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Introduction

For a closed oriented n-dimensional manifold M" with a triangulation 1:
IK| 5 M" the p-th real cohomology group H?(M: R) is isomorphic to the
zero eigenspace ol the canonical combinatorical Laplace operator 4 = 4,
=dd+0od: CP{K)— CP(K), 0< p<n The isomorphism is given by the
harmonic cochains. Thus one has a nice operator-theoretical description of
cohomology. When considering open manifolds M" and infinite simplicial
complexes K, we have to develop for the same aim a theory of appropriate
functional cohomology spaces, i.e. the theory of L,-cohomology or, more
generally, Sobolev cohomology. A thorough analysis of L,-cycles and
boundaries shows that these are suitable concepts to reflect special features
ol |K| = M" at infinity. This is partially done in § 1. A second reason for the
introduction and study of L,-cohomology is the possibility of comparison
with analytical theories on M" in particular with the analytical L,-
cohomology of an open oriented Riemannian manifold (M" ¢). Finally,
several important applications of L,-cohomology in differential and algebraic
geomelry a can serve as a third justification. We present here some results
concerning complex projective varieties with conical singularities, but they
are valid also in a larger class of singular spaces. A further application is the
solution of the Hirzebruch conjecture by W. Miiller. Sections 2-4 are
devoted to these topics.

§ 1. Combinatorical L,-cohomology of infinite complexes

Let K be an n-dimensional locally finite oriented simplicial complex and

cie K. We denote (%)= # (17" 'eK| 67 <197}, [ (K)=supl(c%). The
adeK
complex K is called uniformly locally finite (u.Lf) in dimension g if I_(K) < .

If this holds for all ¢, then we call K uniformly locally finite. K is u.l.l.if and only if

* This paper is in final Torm and no version of it will be submitted for publication
clsewhere.
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Io(K) <oc. Let C3(K)= {).f,0] 3./ <) be the Hilbert space of real
ad o
square summable g-cochains,

Sogd>=C 000, 400> =310 g, da® =) [t g%}t
ad ad g rq+l
the usual simplicial coboundary and
df =d(}_foo)= > ( Y [w:alf)ret!
a R N B g
the formal linear extension.

Lemma 1.1. d is a bounded linear operator from C% into C4*1.
Proof. We have, for [ =) f, o,

df = 3 (Y [r:olf),

4t gq..4+1

NdAI? =3 (Y [r:alfa)’ < (" +2)2 Y (max|f,])?

T 6<T q+1 tq+1 g<T

S (([+l) .lq.§102 = Cq.q+l||.l”2- n

C3(K) =(C4(K), d), becomes an L,-complex. We define the

L,-cohomology of K by
H4(K) = Z3(K)/B3(K) = ker (d,;: C4 — C4" )/im(d,-: C{ ' = CY)
and the reduced L,-cohomology by

AY(K) = Z3(K)/B}(K) = kerd,/imd,_, .
Let d} be the adjoint of d, with respect to the above (, ) dd/f.,g>
= {f,d*g) for feC%, yeC4*'. d* is the usual simplicial boundary,

d* g’ = Z [o: 1], d*./'=c!*(z_/,',o)= Z ( Z [o:1f,)t.
WPl 4P a P=1 gp.p-1

where we identified simplicial L,-cochains and L,-chains, C3(K) = C,,(K).

We define the L,-homology of K by

H,,(K)=Z2,,(K)/B,,(K)= ker(d;‘,‘_ 1- Cp,l — Cp_ 1_2)/im(d,",‘: Cp+ 1.2 Cp.?.)

and the reduced L,-homology of K by

H,,(K) = Z,,(K)/B, ,(K) = kerd?_/imd¥ .

Let A=4,=d,_,dy_,+d}d,: C5(K)— C5(K) be the combinatorical
Laplace operator of K and #”(K) = ker 45 the Hilbert space of harmonic
L,-cochains = harmonic L,-chains.
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Without prool we state

Lemma 1.2, (a) fe #? if and only if df =d*f =0.
(b) There exists an orthogonal decomposition

CZ(K)=dCt '@d*CL '@ #7. w (1.1)
CororLary 1.3. There are canonicul topological isomorphisms

H3(K)= #7(K)= H,,(K).

Proof. Z8 = #°@dC3™ ' = #°@®BS, H, = Z5/B% >~ #”. u
Let C? = C4 be real p-c_9chains with finite supports. Then we have dense
inclusions C? = C5, Bf < BY, 1e. Cf = C5, B? = Bj.
Thus we get canonical morphisms
HZ(K)— HY(K)— H§(K), H, (K)— H,,(K)— H,,(K). (1.2

The main question of combinatorical L,-theory can be now stated. Which
topological — combinatorical properties are reflected by H%¥(K), H%(K),

H,,(K), H,,(K) and the morphisms (1.2)?

We denote by P, = Pz resp. Py = Pge the orthogonal projection onto
Z5, resp. BY.

LemMma 14, Every L,-cocycle appears as an Ly-limit of cocycles from
P, (CP). The corresponding result holds for L,-cycles.

Proof. P,(C?) = P,(C%) = Z2% and P,(C?) < P,(C’) =Z%. m

CoroLLArRY 1.5. The following isomorphisms hold.

HE = P,r(CT)/B3,  HE = P,n(CH/BY,

sz = Plp.z(Cp,c)/Bp.29 Hp.z = PZP‘Z(Cp,C)/Bp.t“ L

CoroLLArY 1.6. Every converging sequence (f), of p-cocycles (p-cycles)
with finite support defines a well defined class in H%, resp. HY (H,,, resp.
H,,. =

For the concrete computation of L,-cohomology and homology one has
to answer the question: What are the L,-cocycles, cycles and the elements of
B%, Fg, B, ,, B?‘? The study of partial answers exhibits new special features
of the L,-theory of infinite u.lf. complexes.

Lemma 1.7. If H,, # H,,, then there exist an infinite number of
independent homology classes in H,, whose image in H,, equals to 0, ie.
dimker(H,, — H,,) = o««. The same holds for cohomology. =
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CoroLLaRY 1.8. From H, , =(0), H,, # (0) it follows that dimH,, = x.
The same holds for cohomology. w

GroMmeTriCAL exaMrees. 1. Consider the tree K

Consider f = —vg9€Zy, © Zy,,. Then we have —vO,O¢B2,C, _”ng’ie-?;
:E; even —vgo€Bo,: [ = lim @, f& = d* g%, g% = Z /271 Z Tils
k—x i=1 1=1
2k—1
a'*g(k) — _UO,O+ 1/211—1 Z Vets Hj_d* g(k)HZ — 2k— l/(zkﬁl)z — 1/2k—lk_>x 0‘
1=1
T 2k—1

ie feBg, = By,. Further we have g —¢g = Y 1/2*"!' Y 1,,eC, ,, since

k=1 =1
ao

lgl> = Y 22712 )Y = > 172" ' =2 < . Finally, —vyo—d*g =0, ie.

k=1 k=1

fGBo.z-

2. Rotation of k from example 1 around an axis parallel to 7, ; and
disjoint to 7, ,, i.e. replacing the vertices v; ; by triangulated §' and the edges
by cylinders, produces a 2-dimensional branched complex K and an

feld . cZy,, [¢B.. J€ BI:* even fe B, ;.
3. Replacing the triangulated S' by a closed triangulated oriented
manifold M* gives an feZ, ., f¢B,. [€B,,. even feB,,.

4. CoroLLaRY. The homomorphisms H, ,— H,,, H,,—~H,, are in
general not injective.

5. Now consider a sequence (S.),.; of triangulated 1-spheres, each with

4 vertices e,,, €,,, ¢, _, ¢, _, and 4 oriented l-simplexes. We form the
complex

. v St v S v Stv ...
€-1.17€0,1 €0, 17€1,. -1
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w3 v
95 7.,
and build up over each S! the tree of the second example. Then
+ or 4
f= Z 1/2M Z 0w€Zy2 S¢Zi. feBy,c B,.,
V= oo u=1

i.e. the compactness of the base cycle (as in [-3) is not necessary.

6. The manifolds in examples 1-5 are not triangulated, but taking
thickenings |K,| = M" and appropriate triangulations K, one gets
corresponding cyclese Z, , inside the thickenings with the desired properties
of 1-5.

We now have to carry out some computations. We concentrate
attention on L,-homology, since homology is better for geometrical
tmagination.

Turorem 1.9, Let K be infinite, u.lf. and connected. Then H, ;(K)
= H$(K) =(0). If Hy,(K) #(0), then dimHg ,(K) = x.
Proof. The first assertion comes from the following propositions.

(a) Every vertex of K is an element of By ,. o
(b) Every O-chain with finite support is an element of By ,.

of O-chains with finite support. By, being closed, we get feBy,, Zg,

= Bm‘. [t is clear that (a) implies (b); (c) is trivial. We need only show (a).
Let v, K® be a vertex. From the assumptions we obtain a sequence of 1-

simplexes ! = [r;, v,.,],i=0,1,2,..., with v; # v; for i # j, 1e. an infinite
10v-1
edge path starting at vy without cycles. Let f® = — > (1-1/10"¢/. Then
i=0
10V -1

dfO =vo— Y 1100, (log—d*[O)2 = (10°— 1)/10% < 1/10 =0, v,
i=1
= lim d*f"". The second assertion of the theorem follows from Corollary

s &

1.8. =
Let g= Y y,0 be a p-chain. We define by cl!a”’eK| g, # 0] the

aleK
support complex of g denoted by suppg. Using this concept one eastly gets
the following generalizations of 1.9.

Tueorem  1.10. Assume that, for a cycle zeZ,,(K) there exists a
subcomplex L < K such that L is simplicial isomorphic to the canonical
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triangulation (or a subdivision of bounded degree) of |suppz| xR, then
ZGBP‘?_. u
As usual, K? denotes the p-dimensional skeleton of K.

THeoreM 1.11. Let z =zpeZ,,. Assume there exists a sequence :

.’-l,

Zy,...€Z,, such that izl <c¢, z;~zy;, mod B,,, z,.,—z=d*c,

¢eCpria(K)  (uppe)lP™ ' A(suppa)tl =@,  k#i i+l and
(suppc’t ! n(suppe,s )t =suppz . i=0,1,... Then - = o€ B, 2 (K).
Proof. We have to replace in the proof of 1.9 vy by z¢, r; by =; and 4] by
1ov-1
c;. Weset g™ =— 3% (1-1/10%¢;. Then
i=0
10V—1
d*f(v) =2o— Z 1/10\;2'_’
i=1
10¥-1

2 (10— 1107 % 0.

lzo—d*/I1P = ¥ 1/107z]
i=1

ExamrpLes. Consider the infinite ladder with a translation invariant (and
therefore u.lf) triangulation and the cycle -

aoe —~—~TTTTTN ‘. h —e—- ese
1

Theorem 1.11 implies ze B, ,. From the following remark it becomes
clear that ¢ 8B, ,.

Remark. Let zeZ,, and suppose that suppz is a pseudomanifold.
Then

{a) zeZ, .

(b) There exists no ceC,.y ,\Cpiy, With d*c =z and such that suppc
is a pseudomanifold with boundary.

The above z becomes an element of B, , il the ladder “branches™
sufficiently olten.

Starting from this ladder one easily constructs higher-dimensional
examples.

We call a p-chain ceC,; totally branched if [suppc| has an infinite
number of ends an no end is isolated. In particular, we consider totally
branched L,-cycles.
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ExampLEs. 1. Consider the tree

with coefficients as in the first example after Corollary 1.8.

2. 1-spheres glued with step by step branching cylinders and the same
splitting of coefficients produces a 2-dimensional example. Here we might
also replace the cylinders by bordisms between two S' with a bounded
number of 2-simplexes.

3. Higher-dimensional examples are constructed immediately along the
line of the second example.

We call a p-cycle ze Z, , a limit cycle if it is the L,-limit of a converging
sequence of cycles with compact support. By a standard argument we may
assume that every limit cycle is a converging sum of cycles with compact

support.
ExaMpLEs. 1. K = triangulated line

V, v, v
2 J

: ) 1
f= v,—l,f‘z’ = Ui1+1/2v.'2a---,f( '—f= .Zl}l’.'jezo.z-
J:

2. K = infinite cylinder with a translation invariant triangulation

G 0 (

i Z Z;
fy 2 i

1
f= Z FRIE

j=1J

In this way we have at least two rather different classes of L,-cycles. It would
be nice and it would be a big step forward in understanding L,-theory of
infinite complexes if this gave a full description. The answer being unknown
for the time, we pose the following

CoNsecTure 1. Totally branched and limit cycles generate all L,-cycles, i.e.
every L,-cycle equals to an L,-converging sum of such cycles.

CoNJECTURE 2. Let zeZ,,. be a cycle with compact support and z¢B,,.
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Then there exists no ceC,,, ; with d*c =z, supc being strongly connected
and |suppc¢| having exactly one end.

THEOREM 1.12. The validity of Conjecture 2 for all u.lf. complexes implies
the validity of Conjecture 1.
Proof. Let zeZ,,, ,. We consider the strong components L,, L,,... of

suppz. Then z|;, = z; is again a cycle and z =) z|;, =) z;. Let L be one of
the L;. There are several possibilities. If |L]| is compact, 1.e. L is finite, then z|,
is a limit cycle, in fact a cycle with compact support. If |L| is noncompact, i.e.
L infinite, then there are two possibilities. In the first case there exists a
decomposition z|; =) z;, all z; with finite support. Then z|, is again a limit
cycle. In the second case there exists no such decomposition. In every
decomposition z[; = z; there exists at least one :z; with infinite support
which is not further decomposable. We consider such a =} and denote it by z/,
L =suppz’. We have to show that z’ is totally branched. Assume =’ is not
totally branched. Then there exists an isolated end & of |supp:z’|. Let |L,]

S |Lyf ... be a base of £. Set ¢ =2|, . v =2 fixed, and z” =d* ¢ # 0. Thus

we have a ulf simplicial complex L, and a p-cycle z"eZ, (L,) such that
2"¢B, (L), " =d*c, ceCpyy (L), suppc is strong connected and [suppc]|
has exactly one end. This contradicts the assumption of validity of
Conjecture 2 for all u.lf. complexes. The above z' must be totally branched
and Conjecture 1 has to be valid. =

If Conjecture 2 were valid, we would have a nice and in a certain sense
complete description of all L,cycles. It seems that a proof of conjecture 2
will not be simple. The next natural question concerns those L,-cycles which

are not boundaries mod B, , resp. B, ,. To this rather delicate question we
return in connection with combinatorial manifolds. We now briefly
consider the question of the invariance of L,-homology and cohomology. Let
K be an n-dimensional u.ll. simplicial complex. A simplicial subdivision K’
of K is said to be of bounded degree of subdivision of there exists a number
N such that every simplex of K is subdivided into at most N simplexes.

THeorem 1.13. Let K’ be a subdivision of K of bounded degree. Then the
subdivision mapping 0: C,,(K) — C,,(K") induces isomorphisms 0,: H,,(K)
— H,,(K’) and topological isomorphisms 6,: H,,(K)— H,,(K’). The same
holds for cohomology. m

A complete proof for H,, and H* is contained in [7]. This proof also
yields the invariance for the nonreduced theory.

Let K, K’ be u.Lf. triangulations of |K| = |K’|. We say that K’ < K if the
following two conditions are satisfied. 1) For each vertex v’ e K’ there exists a
vertex we K with |stv'] < |st w).

2) There exists a number M such that every stw < K contains at most
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M simplexes of K’'. Under these assumptions v" —w induces a simplicial
mapping n: K'— K.

Lemma 114, If K' < K, then n induces an isomorphism n,: H, ,(K’)
— H,,(K) and a topological isomorphism #,: H, ,(K')— H,,(K). The same
holds for cohomology.

Proof. All K, <K form a directed family and the barycentric
subdivisions form a cofinal subfamily. From the transitivity of n, and the
isomorphism property of n, for barycentric subdivisions we obtain the
lemma. =

The isomorphism property of 5, for barycentric subdivisions follows

from [7]. the cofinality of barycentric subdivisions resulting from the proof
of theorem 3241 of [18], pp. 332-338.

Tueorem 1.15. Ler K| and K, be u.lf. triangulations of |K| such that for
each simplex o€ K; there exist at most M simplexes 1€ K; with 6 nt =Q,
i#j, i,j=1,2 Then H_,(K,)=H,,(K,), HY(K,) = H}(K,). The sume
holds in the topological sense for the reduced theory.

Proof. The assumptions on K,, K, imply the existence of a ulf.
tnangulation K' < K,, K,. From Lemma 1.14 we get the conclusion. =

We call two ulf triangulations K,, K, of |K,| = |K,l =|K]| equivalent,
if they satisfy the assumptions of 1.15. The equivalence class of a u.lf.
triangulation K will be denoted by [K]. Then we can summarize our results
Into

THeorRem 1.16. For an equivalence class [K] of u.lf. triangulations, H,,

¥ are well defined up to isomorphism, H,,, H% are well defined up to
topological isomorphism. w

Remark. For H% this result is contained already in [4].

For [urther investigations concerning the general L, and Sobolev theory
of infinite complexes we refer to [7].

As the most interesting case we now consider open oriented triangulated
manifolds, r: |K| = M". The first question which arises is the existence of a
u.lf. triangulation. The answer is yes. We state this as

THEOREM 1.17. Every open PL-manifold admits a w.lf. triangulation. w

For the complete proof, which is a joint work of H. G. Bothe and the
author, we refer to [8]. The proof follows from the next two lemmas.

Lemma .18, Every n-dimensional combinatorial manifold is homeomorphic
to a cubical polyhedron in R*"*'. »

Lemma 1.19. Every cubical polyhedron admits a u.lf. triangulation. =

The last lemma is a consequence of the following

ProrosiTiON. There exists a number pu(m) such that every point xe R™
belongs to at most pu(m) cubes of u cubical polyhedron R™. w
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Therefore it is no actual restriction to confine attention to u.lf. triangu-
lations of PL-manifolds. As a generalization of PL-manifolds we consider
combinatorial homology manifolds. For a g-simplex o%¢ K we define the
complex lk g% by stg? = (6?lk 6?}. An n-dimensional combinatorial homology
manifold is a u.lf connected complex K = {0}, such that all lk¢? are
homology (n— q — 1)-spheres. Every u.lf. triangulated n-dimensional PL-mani-
fold defines a combinatorial homology »-manifold, where, as usual, we

identify K and t(K) for combinatorial procedures by means ol : |K| = M".

If K'= |z}, denotes the first barycentric subdivision of K, then
ol:= U 13
r;>n’£

is an n-cell. For a g-simplex o?¢ K we define

x0d: = () x0}.
rrl?<ﬂg
Then K* = {x0i},, =167 }., gives a.cell decomposition of |K|, the cell
complex dual to K. ¢ and %6 = £ 7 intersect transversally and ¢ N + 01
= 67 = barycenter of g. We assume that K is oriented and we orient *¢?
= &7 in such a way that ¢7, £" 7 fit the orientation of K.

Lemma 1.20. For the dual cell £ to 6% we have
d(&779) = (= 1)"" 1 L(d* gY9).
Proof. [13], pp. 68-69. =

CoroLLarY 1.21. The mapping 61— xal = &£777 defines a topological
chain isomorphism D: C,,(K)— C3 9(K*) and therefore induces an isomor-
phism

D,: H,,(K)> Hy 9(K*).

CoroLLary 1.22. For an oriented combinatorial homology n-manifold K
we have

H,,([K])) = Hy *([KD.

Proof. K' is a common subdivision of K and K* of bounded degree.
Then it remains to apply 1.14, 1.16 and 1.21. =

Another approach to duality is given by intersection numbers, as
presented for example in [13] and for the L, case in [4]. For a g-cycle
feZ,,(K) and an (n—g)-cycle ge Z,_ (K) we define their intersection num-
ber by #(f-¢) = {Df,g>, where j is a representative of the homology class
of g in H,__,(K*) according to the isomorphism H,_ ,(K)=H,_,,(K¥).
From 1.20 and 1.21 we get that this number is well defined and even defines
a pairing between the homology classes of H_,(K) and H, _,(K). The
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definition of intersection numbers immediately extends to the reduced theory.
They are defined as above and one has to show the independence on

representatives. Let [ e qu2(1<—), geZ,-42(K), f =limf", fMeB_,(K). Then
#(fg)=<Df, gy = (Dlimf™, g = lim (Da* ™, g

= lim(=1)""4*" DR, gy = (= 1)""*" 1 lim (DK™, d* g = 0.

Analogously we get #(f-g) =0 for feZ_ ,(K), geB,_,,(K).
Cororiary 1.23. If feZ,,(K), geZ,_,,(K) and #(f-g) =0, then f, g
are nontrivial cycles in L,-homology. =

Corollary 1.23 provides a method of a proof of the nontriviality of L,-
cycles. For this we refer to the forthcoming paper [8].
According to 1.20 we have

dD = (—1)""9"! Dd*
and according to [11], p. 139,
d*D=(—-1)""'Dd.

Hence we get 4f = 0 if and only if ADf = 0, which implies together with 1.3
the following statement

Tueorem 1.24. For a combinatorial homology n-manifold K, H,,({K])
and H5 1([K]) are topologically isomorphic. Here as before we assume K to be
oriented. m

Finally we discuss the question of conditions under which H%(K) and
H%(K) coincide. From 1.16 it is clear that this is a property of the
equivalence class [K] of u.lf triangulations, in particular it is invanant
under subdivisions of bounded degree. One has to find out conditions which
provide imd, = imd,.

Tueorem 1.25. The following conditions are equivalent.

(@) imd} and imd}_, are closed.

(b) imd, and imd,_, are closed.

(c) im 4, is closed.

(d) 0¢O’e(ﬂql(kcrdq)L), where o, denotes the essential spectrum.

Proof. The equivalence of (a) and (b) is a standard fact of functional
analysis (closed range theorem, [19], p. 205). According to the decomposition
(1.1), im A, is closed if and only il dfd (imd}) and d,_,d}_,(imd,_,) are
closed. Again, according to the decomposition (1.1) and the continuity of all
operators, this is equivalent to imd,, imd,_, (ie. imdj, imd;_,) being
closed. It remains to show the equivalence between (¢) and (d). Let A
= Algernyt- Then im4 =imA. We have to consider only 4. Now assume

15 — Banach Center Publicalions
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ic)im 4 is closed. According to a corollary to the closed range theorem, 4* = A4
has a continuous inverse ([19], p. 208). From the spectral theorem we get
that 0 ¢ o, (4). Conversely, suppose 0 ¢ o, (4). This implies |Af|| = 8|11l for some
d > 0. From Af® — 4 we obtain that (f*), has to be a Cauchy sequence and
(f™), converges in D3, f —f which implies 4f = ¢. Thus we obtain (c)
from (d). =

1.25 includes a nice spectral-theoretic characterization of H; , = H, ,, H,
=M, i=g¢q,q—1, which in fact admits a translation into geometrical
language ([8]). Already the example of K = S' x R with a translation invar-
iant u.Ll triangulation, H, ,(K) =(0). dim H, ,(K) = 20, on the one hand
and the fact that totally branched L, l-cycles of a surface define homology
classes # 0 in H, , show, that O¢a, (4|, has to do with the totally
branching of cycles, resp. the possibility of totally branching, i.e. with the
structure of K at infinity.

§ 2. Analytical L,-cohomology of open manifolds

We consider open oriented Riemannian manifolds (M, g). A% = A?(M")
= C7" (AP T* M), resp. A§ = AL (M) = C3 (A? T* M), will denote the vector
space of all smooth p-forms, resp. p-forms, with compact support. A}
becomes a pre-Hilbert space by the scalar product <(, >, <(w, o)
= jw A xw' = |(w, ), dvol. A" denotes the vector space of all measurable
p-forms with {w A xw < . Then A} is a dense subspace of A7 and A7 is
the completion of A with respect to || |15, llwll§ = (w, w). 4 = 4, =dé+dd
=d, ,3,+0,,,d,. A" — A" denoles the analytical Laplace operator acting
on p-forms. Let S be a set of polynomials in d and 9, for example S = !d}, S
=10}, S=1do+5d}, =4} or S={4° A", ..., A¥). Then we define

Af = e A" N A7 ||Do|§ = [ Do A Do < x for all DeS),

A™S = closure of AL with respect to the norm

lmlls = [lwllg+ Y 11D,
DeS

A3 = closure of A% in A”S with respect to the norm || ||s. Further, we set
AP.k — An.f LA LI e

If $=0, then || llo =1} llo. A" = A7 =4r° We have the inclusions
A" 5 AR o AR, AP? 5 APS 2 475, For complete (M", g), 4 is essentially
sell-adjoint on 43, ie. 4, Dj= A™', is self adjoint. Furthermore,

HP = o do = dw =0 in distributional sense}

= lwe A" N A"’ dw = 0].
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The analytical L,-cohomology H%(M, d) of (M, g) is defined as the coho-
mology of the complex

ey

HS (M, d):=ker(d: Afy — A% ')fim(d: A% ' — A%) = kerd,/imd,_,. An ap-
parently other version is obtained by considering H(M, d):=kerd,/imd,_ .

P ptl
o Ay = Al —

Tueorem 2.1 The inclusion A%, — A*** induces an isomorphism i,:
H} (M, d)- H3(M, d) ((3). =
We define the reduced analytical L,-cohomology by

18(M, d) : = kerd,/imd,_,,

and more generally,

H3* (M, d):= Z"*/BP* "7,
where ZP* = {we A7 dw =0}, BP* = dAr~"+*1
THeOREM 2.2. Let (M" g) be complete. Then the spaces HY* are

independent of k. For every k=1, 0<p<n, ZP admits an orthogonal
decomposition

For k =0 we have

ZM0 = #P®B’,
where B” = {we A”°| There exists an ne A~ '° with w =dn}.

For the proof we refer to [5], [6].
We have a natural surjection

j: H3(M, d)— H§(M, d), j(w+imd,_;)=w+imd,_,
and a morphism
h: #°(M)— H5(M, d), h(w)=w+imd,_,.

We say that in (M" g) holds the strong Hodge theorem if h is an
isomorphism.

Lemma 2.3. (a) h is injective if (M", g) satisfies the Stokes theorem in the
L,-sense, i.e. {dp, ®> = {p, dw> for all g A7~ 1'* =D, we A" = Dy,

(b) The condition (a) is satisfied if Jp;, = 0%. This is equivalent to
di_y=0d,0rt0d, ,=d, (|1 or 1039, =5,,|A6. All these conditions are
satisfied if (M", g) is complete.

(c) h is surjective if and only if imd,_; 2imd, ] 2.

Proof. All these propositions follow from the classical Hodge theorem
and the work of Galffney ([12]). =
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We summarize our considerations into

= d‘,_lAg_l. In particular, this holds if dimH5(M, d) < oc and Stokes
theorem holds in the L,-sense.

(b) If (M", g) is complete, then #7 (M), H5(M, d) and H"*(M, d) are all
topologically canonically isomorphic and h*. ¥P(M)— HY(M,d) is an
injection. m

The natural questions which now arise concern the connections between

combinatorical and analytical L,-cohomology and applications. Subsequent
sections are devoted to these question.

§ 3. The de Rham-Hodge isomorphism in the L,-category

To build up connections between analytical and combinatorial L,-theory of
(M", g), one has to triangulate M". Let ¢" be a curved n-simplex in M". We
define the fullness 6(o) by 6{(c) = vol(o)/(diam(c))". We consider smooth
triangulations t: |K| > M" which satisfy the following conditions ([6]).

(a) There exists a 0, > 0 such that for every curved simplex ¢" the
fullness satisfies the inequality 0(o) = 0,.

(b) There exist constants ¢, > ¢, > 0 such that for every ¢" we have
¢, € vol(o) € ¢

(c) There exists a constant ¢ > 0 such that for every vertex ve K the
barycentric coordinate function ¢,: M — R satisfies the condition |Fo,| < c.

If one assumes (a), then (b) is equivalent to the existence of bounds
d; >d, >0 with d, < diam(o) < d, for all 6e K. (a) and (b) are equivalent to
the boundedness of the volumes from below and the diameters from above.

We call triangulations which satisfy conditions (a){c) uniform.

Now the existence problem arises for such triangulations. For this we
consider two conditions.

ConpiTioN (I). The injectivity radius is positively bounded from below
on (M" g), ie. infr,(x)>0. (r,(x)=distance between x and the cut

inj
xeM

locus, i.e. between x and the first cut point of geodesics, starting at x).

ConpiTion (B,): V'R is bounded at M, 0 <i < k, where R denotes the
curvature tensor.

(M", g) is of bounded geometry up to order k if (M" g) satisfies the
conditions (I) and (B,).

The following theorem of Calabi gives a sufficient condition for the
existence of uniform triangulations.

THeoREM 3.1. If (M", g) has bounded geometry up to order 0, then (M", g)
admits a uniform triangulation t: |K| > M". =
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We will give some examples for bounded geometry.

THEOREM 3.2. (a) Every homogeneous Riemannian manifold has bounded
geometry of arbitrary high order.

(b) The class of open manifolds which admit a metric of bounded geometry
is closed with respect to finite connected sums and to coverings.

(c) Every open manifold which arises by infinite pasting of a finite number
of bordisms admits a metric of bounded geometry of arbitrary order. m

Uniform triangulations have nice combinatorial properties.

THeoreM 3.3. (a) Every uniform triangulation is u.lf.

(b) The Whitney standard subdivision of a uniform triangulation is again
uniform.

(c) Two uniform triangulations K, K, under the same Riemannian metric
g satisfy the assumptions of Theorem 1.15. In particular, H%¥(K,) = H%(K,),
H¥(K|) = H%(K,). =

Now we can ask for connections between analytical and combinatorical
L,-theory. According to 2.1 and 2.4, we identify H5(M, d), H"(M, d) with
HP(M) for complete (M", g). A certain answer is given by the following

THEOREM 3.4. Let (M", g) be open, complete, of bounded geometry up to
order k > n/2—1 and t: |K| > M a smooth uniform triangulation. Then the
integration of forms over simplexes of K defines a topological isomorphism |
(M) S A%(K). u

Remark. In 1977 Dodziuk proved this theorem for normal coverings of
closed Riemannian manifolds ([5]). A version of this proof was applied to the
class occurring in Theorem 3.2. (¢) ([10]). From the proofs it was more or
less clear that the only fact needed was bounded geometry. This was firstly
recognized by Dodziuk ([6]). As an interesting corollary of 1.9 and 34 we
obtain

THeOREM 3.5. Let (M", g) be open, connected, complete and of bounded
geometry up to order k >n/2— 1. Then there exist no square integrable
harmonic p-forms on M", p=10, n. =

There arises the natural question of similar results for the nonreduced
theory; i.e., what are the relations between HP* (M, d) = Z»*/BP* and H5(K)?
We are far from giving here a [ull discussion and [ull proofs, but we will
present some results in this direction. For the proofs we refer to ([9]). One
gets immediately

THEOREM 3.6. Let (M", g) be open, of bounded geometry up to order k > n/2
—1 and K a uniform triangulation. Then the integration of forms over the
simplexes of K induces a surjection .

[ H**(M, d) - H3(K). =
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For the next theorems we assume that the reader is well acquainted with
the Whitney mapping W, which maps cochains into forms. If K is a uniform
triangulation, K" the rth standard subdivision, then we denote the
associaled Whitney mapping with W..

Tueorem 3.7. Let (M" g} be open, of bounded geometry up to order
k>n/2=1, K a uniform triangulation and ) (imdW)) cd,_, A7~ 1+ 1
r=0
Then {: H™*(M, d) - H5(K) is injective. m

To distinguish between d on a combinatorial and an analytical level, we
write d for the combinatorical coboundary operator.

THEOREM 3.9. Let (M", g) be open, complete and of bounded geometry up
to order k >n/2—1. Under each of the following conditions [: HP*(M", d)
— H5(K) is an isomorphism.

(a) imd,_, is closed;

(b) imd_, is closed and | (im(dW)) < imd,_;
r=0
(c) imA4, or im4,_, is closed;

(d) 0¢Je(Api(kcr.1p)L) or 0¢62(Ap—l](kerdp_ I)J'-)' u

§ 4. Applications of L,-cohomology to algebraic geometry

We conclude our presentation with two applications of L,-cohomology to
algebraic geometry, namely, the proof of Hirzebruchs conjecture and
intersection homology. According to the foregoing sections, L,-cohomology
includes the following objects: H%(K), H%(K), #*(K) at the combinatorial
level and H%(M), H%(M), H**(M), #*(M) at the analytical level. For
complete manifolds, H%¥ (M), H**(M) and #*(M) are L,-isomorphic in a
canonical way. If additionally (M", g) is of bounded geometry and K is a
uniform triangulation, then also H¥(M)=> H**(M) = #*(M) = H%(K)
= #*(K). In this case the computation of any one of these spaces yields all
the other spaces and it depends in fact on the actual situation, which
computation is most convenient, most handy. Unfortunately, the manifolds
which occur in Hirzebruch's conjecture are complete but do not have
bounded geometry. Consider a 4k-dimensional complete oriented manifold.
The *-operator defines an involution t, = (—1)P»~"2x . and this induces an
orthogonal decomposition A%% = A°@A*° Il D denotes the operator
acting on certain L,-forms and dim#*(M) <o, then ind,,D
= dim# % (M)—dim #*(M). Thus we have a simple relation between
the L,-index of D and L,-harmonic forms, ie. L,-cohomology. The
computation of dim #%—dim.#% is the heart of Miiller's proof of
Hirzebruch’s conjecture as shall see.
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The other class of examples 1s furnished by projective varieties with
certain types of singularities 2. After removing the singularities, the resulting
Kihler manifolds are neither complete nor of bounded geometry, ie.
H¥(M\ZX), H¥(K) are in general independent objects. We indicate an
isomorphism between H¥(M\Z2) and the dual of the Goresky-McPherson
homology.

At first we introduce Hirzebruch's conjecture.

Let N*~! be a closed smooth oriented (4k — 1)-dimensional manilold
with stable trivial tangent bundle. Then all its Stiefel-Whitney and
Pontriagin numbers vanish and N bounds a 4k-dimensional compact smooth
oriented manifold X*. If o is a trivialization of the stable tangent bundle of
X, then the stable tangent bundle of X can be pushed down to an SO-bundle
over X/N. Let pje HY(X/N:Z)=HY(X, 0X; Z) be its Pontriagin classes
and L, the Hirzebruch polynomial. According to Novikov's signature
additivity theorem. the number

0(N)= L (py...., pJ[X, éX]—sign X (4.1)

is independent of the choice ol X and is well defined. The above situation
arises in a natural way in the investigation of cusps of Hilbert modular
varieties (compactification of each single cusp by adding a point, resolution
of the corresponding singularity and taking for N a connected boundary of
the cusp). The computation of 6(N) by L,-methods for uncompactified cusp
is one of the most beautiful applications of L,-cohomology. To make this
clear, we recall briefly some well known facts on Hilbert modular varieties.
Here we follow [14], [15], [16]. Let F be a totally real algebraic number
field of degree »n over Q, i.e. such that there are n different embeddings F — R
into the real numbers R, x — x“ e R, xe F. If Of denotes the ring of algebraic
integers, then the Hilbert modular group I' = SI,(O0g)/{ =1, 1} acts on the n-
fold product H" = H x ... xH of the upper half-plane H by

a b ) ‘a“)zl_+_b(1) a(ﬂ):"+b(n) 4‘)
) m = (G g g ) (42

More generally, we consider discrete irreducible subgroups I' « (SI,(R))".
Si,(R) acts on P'(C) by

az+b
I |

(4.3)

An element of SI,(R) is called parabolic if it has under this action exactly
one fixed point in P!'(C). Clearly, this point belongs to P'(R)=Ru x|,
since fixed points with imaginary part # 0 do not exist. An element
y =", y"™e(SIL(R)" is called parabolic if all ;* are parabolic.
A parabolic element of (SI,(R))" has exactly one fixed point in (P'(C))" which
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belongs to (P'(R))". The parabolic points of I" are defined as fixed points of

parabolic elements of I". The orbits of parabolic points under the action of I’
on (P'(R))" are called parabolic orbits.

LemMma 4.1. If T is irreducible, then there are only finitely many parabolic
orbits. In particular, this holds for the action of the Hilbert modular group. m

H" has the invariant metric

gs? = 3 DL (44

LEmMMA 4.2. For I' =S81,(0p)/ =1, 1} and the volume form

dx, A dy, dx, A dy,
W= A A
i Yn

we have

| o= 2n " (Dpio)*'? L (2),

HYT
where Dp,o is the discriminant and (p(s) Is the zeta function of F. m

The parabolic orbits correspond to cusps of H"/I" as follows. I" acts by

43) on P'(F)=Fu'fw! and by 4.2), (43) on H"UP'(F). HYr
:=(H"U P'(F))/T is a compact algebraic variety with a finite number of
1isolated singularities. H"/I' 1s noncompact with hnitely many isolated ends
= (open) cusps and each end is compactified by a point of P'(F)/I. The
number of ends = the number of parabolic orbits coincides with the

class number of F, ie. the order of the class group. Let x =E, p, € Og,
q

be a representative for the point of P'(F) which compactifies a cusp.
We label the cusps by these points. Write I', = {yeI'| yx = x!. Then there
exists a peSlL(F) with ox=o0c. We define ¢I'_ =pl 0"' and W(d)

= lzeH" [] Im(z;) <d}, d > 0. By T* we denote the k-torus.
=1

J

Lemma 4.3. W(d)/°I', is a smooth neighbourhood of the cusp and
o(W(dyer,) is a T-bundle over T" '.m

The stable tangent bundle of ¢(W(d)/°l",) is trivial and therefore, for a
cusp represented by the point xe P!'(F)/I, the signature defect J(x)
= §(8(W(d)°T,)) of (4.1) is well defined. We define the norm N{u) of an
element ueF by u'? ... u™. An element e€F is called totally positive (¢ > 0)
if éV,..., ™ > 0. By Of we denote as usual the units of Op. Let M be an
additive subgroup of F which is free abelian of rank n 1.e. is a lattice of rank
n. Define Uj; = {ecOf| eM =M, ¢ > 0. Two lattices M,, M, are called
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strictly equivalent if there exists a 4 » 0 with AM; = M,. This implies U;C,l
= U;Z.

Lemma 4.4. For each cusp x there exist a lattice M, = F and a subgroup
V. < Uy, of finite index such that

7:{(o%)

ie. ¢ is an extension of V. by M,:

0O-M,—-°, - V,— 1. =n

eeV, ueF and uyeM, if ¢ = 1},

For each pair (M, V), M = F a lattice and V < U,, a subgroup of finite
index, we define the L-series

sign N ()

LM V.9 #gu;ow IN(wf* (4
This Dirichlet series converges for Re(s) > 1 and admits an analytic
continuation to C, which is regular at s = 1. Further, we can embed M as a
lattice in R", u— (1'V,.... u™). To each cusp x we now associate an L-series
L(M,, V. s)by (45). Let ze H" be a fixed point of I', I', the isotropy group.
I'_ 1s finite cyclic of order g > 1. After a choice of a geodesic ball D, around z
and normal coordinates z,,..., z,, I. acts on D. by

-})'(:17"'5-2’") =(¢q1 Zyyenry Cq".'.’,,),

where 7 is a generator of I, (*=1 and (gq;, q) = 1. Then

1y g1 j '
o(z) = (=1 (qZ cot (qul) ... cot (nq{,))
q i=1 q q

is called the cotangent sum associated with the quotient singularity ze H"/I".
Now we recall the following fundamental result of [14].

Theorem 4.5. Let I' = (SI,(R))** be a discrete irreducible subgroup such

that vol(H*/I'Y < =. If z,,..., z, represent the quotient singularities of H**/I’
and xy,..., x, Is a complete system of inequivalent parabolic points, then
s 1
sign(H*/IN) =) d(z)+ ), 0(x)). = (4.6)
i=1 i=1

Thus the computation of sign(H*/I'} includes as a main step the
computation of the 4(x;). In the case k = 1 Hirzebruch was able to compute
d(x) for a cusp by compactification of the cusp, explicit resolution of the
singularity and computation the terms in (4.1). Computation of L(M,, V,, 1)
for a real quadratic field and comparison gives

d(M)

(S(X) = - TL'Z

LM, V., 1), (4.7)
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where d(M,) = vol(R"/M,). Now, Hirzebruch conjectured that for every n
=2k and every cusp x of H*/I'  denoting the Hilbert modular group
associated with a totally real number field F of field degree 2k, the following
equality holds:

— 1)
5(x) =(ﬂ2k’ d(M) LM, V., 1) (4.8)
This conjecture — actually a more general version of it — was proved in

meantime by Atiyah, Donnelly and Singer ({1], [2]). A second proof is
announced and partially published by W. Miiller. Reduced L,-cohomology,
i.e. a suitable space of square-integrable harmonic forms, is an essential tool
in that proof. We briefly sketch W. Miiller’s idea, following [15], and [16].
For the sake of simplicity we restrict oursell to the case of k =1, n= 2,
F= Q(\/B) a real quadratic number field of class number 1. Thus we have
oneend = cusp. The involution t = i??~ Y« on A*(H?*/T") induces a decompo-
sition A* = A% ®A* into + l-eigenspaces of t. Let D=d+5|,1*+|05 A%
— A* , be the signature operator, D its closure, D* the adjoint operator,
A, =D*D, A_ =DD* and A, the self-adjoint closure of A.. H?*/I is
complete; thus ker 4 n A*° coincides with the square-integrable closed and
coclosed forms. t anticommutes with D and induces a decomposition
H*(HYN) =kerAnA*° = #* @ #* Then kerd, = #*%.

LEmMmA 4.6. #* are finite-dimensional. w
CoroLLARY 4.7.

ind;, D = dimker D—dimcoker D = dimker 4, —dimker 4 _

is well defined. m

Let L, A*(H*/I) = A*°(H*/I) = L, 4(4*(H?*/1))@® L, 4 (A*(H*/T)) be
the decomposition corresponding to the discrete, resp. absolutely continuous
part of 4, Ly ,A* =1L,  A*®L,  A* the decomposition into cusp and
residual forms. According to Selberg there exists a torsion free normal
subgroup I'y = I' of finite index.

Treorem 4.8. sign(H?*/I')=dim #2 . (F'))—dim #2 _ (). =

cus, +

Further, dim #* . =dim #* _. From this and the behaviour of the
signature under finite coverings one gets finally

ind;, D = dim % , (H*/I—dim #"_ (H*/I') = sign(H*/T).
Therefore it remains to compute ind,, D. Set 4, = Zi[,_z dA

THeoREM 4.9. For every t > 0, e "% has a smooth kernel ki (z,z', 1), is
of trace cluss and thus
ind,, D= | trkg(z,z, )= | trko (z, 2z, 1) (4.9)

Hr H2T
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The remaining main problem is the computation of the right hand side of
(4.9). Here we examine the contribution of various conjugacy classes in I' to
(4.9). Hyperbolic conjugacy classes give contribution zero. The contribution
ol the conjugacy classes with an elliptic fixed point = is the cotangent sum
8 (z). The parabolic contribution is —n~2d(M)L(M, V, 1), where M = Og, V
= 0f? and d(M) = (Dg,p)"?. Thus
k
ind;, D = Y d(z)—n"2d(M)L(M, V, )= sign(H?/I'), e
j=1

d(M)

7.,:2

o{x) = —

L(M, V,1).

Concluding this class of examples we state one of the main theorems of [15].

THeoREM 4.10. Let F/Q be a totally real number field of degree 2k and let
I' © SI,(F) be an arithmetic subgroup. Let x;, j=1,...,p, be a complete
system of T-inequivalent parabolic fixed points of I' and let o(x;) be the
signature defect of x;. If the lattice M; = F and the subgroup V; < U,t,j of

finite index are associated with x;, then

P (_I)Zk p
D, d(x) = 2 Y d(M)L(M;, V,, 1). =
Jj=1 j=1

As a second application of L,-cohomology in algebraic geometry we
present the isomorphism between the L,-cohomology H¥ (X \ ) and the dual
(THT (X))* of the intersection homology for certain classes of stratified spaces
with singularity £ and a suitable metric. To formulate a precise theorem, the
introduction of some concepts is unavoidable. Let X" be a pseudomanifold,
i.e. a polyhedron such that there exists a closed subspace X~ with dimX < n
—2 and X\2X2 being a dense oriented manifold in X. Let X be a
pseudomanifold with triangulation 7. A stratification of X is a filtration by
closed subspaces

X'=X,2X,.,.=X,-22X,.:>2...0X, 25X,
such that for each Ipoint pe X;\ X;_, there is a filtered space
V=V,>V_,o..>F=a point,
and a mapping VxB — X which maps V;xB, for each j, PL-

homeomorphically onto a neighbourhood of p in X, where B' denotes the

PL i-ball. In particular, X;, = X;\ X;_, is an i-manifold or is empty. Denote
by CL(X;R)=CL(X) the corresponding (to T) chain complex of all
simplicial chains with real coefficients and C,(X) = li_;p CIL(X) the group of

all PL geometric chains. Each e C;(X) has a well defined support |£]. For a
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perversity p, i.e. a sequence of integers p = (p;, p3,.... p,) With p, =0 and
Px < Px+1 < pe+ 1, we define

ICP(X) = {{e Ci(X)| dim(ig] N X,-\) S i—k+p,, dim (& N X, )
<i-1—-k+p, for all k}.

The i-th intersection homology group IHP?(X) of X with perversity p and
with a fixed stratification is defined to be the i-th homology group of the
chain complex ICE(X).

Remark. Cheeger considers in his paper [3] only the so-called middle
perversity m =(0,0,1,1, 2, 2,..., n/2—1).

THeoreMm 4.11. Let X be a compact pseudomanifold without boundary.
Then IHE (X) is finitely generated and independent of stratification. w

For a sequence ¢ =(c;...., ¢,) of nonnegative real numbers, a metric g
on X, is said to be associated with ¢ if, at a local product representation for

a tubular neighbourhood, for every stratum X ; the metric g 1s locally of the
kind

gu+dr®dr+r¥n—j-gs,

where g, is a metric in the base U, dr®dr is the metric in radial direction
and g 18 the induced metric in some fixed sphere of radius r ([17], p. 345).

Lemma 4.12. For any ¢ there exists a metric at X, which is associated
with C. =

For any perversity p < m (i.e. such that p; < m;), a metric g is said to
be associated with p, if g is associated with ¢ =(c,,..., ¢,) and

1 1

<< — — if2p<k—3,
k—1-2p, ~%“k3-2p P

I<e <o if 2p, =k—2.

THEOREM 4.13. Let X" be an n-dimensional compact stratified space with
da fixed PL structure and a stratification X = X, > X, ... > Xosuchthat X,,_,
= X,_, and each stratum X of dimension j < n—2 is diffeomorphic to the
disjoint union of 10, 1[/, X;, = U(10, 1[),. Let p < m be a perversity and g a

metric on X, associated with ;7 Then
Hi(X,, d) = (IH;’(X))* ([17]). =

For examples one can take certain singular projective varieties. The above
class includes and generalizes the conical singularities of Cheeger ([3]). We
conclude with the final remark that L,-cohomology methods become more
and more an essential ingredient of topology, geometry, anaylsis and
harmonic analysis.
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