1/2,
Yay-10@y-0h(x) for 1/ t

|
<r<l.

Then F}, = f|A and y¢F|(A). Since A f~"(éM) is closed in f~'(#M) and
‘M e ANR, by the homotopy extension theorem there is a homotopy

F’: =Y éM)xI - M

such that Fg=f|f " (éM) and F'|(Anf (M) xI = F|(Anf~ (M)
x 1. The two homotopies define a new homotopy [Au f " (OM)] xI - M.
Since the set is closed in X there is a homotopy

F: XxI-M
such (hat Fy=f F|AxI=F and F|f "(¢M)xI =F". It follows that
yé¢ F,(A). Hence there is a closed cell Q = M\F,(A4) such that ye( and
dim Q = dim M. Since F(f~'"(éM) xI) = &M = M\Q there is an open set U
in X such that f7'(M)c U and F(Uxl)c M\Q. Let u: X -1 be a

Urysohn map transforming f ' (éM) to 0 and X\U to 1. Define the mapping
g: X — M by the formula

g(x) = F(x, u(x)).
One easily sees that g{A) < M\Q. On the other hand the homotopy
(x, )~ F(x,u(x)t), xekX, tel,

connects f and ¢ rel f~'(@M), which completes the prool. =

1.4. CoroLLaRrY. Let [ X — M and let f|Y be essential for some Y < X.
Then f|(Y\int f = ' (CM)) is essential. m

1.5. Lemma. Suppose a mapping (h): A— [|M; is not surjective (not

jet

essential, resp). Then there is a closed covering (A));.; of A such that
hi(A;)) # M; (hj|A; is not essential, resp.) for each jeJ.

Proof. Let (y;)¢(h)(A). Notice that {A\h; '(y,));cs is 2 countable open
covering of A. By the countable paracompactness ol A there is a closed

shrinking (A4;);.; of that covering. It satisfies the conclusion. The version in
brackets follows similarly. =

Now we are ready to prove the following
1.6. THEOREM. Ler f: X — [| M; be a mapping and let A be a closed

JjelJ
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subset of X such that {|A is not essential. Then for any choice yjeM i d el,
there exist neighborhoods V; of v; in M; and a ¢-deformation g of f such that
(%) glAn]]V,=0.
jedJ
Proof. Let f = (f;). There is an admissible deformation (h)) of f|A4 which
is not surjective. By 1.5 there is a closed covering (4;);,, of A such that
hj(A;) # M; for each jeJ. Since h;|A; is an admissible deformation of f;] A4;,
by 1.3 there is a ‘-deformation g; of f; such that y;¢g; A;). jeJ. The mapping
g = g;) and the sets V; = M;\g,(A;) satisfy (+). =
1.7. CoroLLaRY. A mapping f: X — M, is essential iff every ¢-deformation
of [ is surjective. =
1.8. CorOLLARY. Let X = @ and let F: X - M; be essenmtial. Then
Ses
f1X, is essential for some seS. n
1.9. Tueorem. Let [ X - []M; and for each jeJ let N;c M; be a
jed
manifold with dimN; =dimM;. If f is essential then its restriction
T Y IN) = TIN; is also essential.

Jjed jed
Proof. Let f =(f), let f=(f) and let 4= f"H[]N;)= D f;i "(N)).
jed jed
Then f; = f;|4. Suppose f: A— ] N; is not essential. By 1.7 there exist
Jjed
homotopies

hi: AxI— N;. jeld,
such that h;, = fj|A, (h;)(A) # []Nj and hj,]jjﬂ(aNj) :_mf’jfl(aNj) for

jed
each rel. Note that f7'"((N)=An f;"'(ON) and A c f;”"(N;. Hence
applying the homotopy extension theorem one can extend the homotopies to
homotopies

HJ_IJ_I(NJ))(I—’NJ, jEJ,
such that Hjo = fj| f;7'(N;), HjlA xI =h; and H,|f; " (N} = f;| f; " (¢N))
for each rel. There exist natural extensions of H; to

given by: H;| ;7 "(N))xI = H; and H;(x, 1) = f;(x) for x¢ f;”*(N;) and each
tel.

Put g, =f;: X = M;, jeJ. It follows that g; is a ¢-deformation
of f; since H; fi~g; rel. f7'(@M;. Moreover, g;A=h; and
g;(X\fi "(N})) = MAN;,
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Let y = (yj)e[] NA\hj))(A) and let g =(g;). It follows that
jed
g 'M=Ng;')=NAng ") =Nhy'(y)=0,
jed jeJ jeJ
a contradiction since ¢g 1s an admissible deformation of f. =

Now we are going to prove an important property of essential map-
pings.

1.10. Tucorem. If f: X — M, is not essential on a subset Y < X then
it is not essential on a neighborhood of Y in X.

Proof. First we consider the special case where M, = M is a manifold.
There is a homotopy F: (Y, Ynf ' ((M))xI— (M, M) such that F,
= f|Y and F,(Y)+# M. To complete the proof it suffices to construct a
similar homotopy F defined on an open neighborhood U of Y in X.

By 1.3 we may assume that F,(Y) # M. Let V be an open proper subset
of M containing F,(Y)u éM. Referring to general properties of ANR's (or
the existence of a collar on ¢M) we infer that there exist a deformation
G: M xI— M fixed on M, and an open set ¥, = M such that M < Vy < V,
Go=1dy, G,{(V)c V and G,(V,) = ¢M. Let w be an open covering of M
such that st{(’M, w) < ¥, and st(F,(Y), o) = V.

Let X*=XxI,let Y*=Xx(0)uY xI and let X* o Y*L M be given
by f*(x,0)= f(x) for xe X and f*(x, 1) = F(x, 1) for (x,t)e Y x 1. Accord-
ing to Appendix there 1s a w-homotopy H: Y* xI — M such that H, = [*
and H, is extendable on a neighborhood U* of Y* in X*. Let H, be such
an extension. Since f*(Y x(1)) = Fy(Y) and f*(Y*nf~ (M) xI)c &M it
follows that

(1) H, (Yx(1)) < V.

(2) H(IY* [T eMyx ] xI) < V,,.

Combining these with the fact that U* is a neighborhood of Y* in X* we
conclude that there is an open neighborhood U of Y in X such that
UxIcU* and

(3) H(LU A £~ (eM)] x(0) x 1) < V,,

(4) H (LU n /™ (@M)] x 1) < ¥y,

(5) H,(U x(1)) = V.

The homotopy F: U xI - M is given by

G(f(x), 31) for 0< 1< 1/3,
F(x,t)=<G,(H(x,0,3t—-1)) for 1/3<1<2/3,
G,(H,(x,3t-2) for 2/3<r<1.

One easily checks that F is well-defined and maps [U ~ f ' (éM)] xI into
M, Fo = f|U and F,(U) = V (# M). This completes the proof of the case
where M; = M.
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Now consider the general case where f =(f;) and M, =[] M;. By 1.5

jed
there is a covering (Y;);., of Y such that each map f;|Y; is nol essential. By
the special case above there are open neighborhoods G; of Y; in X such that
f;1G; 1s not essential, jeJ. Then G = (J G; is a neighborhood of Y in X. It

jed
suffices to show that f|G =(f;|G) is not essential. Let (4;);., be a closed

(with respect to G) shrinking of the covering (G;) of G. Since each A; is closed
in G and the restriction of f;|G to A; is not essential hence by coordinatewise
application of 1.3 we conclude that (f;|G) is not essential (because (A)) is a
covering of G). =

Theorem 1.10 together with the argument in the last paragraph of its
proof (where 1.6 is used in place ol 1.3) yield the following

.11, Tueorem. Let f = (f3,): X — [| M, and let (A),x be a covering of
kek
X such that each restriction f; |A,: A, — M, , ke K, is not essential. Then f is
not essential. w
Appendix to Section 1

The following fact has been used in the proof of 1.10.

THroreM. Ler [ A — Y he a mapping. where A is a subhset of a space X
and Ye ANR. Then for any open covering w of Y there is a neighborhood G of
A in X and a mapping g: G — Y such that f and gl A are w-homotopic.

Proof. A similar theorem is proved in [Hu], Theorem 8.1 on p. 146,
for the case where A is a closed subset of X (then we can take G = X).To
obtain a proof in our case modify the argument of [Hu] as follows: (a) for
each U ey pick an open set Gy in X such that An Gy = f~'(U) and for any
sequence U, ..., U,, U;ey,

Gulﬁ...ﬁGU"¢® = Ulﬁ..‘ﬁU,,;é(D,

(b} define G to be the union of the sets Gy, Uey, (¢) instead of n consider
the covering !G,| of G. =

2. Existence of essential mappings

The following result may be treated as a generalization of the Brouwer fixed
point theorem which can be stated as follows: the identity mapping I" — [" is
essential.

2.1. THeorReM. Every homeomorphism h: X — [| M; is essential.
jed
Proof. Let K < J be a finite nonvoid set. By 1.2 (b) it suffices to show
that hy: X — [] M; = M is essential. Hence it suffices to show that p
jeK
=hgh™': [T M; - M is essential, since h~' is a homeomorphism. Then p is
fed
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the projection and M may be considered as a subset of [ M; such that p
JjeJ

becomes a retraction. So it is sufficient to prove that id: M — M is an

essential mapping. Suppose it 1s not true. Then there exist a homotopy H: 1d

~ frel. éM and a point ae M\f(M). Consider the diagram

(M,oM) ‘ M, M\(a))

(M\a), M\{a])

where f(x) = f(x) for xe M and i, j are inclusions. Applying to this diagram
the homology functor H,, n = dim M, with coefficients in Z, one easily sees
that H,(i)=H,()H,(f)=0. Since M is Z,-orientable there s
xe H, (M, éM) (the fundamental class of the Z,-orientation) such that
H,(i)(x) is a generator of H,(M, M\(a)) = Z, (see [G]). Hence H,(i) #0, a
contradiction. m

2.2. ProrosiTiON. If X is compact then f: X — I is essential iff there is a
component of X intersecting both {~'(0) and f~'(1). m

2.3. THEOREM. [If, for each jed, X; is compact and f;: X; — I is essential
then []f;: [1X;,— 1 is essential.

Jjel jed
Proof. It follows from 1.2(b) that it suffices to prove the result in the case
where J is finite. In such case the theorem is proved in [H,] and [B—K]. =

3. Essentiality and the product representations

It is unknown whether or not essentiality of a mapping depends on the
presentation of the target space as a product of manifolds. Here we show
that in certain cases it does not depend.

3.1. THEOREM. Let f: X — M, and ler h: M; — Ny be a homeomorphism.
In the following cases essentiality of f is equivalent to essentiality of ho f.

(a) M, is a product of closed manifolds.

(b) J is a one-point set, i.e. M, is a manifold.

(€ My=][M;, Ne=[[[IM; (U a finite set)y and h=uoc[]h,

Jjet jel iel; jed
where hj: M; > M| = l—[ M, jed, is a homeomorphism and u: n M;
iel; jed
J

— Ny is the identification map.
(d) M, and Ny are products of cells.
Proof in case (a) Recall that mapping into a product of closed

25 — Banach Center Publicutions
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manifolds is essential iff every mapping homotopic to it is surjective. Ap-
plying this to the identity mapping on M, we infer by 2.1 that any mapping
homotopic to it is surjective. Hence the same is true for the identity mapping
on N, since h is a homeomorphism. It follows that N is a product of closed
manifolds. Now a similar reasoning applied to f and hf yields the conclusion.

Observe that case (b) 1s a particular case ol (c).

Proof in case (c). It [ollows from 1.6 that f is essential iff ([][h;)of

jed

is essential. Hence the proof reduces to the case where M; = M; for e;ch jed.
and h = u is the specific “identity” mapping. The assertion in this case follows
from the following two [lacts the proof of which are left to the reader:

(1) if uog is an admissible deformation of uo f then g is an admissible
deformation of f,

(n) if g is a ¢-deformation of f then uog is an admissible deformation of
uo /.

Proof in case (d). Follows from Theorem 4.3 which is proved in the next
section.

4. Essentiality and universality of mappings

A mapping f: X — Y is said to be universal if for every mapping g: X = Y
there is a point xe X such that f(x) =g(x) [Hol,].
The following is a well-known result (see [Hol,] and also [G-T]).

4.1. LeMMA. A mapping f: X — " is essential if and only if it is universal. =
Since in this case neither universality nor essentiality depend on topo-

logical type of the target space (see 3.1 (b)) the same is true for mappings into
arbitrary cells. Hence we have

4.2. CoroLLARY. Let [, g: X — Q be two mappings into a cell. Then f is
not essential on the set

ixeX: f(x)#¢g(x)}. =

Generalizing 4.1 we have
4.3. TueoreM. Ler f: X — [ Q; be a mapping into a product of cells.
jed
Then [ is essential iff it is universal.
Proof =. Let f = (f;) be essential and suppose it is not universal. Then

there is a mapping g = (g;): X — []Q; such that f(x) # g(x) for each xe X.
jed
Then the sets
Aj={xeX: fj(x) #g;(x)}, JjeJ,

constitute a covering ol X such that f;|4; is not essential, for each jeJ, by
4.2. Then by 1.11 1t follows that f is not essential, a contradiction.
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<. Without loss of generality we may assume that each Q; is the unit

ball in the euclidean space R'™% (see 3.1 (c)).

Assume [ i1s universal and suppose [ is not essential. Hence there is a 0-
deformation g of f such that g~ !(0) = @, where 0 is the point with all
coordinates 0. Therefore

(1 g;l fi71(@Q) = f1710Q),  JjelJ,
and there exist open sets U; in X such that gj"(O) c U;and N\ U; = Q. Let

jed

be an arbitrary extension of the mapping

X\, a0, x—3
|9j(x)|
Note that
(2) hi(X\U,)) = 0Q;
and from (1) it [ollows that
3) xe(X\U) n f;71(8Q) = f;(x) = hj(x).

We claim that the mapping (—h;) has no coincidence point with f. For
suppose xe X is such point. Choose jeJ such that xeX\U;. Then
fj(x) = —h;(x). On the other hand we infer from (2) and (3) that f;{x) = h;(x¥
a contradiction. It follows that f i1s not universal, a contradiction. m

5. Dual families

In this section we define and discuss several dual families of subsets of a
given space. We shall start off with the families of membranes and separa-
tors which induce other dual families according to the following abstract
scheme.

A. An abstract approach. Let .o/ be a family of subsets of an arbitrary set
X. Put

A*=1Y < X: X\Y¢ ).

Note that .o** = o and therefore o/ and o/* are said to be dual families
in X.

5.1. ProposiTION. Every subset of X intersecting every member of .7
belongs to o/* m

The family .o/ is said to be saturated provided the following is satisfied

Ac /& AcBc X=Be..
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5.2. ProposITION. If .of is saturated then o/* is saturated as well. u

5.3. ProposiTION. If o/ is a saturated family in X then for any Y < X we
have

(Ye.o/*)=(Y meets each member of /). m
Let .o/ be a family in a space X. Then we define
near./ = |Y < X: every open neighborhood of Y in X belongs to .o/|
full /=Y < X: Y contains a closed set belonging to .-/!.

5.4. ProrosiTion. The families near.</ and [ull.«/ are saturated in X. =

5.5. ProposiTiON. The families near o/ and full .«/* are saturated dual
families in X, ie. full.&/* = (near «/)*. a

B. Membranes and separators. Lct f: X — M, be a given mapping.

By a membrane of f we mean any subset Y of X such that f|Y: Y - M,
is essential. By a separaior of f'is meant any set S < X such that X\S is not a
membrane of X. In particular, the empty set is a separator of f iff f is not
cssential.

5.6. PROPOSITION. Membranes and separators of the mapping f constitute
saturated dual families in X. »

From 1.10 it follows that

5.7. CoroLLARY. If A is a subset of X such that every neighborhood of A
in X is a membrane of f then A is u membrane of f, equivalently: every
separator of [ contains a closed separator. In other words: any near membrane
is u membrane and any separator is a full separator. m

These results combined with 5.3 yield the following.

5.8. COROLLARY. A4 subser of X is a membrane (separator) of f iff it meets
cach closed separator (membrane) of . =

Using the new language some other results from Section 1 can be
reformulated as follows:

5.9. ProrosiTioN. (a) If ¢ is an admissible deformation of [ then every
membrane of f (separator of g) is « membrane of g (separator of f) (see 1.1 (b)).

(b) If K is a subset of J then every membrane of [ (separator of fx) is u
membrane of fi (separator of ) (see 1.1 (c)).

(c) If My, =M is a manifold and Y = X is a memhrane (separaror) of |
then YAint [~ 1 (CM) is a membrane (separator) of f (see 1.4).

(d) If X is a union of two closed subsets A and B neither of which is a
membrane of f then AN B is a separator of f (follows from 1.8). =

Theorem 1.11 implies the following
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5.10. Proposimion. If f=(f3,): X = [[M,, and S, is a separator of
keK

1,0 X—= My, Jor each ke K, then () S, is a separator of f. =
kek

A membrane Y of the mapping f: X - M, is said to be irreducible
provided no proper closed subset of Y is a membrane of f. In other words:
any nonvoid open subset of Y 1s a separator of f|Y. Applying the Kuratow-
ski-Zorn lemma, 5.7 and 5.9 (d) we get

5.11. ProrosiTiON. (a) Any irreducible membrane of f is connected.
(b) If X is compact and f is essential then there is a closed irreducible
membrane of f. =

C. Full membranes and near separators. Let f: X — M, be a given
mapping.

A subset Y of X is said to be a full membrane of f provided it contains a
closed membrane of f. A subset § of X is said to be a near separator of [
provided every (open) neighborhood of S is a separator of f.

By 54, 55. and 5.6 we obtain

5.12. ProPOSITION. Full membranes and near separators of f are saturated
dual families in X. u

5.13. ProrosITION. A subset of X is a full membrane (near separator) of f
iff it meets each near separator (closed membrane) of f. =

5.14. ProrosiTioN. Every full membrane (separator) of f is a membrane
(near separator) of f. m
The converse to 5.14 is not true.

5.15. ExampLE. Let X = LU R be the standard (sin 1/x)-curve, where L is
the limit interval and R is the ray. Let f: X — I be the vertical projection.
Then for any point xe L the set [x! U R is a membrane which is not a full
membrane of f'(only X itself is a full membrane of f); {x} is a near separator
but not a separator of /. =

Let us prove the following.

5.16. THEOREM. If f =(/;): X — [1 M, and S, is a closed near separator
of f5,» keK, then kQ( Sy Is a near s;;’;rator of J.

Proof. Let U be an open neighborhood of () S, in X. It remains to
show that U is a separator of f. -

Notice that the sets S, \ U, ke K, are closed and have empty intersection.
By the countable paracompactness of X there are open neighborhoods U, of
S;\U in X, ke K, with empty intersection. Each U, u U is an open neighbor-

hood of S, hence it is a separator of f . By 5.10 it follows that (U, L U)
. kekK
= U 1s a separator of f =
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The Theorem fails for nonclosed near separators.

517. ExampLe. In the square X =[? consider the sets S, = {1/2}
x 10,1} uT, and §, = {0, 1} x{1/2} U T,, where T; and T, are the spirals
sketched in the figure below. Then §; is a near separator of the projection
p;: X—1, j=1,2. Since (p;, p;): X —I* is essential (it is the identity
mapping ~ hence essential by 2.1) the intersection $; NS, = @ is not a near
separator of (py, p,).

1

D. Near full membranes and full near separators. Let f: X — M; be a
given mapping.

A set Y < X is said to be a near full membrane of f provided every
neighborhood of Y in X contains a closed membrane. A set S © X is said to

be a full near separator of [ provided it contains a closed near separator.
By 54, 55 and 5.12 we obtain:

5.18. ProrosiTiON. Near full membranes and full near separators of f are
saturated dual families in X. =

5.19. ProrosiTiON. A subset of X is a near full membrane (full near
separator) of f iff it meets each closed near separator (near full membrane)

of [ m
With the aid of 5.7 one can show that

5.20. ProposiTiON. () Every full membrane (full near separator) of f is a
near full membrane (near separator) of f.

(b) Every near full membrane (separator) of [ is a membrane (full near
separator) of f =

No converse of these implications is true.

5.21. ExampLE. () There i1s a near full membrane (near separator) which
is not a full membrane (full near separator): such is the set §; for the
mapping p, (the set §, for p;) in Ex. 5.17.

(b) There is a membrane (full near separator) which is not a near full
membrane (separator): such is the set {x} U R (the set {x}) in Ex. 5.15. =

5.22. Remark. One can verify that no new dual families will be produced

by further applications of the operators “near” and “full” to the families of
membranes and separators.
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6. Basic duality relation for essential mappings

The following useful result directly follows from the preceding discussion.

6.1. THEOREM. Let (f;, fx): X = M; x My be an essential mapping. Then
every near separator of [, is a near full membrane of fy.

Proof. By 5.7 it suffices to show that every separator S of f; is a
membrane of f,. Suppose not. Then X\ S is a separator of f;. By 5.10 the
set SN (X\S) =@ is a separator of (f}, fx). a contradiction. =

7. Dimension and essential maps

Let A and B be disjoint closed subsets of a space X. By a partition of X
between 4 and B we mean a closed subset F ol X which separates X
between these sets, i.e. there exist two disjoint open subsets U and V of X
such that X\F=Uu/V, AcU and Bc V.

7.1. LEmma. Let [: X — 1" be a mapping and let X, be a closed subset
of X. Let A be a subset of X with dim A < n and let 1 be an interior point of
1""Y. Then there exists a C-deformation g of [ such that g|Xo = f|X, and
g~ N (A\X,) = Q.

Proof. We have A = A, u...UA,,,, where dim4; <0 for eachj=1, ...
...,n+1 (see [E, p. 259]). Let ¢t ={t,, ..., t,+y) and let f =(f;. ..., oz 1)
where f;: X -1, j=1,..., n+1. After this presentation it is clear that it
suffices to establish our lemma for the case n = 0.

So, let f: X =1, let tel and let dimA <0. It follows from the
separation theorem [E, Th. 4.1.13] that there is a partition L of X between
£7'0) and f~'(1) such that Ln X, =(f]Xe) '(f) and Ln(4\X,) = Q.
Now it is not difficult to construct a é-deformation g of f such that
¢/ Xo= f1X, and g~ '(r) = L. Such a mapping g satisfies the conclusion. m

A family (A;, Bj), jeJ, is said to be essential in X if each (A4;, B)) is a

pair of closed disjoint sets in X such that () P; # @ for every choice of
jed

partitions P; of X between A4; and B;. It is Jwell-known that dim X > n iff
there is an essential family in X consisting of n elements. Natural infinite-
dimensional counterparts of finite dimensional spaces are defined as follows.
A space X is said to be strongly infinite-dimensional, SID, provided there is
an infinite essential family in X. If X is not SID then we call it weakly
infinite-dimensional, WID. One easily shows that a mapping f: X - I' is
essential iff the family (f;" ' (0), f;” ' (1)), jeJ, is essential in X. So, in terms of
mappings, we have (see for instance [Hol,]):

7.2. THEOREM. For any space X we have dim X = n iff X admits an
essential mapping onto the n-cube I1". =
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7.3. THEOREM. [A—P, p. 531]. A space X is SID iff X admits an essential
map onto the Hilbert cube 1. =

7.4. Tucorem. Let f: X — M, be an essential map.
(1) If J is finite then dim X = dim M.
(it} If J is infinite then X is SID.

Proof. For each jeJ let Q; = M; be a closed cell with dim Q; = dim M.
Let n=YdimM; (n=oc if J is infinite) Denote @, =]]Q; and X,
j jet
:_/'“‘(QJJ). By 1.9 the mapping X, — @, determined by f isjessential. Since
Q, 1s homeomorphic to [" we infer by 3.1 (d) that there exists an essential
mapping X, — I". Thus the conclusion follows from 7.2 and 7.3 (in case (it)
we use the fact that X, is a closed subset of X). =

Chapter 11
APPLICATIONS

1. On a lemma of Borsuk

A classical theorem of Borsuk states that a compact subset 4 of R"'!
separates this space if and only if A admits an essential mapping into the
sphere §". As an illustration of the ideas discussed in Chapter I we present a
short proof of the necessity part of the theorem.

So, assume A is a compact subset of R"*! separating this space. We
shall show that A4 admits an essential mapping into S”. Without loss of
generality we may assume that A separates R""! between 0 and 2 and

Ac X ={xeR*': 1 <|x <2},

where |-| is the standard norm on R**!. For xe X let f(x) = x/|x| and let
¢g(x) =|x|—1. Then the mapping

(/,9): X —S8"xI

is essential being a homeomorphism, see 1.2.1. We are going to apply 1.5.8.
So, consider a closed separator S of f: X — 8" By 1.6.1 it follows that S is a
compact membrane of g: X — 1. Then 1.2.2 implies that § contains a
subcontinuum joining g~ ! (0) and g~ '(l1). But our set A meets each such a
continuum. Hence A meets S. By 1.5.8 we conclude that f|4: A —S" is
essential, which completes the argument.

The same technique yields much stronger results.

1.1. THeoreM. Let (f), fx): X — M, x My be an essential mapping. Let Y
be a subset of X which meets each closed membrane of fy: X — My. Then Y is
a membrane of f;: X — M,. Moreover, every neighborhood of Y in X contains
a closed membrane of f,.
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1.2. Remark. If X is compact it suffices to assume that Y meets each
compact connected membrane of f, see 1.5.11.

Proof. By 1.5.20 it suffices to prove the second conclusion. By 1.6.1 every
closed near separator of f, is a closed membrane of f,. Thus Y meets each
closed near separator of f;. The conclusion follows from 1.5.19. =

Setting (f;, fx) = id and referring to 1.2.1 we get the following

1.3. COROLLARY. Let Y be a subset of M, x M intersecting each compact
connected membrane of the projection pyx: My xMyg— My. Then Y is a
membrane of the second projection p;: M; x M, — M ;. Moreover, every neigh-
borhood of Y in M, x My contains a closed membrane of p;. =

Applying 1.2.2 we get also

1.4. CoroOLLARY. Ler (f, g): X — M, x I be an essential mapping, where X
is compact. If Y < X meets each subcontinuum of X joining g~ ' (0) and ¢~ ' (1)
then Y is a membrane of f: X — M,;. Moreover, every neighborhood of Y in X
contains a closed membrane of f. =

1.5. CoroLLARY. Let Y be a subset of M, x 1 intersecting euch subcon-
tinuum of M, x1 joining M, x(0) and M; x(1). Then Y is a membrane of the
projection p: M xI — M;. Moreover, every neighborhood of Y in M, xI
contains a closed membrane of p. m

Restricting the class of metrizable spaces X we can choose the sets Y to
be highly disconnected subspaces of X. This is done in the following section.

2. On totally disconnected spaces

All spaces in this section are assumed to be metrizable and separable

A space Y is said to be totally disconnected provided its every quasi-
component is degenerate, i.e. Y is not connected between any two points. It
is known that Y is totally disconnected if and only if it admits an injective
mapping into the Cantor set [K, p. 148]. This very convenient characteriza-
tion enables us to construct totally disconnected spaces with strong homo-
topy properties, as in the preceding section. In particular, with large
dimension. Examples with the latter property are well known (see [M], {L],
[R-S-W], [T,]). What we do is essentially a repetition of the same trick
(see the Introduction) which was used in all these papers. It is also used in
{P]. As a result of our theory we are able to prove their additional
properties.

To construct such spaces which are simultaneously topologically com-
plete we make use of the following known result: if f: X — Z is a mapping
from a compactum into a 0-dimensional space then there exists a G;-selector
Y of f, ie. Y is a Gysubset of X, f(Y)=f(X) and f|Y: Y— Z is injec-
tive [M].

2.1. The construction. Consider an essential mapping (f;, fx): X - M,
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x M. Applying the results of the preceding section we construct a few
examples of singular membranes of f;; X — M. Note that the construction
is applicable to the particular case where X = M; x My and f;, fx are the
projections.

Let .o/ be the family of all closed membranes of fix: X — M. Then
card.o/ < ¢ since X is separable. Let Z be a subset of My with cardZ = c.
Then there is a surjection a: Z — .o/, Define

Xo = U/a(r)ﬁfk_'(:)-
Note that each summand is nonvoid since each essential mapping is surjec-
tive. Therefore fi(X,) = Z. Consider a selector Y < X, of the mapping
X, — Z determined by fi. Then Y meets each closed membrane of f;. Thus
by 1.1 we have

(1) Y 1s a near full membrane of f;: X — M,.

Under some extra assumptions about Z and x we can choose Y with
additional properties. Namely,

Case (a). Z is O-dimensional. Then Y is totally disconnected since Z
embeds into the Cantor set. For the case where f; and fy are the projections
we have also dimY =dim M; since Y = M, xZ.

Case (b). Z contains no Cantor set. Then the same 1s true for Y since
Y-S Z is injective. Thus every compact subset of Y is countable.

Cuase (c). X and Z are compact and Z is O-dimensional. Then we may
assume that x: Z — </ is a continuous surjection (.«/ with the Vietoris
topology) since .«/ is a compact subset of 2¥ in this case. According to the
introductory remark we can choose Y to be a G;subset of X.

Here is another method of constructing totally disconnected spaces
based on a theorem of R. H. Bing.

2.2. THeorReM [B,]. Let A and B be two closed disjoint subsets of a
continuum X. Then there exists a partition P of X between A and B such that
every continuum in X joining A and B contains a component of P. m

A compact subset of X with the latter property will be called a Bing set
between A and B. There exist Bing sets such that each of their components is
hereditarily indecomposable. '

2.3. THEOREM. Let P be a Bing set in M; xI between M; x(0) and M,
X (1). Then every selector Y of components of P is a near full membrane of rhe
projection M; xI — M;. Moreover, Y is totally disconnected, dimY = dim M,
and it can be chosen to be a Ggsubset of X.

Proof. The first conclusion follows from 2.2 and 1.5. Since P is compact
the space P* of components of P is O-dimensional. The remaining conclusion
follows from the fact that the quotient map P — P* is continuous. =

We close this section by stating two results from [Kr] which give yet
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another method of producing totally disconnected spaces with large dimen-
sion.
Let C denote a Cantor set in I and let dim X > oo mean that X is SID.

24. THEOREM. Let X be a space with dimX =2 n+1, n=1,2,..., .
Then there exists a mapping . X — I and a closed membrane A of f such that
(%) YcA& f(Y) o C=dimY =2n. »

2.5. CoroLLARY. Let p: I"*! — I be the projection onto the first factor.
Then there exists a continuum A < I""' such that

(1) p(A) =1

(i) dimA = n

(i) Yec A& p(Y)oC=>dimY =n =

3. On a theorem of Mazurkiewicz

In this section we generalize the following well-known theorem of Mazurkie-
wicz: If A is a subset of R" with dimension < n—2 then R"\A4 is a semi-
continuum (see [E, Th. 1.8.19]).

Some other related generalizations are to be found in [H,], [H;] and
[T,].

Let M be a manifold in a space X. Then M is said to be k-flat in X il
there exists an embedding h: M xI* — X such that M = h(M x (1)) for some
interior point ¢ of I*

3.1. THEOREM. Let A be a subset of a space X with dim A < k (= 0). Let
M be a (k+ 1)-flat manifold in X and let B = M\A be a compact set. Then for
each € > 0 there exist a continuum Y < X\A and a mapping . Y - M such
that

(1) Y is an irreducible membrane of f,

(ii) £ '(B) =B and f(x) = x for each xeB,

(iii) o(x, f(x)) <e for each xeY.

3.2. Remuark. Let A be a subset of R" with dimA4 <k, k<n-2. Let B
= ix, y} « R"\A. Consider any (k+ 1)-flat manifold M = R" containing B
(any geometric sphere or convex cell with dimension < n—k— 1 containing B
is such a manifold). Then our Theorem says that there exist a continuum
Y « R™\A joining x and y, and a mapping f/: Y — M which satisly conditions
()—(i11).

Therefore we get the following generalization of the Mazurkiewicz’s
theorem: for each pair x, ye R"\A and each ¢ > 0 there exist a continuum
Y = R™\A joining x and y and an e-mapping f: Y — $" %~ ! such that Y is an
irreducible membrane of f. =

Theorem 3.1 directly follows from the following
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3.3. LeMMA. Let A be a subset of M xI**! with dimA < k, k = 0. Ler ¢
be an interior point of I**' and let B be a closed subset of M such that B
x(f) € M x(t\A. Then there exists a continuum Y <« M xI**\A such rhat

(i) Y is an irreducible membrane of the projection p: M xI"*' = M,

(i) Ynp '(B) = B x(1).

Proof. Let g: M xI**' — I**1 be the other projection. By 1.7.1 there is a
é-deformation g of g such that §|p~'(B) =gq|p~ ' (B) and g~ '(¢) n(A4\p™ ' (B))
= @. Then g~ '(1) is a separator of ¢, and it follows that it is a compact
membrane of p. Hence there is a closed irreducible membrane Y = g~ '(f) of
p. One easily verifies that Y satisfies the conclusion. m

4. On coincidence points

Let f,g: X - Y be two mappings. A point xe X such that f(x) =g(x) is
called a coincidence point of the mappings.
The following is a direct corollary to 1.4.3.

4.1. LemMa. Let f: X — Q be a mapping into a cube (the Hilbert cube
included). Then for any mapping g: X — Q the set of coincidence points of [
and g is a closed separator of f. m

The main observation on coincidence points is given by the following
4.2. THEOREM. Let (fy, Jo): X — M, xQ be an essential mapping, where Q
is a cube (the Hilbert cube included). Then for any mapping g: X — Q the set
(XeX: g(x) = fo(x)]
is a closed membrane of fy.

Proof. Directly follows from 4.1 together with 1.6.1. =

By the Theorem and the fact that the identity mapping on any product
of manifolds is essential (see 1.2.1) we gel

4.3. CoroLLARY. Let g: M, xQ — Q he a mapping, where Q is a cube (the
Hilbert cube included). Then

xeM; x@: g(x) = PQ(X)}

is a closed membrane of py, where py and py denote respective projections of
M; xQ onto the factors. =

44. CoroLiARY. Let h: Q—Q, tel, be a homotopy, where Q is a cube
(the Hilbert cube indeed). Then the set

A=1t,x)el xQ: h(x) = x!

contains a continuum joining the faces (0) xQ and (1) xQ of I xQ.
Proof. We present two proofs. (I) Let h: I xQ — Q be given by h(t, x)



ESSENTIAL MAPPINGS ONTO PRODUCTS OF MANIFOLDS 397

= h,(x). By 4.3 the set A 15 a compact membrane of the projection I xQ — L.
The conclusion follows from [.2.2

(IT) (a direct argument given by R. Pol). Suppose the conclusion fails.
Then there is a mapping g: I xQ — I such that g((0)xQ) = (1), g((1) xQ)
=(0) and ¢g(A) = &I. Define a mapping f: I xQ — 1 xQ by the formula

f(t, x)=(g(t, x), h(x).

Note that there is no fixed point for f, a contradiction.
The second argument works equally well for any compact space Q such
that Q xI has the fixed point property. m

5. Constructing special subsets in compacta which
essentially map onto infinite products

The main result of this section is Theorem 5.5. Theorem 5.1 which opens this
section is weaker than Theorem 5.5, but its proof is so simple that we have
decided to present it independently.

The basic ideas generalize those used in the papers: [He], [B,],
[R-S-W] and [W].

5.1. THEOREM. Let X be a compactum and let [ X — n M; be essential.

jed
Then for every infinite sequence Jo, J,, ... of nonvoid disjoint subsets of J such
that J =JyuJ,, ..., there exists a continuum Y < X such that

(1) Y is a membrane of f,,

(1) each nondegenerate subcontinuum of Y is a membrane for one of the
mappings f; . n= 1.

5.2. Remark. We shall construct Y satislying the following condition a
bit stronger than (i):

(1) for every ¢ > 0 there exists n(g) = 1 such that each nondegenerate
subcontinuum of Y whose diameter is = ¢ 1s a membrane for one of the
mappings fy ., ..., /s .

Furthermore, it will be clear from the proof that one can prove more:
every nondegenerate subcontinuum of Y is a membrane for infimtely many
mappings f, .

Letting Jo, J,, ... to be infinite sets one obtains a hereditarily (with
respect to closed subsets) strongly infinite-dimensional continuum. The first
example with such a property was constructed by D. Henderson [He]. Other
examples were given in [B,], [R-S-W] and [Z]. =

n(e)’

5.3. LeMma. Let X be a compactum and let f: X — M,. If A and B are
disjoint closed subsets of X, then there exists a separator Y of f such that each
subcontinuum of Y joining A and B is a membrane of f.
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Proof. (comp. [R-8-W, 6.1]). Let Gy, G,, ..., G; = X\(AuU B), be a se-
quence of open disjoint subsets of X such that each G, separates X between
A and B. Let Z,, Z,, ... be a sequence of closed separators of f dense in the
space of all closed separators of f (considered as a subspace of 2%). Put

Y=(X\UG)ouU(G,nZ,).

It follows from 1.1.8 and 1.5.8 that Y is a desired set. =

Proof of Theorem 5.1. It is easy to construct a sequence of pairs
(A, By), (A,, B;), ... of disjoint closed subsets of X such that

(1) for every ¢ > 0 there exists n(g) = 1 such that every subcontinuum of
X whose diameter is > ¢ intersects both sets A4, and B; for some 1 < i < n(e).

By Lemma 5.3 there exists a closed separator Y; of f; : X — [[ M;
jGJl
such that each subcontinuum of Y, joining 4, and B, is a membrane of f; .

By 1.6.1 the compactum Y, is a membrane of f;, . Hence f;, IY;: Y,
— [[ M; is essential.
jeJ\Jy
Repeating  the same  argument, taking  f,,,|Y,,J; and
(A, nY,, B,nY,) in place of f, J, and (A4,, B,), respectively, one infers that
there exists a compactum Y, < Y, such that Y, is a membrane of fr .y,

and each subcontinuum of Y, joining A, and B, is a membrane of f,,.

Repeating this procedure one constructs a decreasing sequence Y, > Y,
> ... of compacta in X such that for each n> 1 we have
(2) Y, is a membrane of fyy,c..csp

(3) each subcontinuum of Y, joining 4, and B, is a membrane of f; .
From (2) it follows that Y, is a membrane of fJo' By 1.5.7 the
intersection ()Y, is also a membrane of f; . Define Y to be an irreducible

membrane of f; contained in () Y,. Hence Y satisfies (i) and by 1.5.11 it is a

continuum. From (1) and (3) it follows that Y satisfies the condition (ii)’ as
well. =

5.4. CoroLLARY. There exists a nondegenerate continuum Y such that each
nondegenerate subcontinuum of Y admits an essential mapping onto every
countable product of manifolds.

Proof. There exists a countable set .# of manifolds such that every
manifold is homeomorphic to an element of .# [C-K]. Let Jy, J,... be
mutually disjoint countable infinite sets and let J =JouJ,u... Let J3j
— M;e .# be an indexing of .# such that every element of .# is indexed by
infinitely many elements of each set J,. Let X = [[ M and let f: X — [[ M;

JjeJ JjeJ

be the identity. By L.2.1 it follows that f is essential. Now, let Y < X be the
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continuum given by Theorem 5.1. Using 1.5.9 (b) one easily checks that Y
satisfies the desired conditions. m

5.5. THEOREM. Let f: X — [[ M; be an essential mapping, where X is a
Jjel
compactum and J is infinite. Then for every decomposition J =Jy0J, U...
into an infinite collection of nonvoid mutually disjoint sets there exists a
continuum Y < X such that

(1) Y is a membrane of fJo’

(i) every subset of Y with dimension > 0 is a near full membrane for one
of the mappings f,n, n=l.

5.6. Remarks. (a) One can modify the proof so that one gets more: every
subset of Y with dimension > 0 is a near full membrane for infinitely many
L5,

(b) Letting Jo, J,, ... to be infinite sets one obtains by 1.7.4 a heredita-
rily (with respect to arbitrary subsets) strongly infinite dimensional subcon-
tinuum Y of X. It follows from 1.7.3 that every strongly infinite dimensional
compactum contains such a subcontinuum. For more general results in this
direction the reader is referred to the papers by L. R. Rubin [R] and R. Pol
[P] =

The proof is preceded by two lemmas. The first one is used only in the
proof of the second, which 1s the crucial point in the argument. The proof
uses some ideas of J. J. Walsh [W].

5.7. LEMMA. Let X be a compactum, let f: X — My, let g: X — I and let
C be a Cantor set in I. Then there exists a separator Y of [ such that for each
continuum D < Y joining two distinct fibers g~ ' (1), teC, there exists toeC
such that D g~ '(ty) is a membrane of f.

Proof. Let (a,, by), (a5, b3), ..., a; < b;, be the sequence (without repeti-
tions) of all open intervals in I\C whose endpoints belong to C. Let A4;
=g '([0,4]) and B,=g '(b,,1]), i=1. For each i=1 Ilet
G, Gz, ..., G;; = X\(A; U B;), be a sequence of disjoint open subsets of X
such that each G;; separates X between A; and B; and each neighborhood of

g '(a;) contains almost all elements of thls sequences.

Let ¥ be a countable set of closed separators of f dense in the space of
all closed separators of f.

Let us arrange the elements of % in a sequence $,, S, ... in such a way
" that each element of % occurs in the sequence infinitely many times.
Now define: Y = (X\U G U(G,JnSJ) One easily sees that Y i1s a

separator of f. Consider a contmuum D c Y joining two distinct fibers

g~ '(1), teC. Then q;, b;eg(D) for some i = 1. It follows from the construc-
tion that D n g~ !(a;} intersects each clement S e.¥ since D intersects each set
G;nS;, j= 1. By 1.58 this completes the proof. =
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58. Lemma. Ler X be a compactum, let (f; . f5,): X - M; xM,,, let

g: X — 1 and let C be a Cantor set in I. Then there exists a closed near
separator Y of (f;,.fs,) such that every subset of Y intersecting each fibre

g~ '(1), teC, is a near full membrane of either Ji, or fi,.

Proof. Let f =(f;,,f;,)- Let ¥; denote the space of all closed near
separators of f;, i=1,2 Since each ¥ is a compactum, there is -a

continuous surjection (S, §,): C— %, x.%,. We may assume that it is
surjective on the irrational part of C (in fact, it suffices to take a surjection
with uncountable point-inverses).
Keeping the notation [rom the proof of Lemma 5.7 define
Y=Ug 'Dn(S;nuS(0)u U g™ ([a;, bDnSz(@)ug™ ' (IO, 1),
teC izl

where (0, 1) is the open interval with end points 0 =infC and 1T =supC.
Then Y 1s a closed subset of X. It remains to show that Y satisfies the
conclusion of the lemma.

First we shall show that Y is a near separator of f. So, let E be a closed
membrane of f. We must prove that (see 1.5.13)

(1) EnY#0Q.

To this end consider a closed separator Y, of f; satisfying the conclusion of
Lemma 5.7. Hence we have

(2) for every continuum D c Y, jotning two distinct fibers g~ ! (1), teC,
there is toe C such that Dng™'(to) is a membrane of f;,.

The set EnY, is a membrane od f,,, being a separator of f; |E (see
1.6.1). Hence there is a membrane D c EnY, of sz which 1s continuum,

The proof of (1) will be completed once we prove that

(3) DnY #0Q.

The proof of (3} is divided into four special cases:

(a) g(D) £(0. T). Then DAY > Dng ' (I\O, 1)) # O,

(b) g(D) < [q;, b;] for some i = 1. Then DY > DS, (a;) and the latter
set ts nonvoid because D is a closed membrane of f,,.

(¢) g(D) = (r) for some teC. Then DNY DS, (1) # @ for the same
reason as in (b).

(d) g(D)~C contains at least two points. By (2) there 1s toe C such that
Dng '(to) is a membrane of f;. Then we have DnY

DDmgﬁl(to)ﬁsl(to):;ﬁ(D
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These cases exhaust all the possibilities, hence (3) is satisfied. This completes
the proof that Y is a near separator of /.

Now, consider a set 4 < Y intersecting each fibre ¢ ' (1), 1 C. We shall
show that A4 is a near full membrane of either f; or f;,. Suppose it is not

true. Then there 1s a closed near separator §; ol fJ‘_ such that AnS! =Q, i

=1, 2, see 1.5.19. Let t be an irrational point of C such that (S, (1), S, (1)
=(87.83). Since Yy " (1) = S,(t)uS,(1) we infer that Ang ' (1) =@, a
contradiction completing the prool. =

Proof of Theorem 55. Let ¢g.: X 1, k=1,2,..., be a sequence ol
mappings separating points of X (to the effect that the diagonal map
g =(g): X = IxIx... 1san embedding: it suffices (o take a sequence dense
in the space of all mappings from X to [). Let h: C— 1 I=1,2,..., be a
sequence of embeddings of the Cantor set C into ! dense in the space of all
such embeddings. Let us arrange all the pairs (g, h) In a sequence

%, 45, .... We shall be applying Lemma 5.8 to the mappings
(fry, o J0p)0 X = [T M;x J] M;, n=1 1t follows from this lemma
Jedag—y Ied 2y

that for each n > 1 there is Y, such that

(1) ¥, is a closed near separator ol (f,, _,./s,,)

(2) if 2, = (g, k), then every set A < Y, such that h(C) < g, (A) 1s a near
full membrane of either f,, ~ or f;, .

By (1) and 1.5.16 the set (1Y, is a near separator of f;.;,. Hence by 1.6.1

it i1s a membrane of f; . Define Y to be a compact connected membrane of
11, contained in N Y,

Consider a sel" A < Y with dimA > 0. To complete the proof it suffices
to show that A is a near full membrane (or one of the mappings f, , n = 1.
Let us note that

(3) ¢, (A) 1s not O-dimensional for some kK > 1.
In fact, otherwise ¢g(4) =[] gx(A4) and the latter set is O-dimensional; hence A4

k

1s such since ¢ ts an embedding.

It follows from (3) that i (C) = ¢, (A) for some [/ = 1. Then (y,. ) = 7,
for some n= 1. Since A< Y <Y, it follows from (2) that A4 sausfies the
destred condition. =

Theorem 5.5 implies the following corollary. Its proof is similar to that
of Cor. 54 and is omitted.

59. CoroLLARY. There exists a nondegenerare continuum Y such thar
every subset of 'Y with dimension > 0 admits un essential mapping onto every
countable product of manifolds. =

26 Banceh Center Publications
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6. On infinite-dimensional Cantor manifolds

A compact space X is said to be an infinite-dimensional Cantor manifold if it
contains at least two points and no WID space separates X (see [S]). We
abbreviate this term to 1D Cantor manifold. Each such a manifold is a
conttnuum.

The purpose of this section is: (a) to estabhsh criteria for detecting 1D
Cantor manifolds, (b) to prove a generalization of a result from [S] on the
cxistence of ID Cantor manifolds, and (c) to prove some theorems on
countable collections of subsets in SID compacta.

In particular, we obtain an alfirmative solution to the following problem
posed by R. Pol in a conversation with the author: given a decomposition Q
= X, wX;w...,where Qis the Hilbert cube and X';s are arbitrary subsets of
Q. must one of the X';5 contain a nondegencrate connected set?

A. Detecting ID Cantor manifolds.

6.1. TuroriMm. Ler X be a compactum and let f@ X — M,, where J is an

infinite set. If' 'Y is a closed irreducible membrane of f, then Y is an 1D Cantor
manifold.

Proof. Suppose a WID set separates Y. It [ollows that there exist two
closed proper subsets 4 and B of Y such that Y = AU B and A n B is WID.
From the assumption it follows that neither 4 nor B is a membrane of f. By
1.1.2 there 1s a finite set K = J such that neither 4 nor B is a membrane of
fi- By 1.59 (d) and 1.6.1 we infer that 4 ~ B 1s a membrane of f; ;. Since J\K
is infinite, [.7.4 implies that 4 n B is SID, a contradiction. =

The above thecorem combined with 1.7.3 and L.5.11 (b) implies the
following

6.2. Turorem [S]. Every SID compactum contains an 1D Cantor mani-
fold. =

B. A generalization of Skljarenko’s theorem. A space Z is said to be a
generalized infinite-dimensional Cantor manifold 1f 11 contains at least two
points and no wcakly nfinite-dimensional subset of Z separates Z. We
abbreviate this term to GID Cantor manifold.

The lack of compactness in the present definition is the only difference
between this notion and the notion of an 1D Cantor manifold.

Every GID Cantor manilold is a SID space.

6.3. THEOREM. Lei X be a SID compactum. Then every subset of X
intersecting each 1D Cantor manifold contained in X contains a GID Cantor
manifold.

We shall prove two lemmas. The thcorem is a direct consequence of 6.2
and the second lemma containing some extra information.
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6.4. LeMMA. Let X be a SID compactum. Then every subset Y of X
intersecting each 1D Cantor manifold contained in X is SID.

Proof. By 1.7.3 there exists an essential mapping form X to the Hilbert
cube []I;. Let J and K be two disjoint infinite subsets of N such that

JjeN
N =J UK. Let us present fin the form (f}, fx): X — []1; x[] 1;. Now sup-

jeJ JjeK

pose Y is WID. Then by 1.5.8 and 1.7.4 there exists a closed separator S of f
disjoint from Y. By 1.6.1 the space S is a membrane of fy. By 1.7.4 we infer that
S is SID. By 6.2 the set S contains an ID Cantor manifold C;then CnY = ,
a contradiction. m

6.5. LEemMa. Ler X be an ID Cantor manifold. Then every subset Y of X
intersecting each 1D Cantor manifold contained in X is a GID Cantor manifold
dense in X.

Proof. Clearly, Y contains at least two points. Suppose a WID subset P
of Y separates Y. Then there exist a closed subset P* of X separating X such
that P* nY = P. By our assumption P* is a SID compactum, and P*nY is
a WID subset of P* (being a closed subset of the WID space P). It follows
from the preceding lemma that P*\(P* nY) € X\Y contains an ID Cantor
manifold, a contradiction.

It remains to show that Y is dense in X. Suppose this is false. Hence
there is a point xe X\Y and a closed set S in X separating X between x and
Y. Then § is a SID compactum. Again by 6.2 S contains an ID Cantor
manifold C; then C~Y = @, a contradiction completing the proof.

C. Decompositions of SID compacta. The following result answers the
question of R. Pol.

6.6. THEOREM. Let X be a SID compactum and let X, X,,... be
arbitrary subsets of X. If X =) X,, then there exists an index n such that X,

n
contains a GID Cantor manifold closed in X,.

Proof. Suppose the conclusion is false. Let C, be an ID Cantor manifoid
in X. Then the set Con X,, being a closed subset of X,, 1s not a GID
Cantor manifold. By 6.5 there exists an ID Cantor manifold
C, cCo\(Con X)) =Co\X,. By the same argument there exists an ID
Cantor manifold C, < C;\X,. Repeating this procedure we construct a
decreasing sequence of compacta Co > C, > ... such that C,n X, =0 for
each n > 1. Hence N C, 1s a nonvoid subset of X disjoint with each X,, a

contradiction completing the proof. =

6.7. THEOREM. Let X be an ID Canror manifold and let X, X,, ... be
subsets of X. If no set X, contains a GID Cantor manifold closed in X, then
the complement X\|) X, is a GID Cantor manifold dense in X.
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6.8. Remark. No WID space contains a GID Cantor manifold as a

closed subset, hence 6.7 is applicable to the case where X 's are WID subsets
of X. m

Proof. The set X\|) X, contains at least two points by 6.6. Suppose it is

separated by a WID subset P. Then there exists a closed subset P* of X
separating X such that P* n(X\J X,) < P. If follows that P* contains an ID

Cantor manifold C. Then
C=(CnXPulCnX)u...uCn(X\UX,).

From our assumptions and 6.6 it follows that C n(X\|J X,) contains a GID

Cantor manifold D closed in this set. It is easy to check that D is a closed
subset of P. It follows that D is WID, a contradiction.

Suppose there is a point xeX\(?\U X,). Let S be a closed subset of X

separating X between x and X\{J X,. Then § is a SID compactum. More-

over, S=(SNnX,)u(SnX;)u... and no of the sets S N X, contains a GID
Cantor mantfold closed in S X,. This contradicts 6.6 and completes the
proof. =

Problems

1. Let f: X ][ M; be an essential mapping, where |J| = x, and let
jed
h: [[M;— [] N be a homeomorphism. Must hof be essential?

jed keK
] 2. Let f: X - M be essential and let N be a submanifold of M. Is the
mapping f ' (N) = N determined by [ essential?

3. Let f;: X;—1I, jeJ, be essential mappings. Must the product
[1/: []1X;— I’ be essential?

Jjed JjeJ

4. Characterize the class of manifolds M such that, for any mapping
f: X — M, fis essential if and only if f is universal.

5. Does there exist an hereditarily strongly infinite-dimensional con-
tinuum with trivial shape?

6. Does there exist a nondegenerate continuum X such that every
nondegenerate subcontinuum of X is an infinite dimensional Cantor mani-
fold?

7. Let X be a weakly infinite-dimensional space. Is it possible to
separate X by an hereditarily weakly infinite-dimensional subspace?

Added in proof. K. Lorentz has informed the author that the answer to 3 is negative —even
for connected spaces. There exists a connected space X such that dimX xX = 1.
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