ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XIX, 3-4 (1987), pp. 485-495

A. KOSLINSKI (Wroclaw)

ON THE NORMAL DISCONNECTION OF A TREE

IN MEMORY OF LUCJAN SZAMKOLOWICZ

Abstract. In the paper a certain generalization of trees, called dendroids, is described. A
dendroid is expressed as a pair <X, f), where X is a set of arcs and f is a mapping of X into
fhe set of all subsets of X. Finite dendroids coincide with finite directed trees; infinite ones
include directed trees, but also other objects. This paper may be a good hint to a non-traditional
access to the study of trees.

1. Definitions. By a directed multigraph [4] we mean a triple G
= (¥, X, ¢), where V is a non-empty finite set of vertices, X is a finite set of
arcs, and ¢ is a function mapping X into V2. If ¢ is 1-1, then G is called a
directed graph. In this case we can consider G as a pair (V, R}, where R is a
binary relation on ¥, and arcs are denoted by [u, v]. If for any u, veV
URy < ~pRu, then G is called strongly directed. -

Let G = (V, X) be a directed graph. A sequence

[U1, coey Uy Xgg cvny xk_l]

Where v;e¥, x;eX and x;=[vj, v;4,] or X;=[v;4q, 0] for i=1,.. k
and j=1,...,k—1 is a chain connecting v, and v,. The chain
vy, ..., 0, Xy, .., Xe—y] is simple if i # j implies v; £ v; for i, j=1,..., k. A
chain is called a cycle if v; = v;. A cycle is called simple if

k>3 and o =v; < {i,j}={1k.

A graph is connected if for any pair of vertices there exists a chain
Connecting them. A connected graph without cycles is called a tree. Let us
Observe that the removal of an arc x from the set of arcs of a tree G
= (¥, X) disconnects G into exactly two trees

G, =W, X,) and G,= {1, X,)

such that ¥, U¥; = V and X, U X, = X\{x}. Such a disconnection is called
hormal. Using this property we shall generalize the notion of a tree into an
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infinite case. We shall resign from the definition of a chain as a sequence of
vertices and arcs, next we shall show that, in the finite case, the new
definition of a chain and the old one are equivalent.

2. Basic properties of normal disconnections of a tree. Let (X, f) be an
ordered pair, where X is an arbitrary non-empty set of elements called arcs
and f is a mapping f: X — 2% For ac X write

g(a) =(X\f(a)\{a}).
The pair <X, f> is called a dendroid if the following conditions are satisfied:
(A1) a¢ f(a),
(A2) be f(a) = g(a)U{a} < f(b) or g(a)u {a} = g(b),
(A3) beg(a) = flau{a} < f(b) or f(@u{a} cg(b)
Let (X, f) be a dendroid, a, be X, and a #b. The set of all xe X such
that x # a, x # b for which

aef(x) A beg(x)_‘ or aeg(x) Abef(x)
is called an open chain and denoted by (a, b). We define the neighbourhood
relation § in X by the formula

aSh <> a# b Afa, b)=0Q.
Let us put

fs(@) = {xe f(a): xSa},” gs(a) = {xeg(a): xSa}.

A subset Y of X is called a node ofadendroxd X, f>if Y satisfies one of
the following two: conditions: :
(a) Y is maximal with respect to inclustion and such that-

a, beY = aSh;

(b) Y is a one<clement set {a} if fo(a) =@ or gg(ap= Q.
Let ¥ denote the set of all nodes of a dendroid (X, f . In the set ¥ we
define the neighbourhood relation R putting for u, ve V o

URv > u#vAunv#Q or u=v={x} A f5x)=gs(x)=0Q.

Now we present some properties of the notions defined above.
LemMma 1. If a, b, cc X and be f(a), ceg(a), then ~ bSc.

Lemma. 2. For any mode u and any aewu, exactly ome the folbwnﬂ
conditions holds: . o

@) w\{a} = f(a);

(b) w\{a} cg(a).

Proof. If u = {a, b}, the lemma is obvious. Let b, ccu\{a}, b c. I
be f(a) and ceg(a), then ~bSc, a contradiction with the assumption that ¥
is a node. We obtain an analogous contradiction assuming that beg(a) and
ce f(a). -
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Lemma 3. (a) If aSb, aSc and b, ce f(a), b # ¢, then bSc.
- (b) If aSb, aSc and b, ceg(a), b # ¢, then bSc.
Proof. (a) Assume to the contrary that aSh, aSc, and b, ce f(a), b # c,
and ~bSc. Then there exists an arc d such that de(b, ¢). Hence

bef(d) and ceg(d) or beg(d) and cef(d).

Assume that be f(d) and ceg(d). Observe that d # a. In fact, if d = a, then
¢eg(a) and ce f(a). This however is impossible in view of the definition of
g9(a). According to Lemma 2, ac f(d) or acg(d). Let ae f(d). Since ceg(d),
80 de(a, ¢), whence ~aSc. If aeg(d), then since be f(d), we have ~aSh. In
both cases we get a contradiction with the assumption.

We argue similarly in the other case.

The proof of (b) is analogous.

CoroLLarY 1. If u; and u, are two non l-element nodes, acu,, acu, and
u\{a} < f(a), u,\{a} < f(a), then u, = u,. Similarly, if u;\{a} < g(a) and
u\{a} = g(a), then u, = u,.

Proof. Assume that the elements of both nodes different from a belong
to f(a). Let beu,, ccu,, b # c. By Lemma 3 we have bSc, so u, = u,.

If an arc a belongs to the node u, then we say that a is incident with u.

CoroLLARY 2. If an arc a is incident with two diﬁ“erent nodes uy, u, such
that none of uy, u, is a l-element node and u,\{a} < f(a), then

u\{a} = g(a).
LemMa 4. Every arc is incident with at most two nodes.

Proof. Let an arc a be incident with nodes u,, u, and u;. If none of u,,
Uy, uy is a 1-element node, then by Lemma 2 and Corollary 1 at least two of
them are identical. If one of them, say u,, is a 1-element node then u, = {a}
and fi(a) =@ or gs(a) =@ and u, = uj;.

LemMMa 5. Two different nodes have at most one common arc,

Proof. If nodes u, and u, are different and one of them is a 1-element
Node, then the proof is obvious. Assume that none of u,, u, is a 1-element
Dode. Let u, and u, be different and have a common arc a. By Corollary 2, if
4\ {a} < f(a), then u,\ {a} = g(a). So, by Lemma 1, any arc b # a cannot be
incident with both u, and u.

By the definition of a node we have

LemMMmA 6. Every node is mc:dent with at least one arc and every arc is
incident with at least one node.

By Lemmas 1-6 we get

THEOREM 1. The pair (¥, R) is a symmetric graph (finite or infinite)
Whose edge set can be identified with the set X.
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Note that if X is infinite, the graph {V, R) can have loops, i.c., elements
ueV such that uRu, and need not be connected in the usual sense. Anal-
ogously, the notion of an open chain (a, b) does not coincide with that of the
chain in the theory of finite graphs, since (@, b) cannot be empty, and does
not contain any element adjacent to a.

ExampLE 1. Let X be the set of all real numbers. Assume that
fe9 = {yex: y>x}.
The pair (X, f) is a dendroid. An open chain is of the form
(a, b) = {xe X: a<x<bh}.

The set of nodes V coincides with X. Every arc x is a loop of (¥, R).
ExampLE 2. Let X be the set of ordinals less than w. For ae X put

‘f(oz)= {xeX: x >a}.
Then g(w) # @ but g,(w) = @, and we have a 1l-element node w.
We introduce a relation R defined in the set V as follows:
‘uﬁv‘ < uRv, unv= {x} for some xeX,
v\{x} = £ (9 and u\ {x} < g(x).
It is easy to see that

THEOREM 2. The pair (V, R)> is a strongly directed graph, whose set of
arcs is X.

3. Properties of an open chain. Let (X, f)> be a dendroid, V be the set
of its nodes, and let ue V. We define two sets of arcs:

ut = {xeX: xeu nu\{x} = f(¥)},
u” = {xeX: xeu Au\{x} =g(x)}.

The set u™ consists of entrance arcs of u, and the set u~ consists of exit arcs
of u. From Lemma 2 it follows that '
: utvu =u.

LemMMma 7. For a node u and an open chain (a, b) we have
’ juna, b)l <2

Proof.-Assume to the contrary that un(a, b) = {x, y, z}. Let xeu'
yeu~, zeu" and let bef(y), bef(z). Hence aeg(y) and aeg(z). Then
z, ye f(x), xe f(z), and xeg(y). By (A3) it follows that f(y) = f(x). In fact,
the relation f(y)u {y} < g(y) is impossible. Hence be f(x), but ze f(x)*and
xe f(z), so by (A2) we have g(z) = g(x). Consequently, ae f (x). Since ae f (¥
and be f(x), we get a contradiction with the assumption that xe(a, b). The
proof in the remaining case is analogous.
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CoroLLarY 3. If u'is a node and uc(a, b), then |ule {1, 2}.

Now we define the preceding relation in the set of arcs of an open chain.
To this end we introduce the following notation:

' x&(a, b) < xe(a, b) and be (%),
x&(a, b) < xe(a, b) and ae f(x).

The notation x€(a, b) is read: the arc x is directed compatibly with the
open chain (a, b). |

The notation x&(a, b) is read: the arc x is directed contrary to the open
chain (a, b).

Let x, ye(a, b). We say that x precedes y and write x <y iff

(1) xE(a, b) and y&(a, b) = f()) = f(x),
2 x&(a, b) and y&(a, b) = g(y) = g(),
3) x&(a, b) and y&(a, b) = g(x) = f(3),
@) xE(a, b) and yE(a, b) = f(x) = g(y).

Lemma 8. For any two arcs x and y such that none of the sets f(x), g(x),
T ), g(y) is empty we have

®) | fO)efx) = g =g0),
(©) f®<=g0) = fO) =g
Proof. If x =y, then conditions (5) and (6) are obvious. So we can

assume that x # y. 4
We prove the implication = in (5). First we show that the inclusion

0) o) efE®

Implies | _

8) | | yef(x).

Assume to the contrary that yeg(x); then by (A3) we have
®) f@U{x}ef0)

or

(10) fR U {x} = g0).

Then by (9) and (7) we get f(x)u {x} < f(x), contrary to (Al). From (10)
and (7) it follows that f(y) =g(y), which contradicts the definition of g(y).
Thus (8) holds. From (8) and (A2) it follows that one of the two cases holds:

(11) g(xuix} = f()
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or

(12) g U {x} =g 0y).

Conditions (7) and (11) give a contradiction, since then

gx) cgx)uix} = f(y) e fx.

- Thus (12) holds, which implies g(x) = g(y), and this completes the proof of
the implication => in (5). The proofs of the remaining implications are
analogous.

THEOREM 3. The preceding relation < is an order in an open chain (a, b).
Proof. The proof of reflexivity is obvious.

Proof of transitivity. Let x <y and y <z. We can assume that’
x # y and y # z. To prove the transitivity we have to consider the following
cases:

(13) ‘ x€(a, b), ye(a,b), zE&(a,b),

(14) x€(a, b), yéE(a,b), zE(a,b),
(15) x€(a, b), yé&(a,b), zE(a,b),
(16) | xE(a, b), y&(a,b), z&(a,Hb),
(17) xE(a,b), yé&(a,b), zE(a,bd),
(18) x€(a, b), yé&(a,b), zE(a,b),
(19 x&(a, b), yéE(a,b), zE(a,b),
(20) xE(a, b), yé€(a,b), zE&(a,H)).

Assume that (13) holds. By (1) we have f(y) < f(x) and f(z) = (), so
f(2) = f(x). Since x&(a, b) and zE(a, b), so x < z. Assume (14) holds. By (1)
we have f(y) < f(x), whence, by (5), g(x) = g (). From (14) and (3) it follows
that x <z. The proofs in the remaining cases are similar. :
Proof of antisymmetry. We have to show that if x, ye(a, b) and
X # y, then N 4
~(x<y) or ~(y<x),

We have the following cases:

(21) x€(a, b), yé€(a, b) Ayef(x),
22) x&(a,b), y&(a, b) A yeg(x),
(23) , x€(a,b), y&(a,b) Ayef(x),
4 - x&(a, b), y&(a, b) A yegx),

(25) xE(a, b), yé(a,b) Ayef(x),
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(26) - x‘é(aa‘b)s yé(a’ b) A yeQ(x)a

(27) x&(a, b), yE(a,b) nyef(x),
(28) x&(a, b), yE&(a, b) A yeg(x).

Consider case (21). We shall prove that y <x. Otherwise, we have
f(x) = f(y) and yef(x), so ye f(y), which is impossible. The proof in the
other cases is similar.

Proof of connectivity. Let x, ye(a, b). If x = y, then x < y. Assume
that x # y; then we have to consider cases (21)-(28).

Assume that (21) holds. We shall prove that x <y. Let xe(a, b),
ye(a, b), ye f(x). Then be f(x) and be f(y). Hence acg(x) and aeg(y)
Since ye f(x), so by (A2) we have

(29 g(9 U {x} = £ ()
or ‘
(30) g(x)u{x} = g).

Case (29) is impossible since (29) implies

aeg(x) =g u {x} = £ ().

Hence (30) holds, which means that g(x) =g(y) and by (5) we get
S < f(x). Thus x <y. The proofs of the other cases are analogous.

LemMma 9. If ye(a, b) and z is an element such that ye f(z) and acg(z)
or yeg(z) and ac f(2), then ze(a, b) and z <y.

Proof. Assume that ye f(z) and aeg(z); the proof of the other case is
analogous. We shall prove that be f(z). Assume to the contrary that beg(z).
Since ye f(z), so by (A2) we have

guizl=f() or g@Uiz} g0

In the first case we have a, be f(y), and in the second case a, beg(y). This
however contradicts the assumption that ye(a, b). Thus aeg(z) and be f (z),
and since z # a and z # b, so ze(a, b). We show that z <y. Assume that
Y€(a, b); the proof in the other case is analogous. Since ye f(z), so by (A2)
we get

g@uiztcg() or g Uizl <f0).

The second case cannot hold since then we would have ae f (), contrary to
the assumption that y&(a, b). So be f(y). Hence g(z) = g(y) and, by Lemma .
8, we have f(¥) = f(z). Thus we obtain z < y.
-+ LEmMa 10. If ye(a, b) and z is an element such that ye f(z) and beg(z)
Or yeg(z) and bef(z), then ze(a, b) and y <z.

The proof is analogous to that of Lemma 9.
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Lemma 11, If y, ze(a, b), y <z, y#z and yeg(t), zef(t) or yef(t),
zeg(t), then te(a, b) and y <t <z. |
Proof. Assume that yeg(t) and ze f(t); the proof in the second case is

analogous. Let, for example, y, zE(a, b), the other cases are similar. First we
shall prove that

- zef0).
In fact, if zeg(y), then by (A3) we have

RLE ) < f( @ or fO)u v} <90

The ﬁrst case is impossible, since then we have yef(z) but f(2) = f(y»
whence ye f(y). The second case is also impossible, since y&(a, b) implies
be f(y), so beg(z). But z€(a, b) implies be f(z). So we have ze f(y). We
shall prove that

te f(y).
In fact, if teg(y), then by (A3) we have

fOuler® o foIUiy g0

Thus zeg(t), contrary to the assumption. Thus te f(y), and hence and by
(A2) we have

guef® o guiycg.

The first case is impossible since then we have ye f(t), and the second case
implies aeg(t). From the assumption ze f(t) it follows by Lemma 9 that
te(a, b) and t <z. The proof that y <t is dual by using Lemma 10.
Tueorem 4. If a <(a, b), u = {y}, acg(y), bef(y), then
1° If gs(y) = @, then there is no maximal element in the set

= {x: xe(a, b), x <y, x # y}.
2 If fs(y) = @, then there is no minimal element in the set

= {x: xe(a, b), y <x, x # y}.

Proof. We shall prove 1°. The set P, is non-empty since otherwise it
‘would follow from Lemma 9 that aSy, contrary to the assumption. If ther¢
exists a maximal element z, in P,, then by Lemma 11 we have z,S):
contrary to the assumptlon that gs(y) = @. The proof of 2° is analogous by
using' Lemma 10.

CoroLLARY 4. If u = {x}, u =(a, b) and there is a loop at u, then there
is no maximal element in the set P, and there is no minimal element in the
set P,.
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4. Locally finite dendroids. A dendroid (X, f) is called locally finite if
the following condition holds:

(A4) For any a, be X we have |(a, b)] < N,.

Let (X, f> be a locally finite dendroid. Consider two of its arcs a and b
Such that (a, b) # @. According to Theorem 3 we can order all arcs of the
Open chain (a, b) into the sequence [x, x,, ..., x;] such that if i <j, then
%; < x;. Using this we shall prove Lemmas 12-15.

LemMA 12. For any x; we have

(@) if j <i, then x;e(a, x;),

(i) if i <j, then x;e(x;, b).

Proof. We prove (i); the proof of (ii) is analogous. Assume first that

x,-é'(a, b) and xjé(a, b).
Since x; < x;, according to (1) we have

S (%) = fx).

We also have be f(x), and aeg(x,). So it remains to prove that x;e f (x;).
Assume to the contrary that x,eg(x;). By (A3) we have -

fpolxlefx) or  fx)uix} cg(x).

In the former case we get 1x;} € f(x;), a contradiction. In the latter case we

have beg(x;), contrary to the assumption that x;E(a, b). Thus x;e f(x;). The

Other cases can be proved similarly. -
LemMMmA 13. For every i=1,2, ..., k—1 we have x;Sx;,,.

Proof. If for some i there exists te(x;, x;4), then by Lemma 11
we have te(a, b) and x; <t <Xx;.,. This however is impossible, since x,
and x; are the only elements of the chain (a, b) and are different from ¢ by
Lemma 12.

Hence by Lemma 7 we have _

Lemma 14. For every i =1, ..., k—1 the node u; with arcs x;, x;,, has
the property that u; n(a, b) = {x;, x;.1}.

LemMA 15. aSx, and x, Sb. :

Proof. The relation aSx; follows from Lemma 9. In fac., i there exists
2 such that ze(a, x;), then ze(a, b) and z < x,, contrary to the assumption
that the elements x,, ..., x; are the only elements of the chain (a, b). The fact
that x, Sb follows from Lemma 10.

TueoremM 5. If a dendroid {X,f) is locally finite, then every two its
Nodes can be connected with a chain in the classical sense.

Proof. If u =v, then [u] is the required chain. Let » and v’ be two
different nodes. If v < v/, then v must be a 1-element node. If v = {a}, then
the required chain is [v, v/, a]. We argue analogously if v' < v. Let v\v' # O,
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v\v# Q@ and aecv\v, bev'\v. Let us consider an open chain (a, b). The
elements of (a, b) can be ordered into a sequence

[al,az,...,a,.], where a, <az<.:.<a,,.
By Lemmas 13 and 15 we have
aSa,, dl Sa,, a,8a,, ..., a,_4Sa,, a,Sh.

Let us note that if acu and u N (a, b) # @, then u N (a, b) = {a,} by Lemmas

7 and 12. Similarly, if beu and u(a, b) # @, then un(a, b) = {a,}. The

pairs {a, a,}, {a,, b}, {a,, a1} (i=1,...,n~1) can be extended to the

nodes vy, v,, v;, respectively, where vy = v if a,ev or v, =0 if a,ev. Then:
(@) if a;ev, then [v, vy, ..., 0,4, 0, v, ay,..., a, b] is the required

chain;

(b) if a,€v,, then [v, vy, ..., 0,-, 7, @, a4, ..., a,] is the chain from v

Lemma 16. (a) If be f(a), beu, then u\{a} < f(a).

(b) If beg(a), beu, then u\{a} = g(a).

Proof. Assume that there exists ceu such that ceg(a) then a < (b, ¢)

80 ~bSc, contrary to the definition of a node.

LemMA 17. In a locally finite dendroid for any xe X we have

() if fs(x)=Q, then f(x)=Q;

(ii) if gs(x) =@, then g(x) = Q.

Proof. We shall show (i). The proof of (i) is analogous. Assume that
f(x)# @, ye f(x), and (x, y) # @. Hence, by Lemmas 13 and 15, we have
xSa,, ..., a,Sy. We prove that a,e f(x). Otherwise we have a,eg(x), ye f (X}
which is impossible since ySa,. Similarly we have a, € f(x). Since a, Sx, we
have fs(x) # Q.

TueoreM 6. If (V, R is the graph of a Iocally finite dendroid (X, f)
such that |X| > 1, then any two nodes of this graph are connected exactly by
one chain in the classical sense.

Proof. Assume to the contrary that there are two different chains
connecting two nodes u and v; then we have one of the following situations:

(a) there exists a loop at u or at v;

(b) there exist different nodes u, and u, connected by means of two
different arcs x, and Xy}

(c) there exists a simple cycle [u,, u,, ..., u, =u,], where n > 2.

(a) If there exists a loop x at u, then accordmg to the deﬁmtlon of the
relatlon R we have:

u= {x} and f5(x) = gs(x) = Q.

Then by Lemma 17 we obtain f (x) g(x) @, so |X| = 1, contrary to the
assumption of the theorem.

to v'.
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(b) The existence of two different nodes connected with two different
arcs contradicts Lemma 5.

() Let (c) hold. Denote by x; the arc between u; and u;,, for i
=1, ..., n—1. Obviously, all the arcs x4, ..., x,_, are different by Lemma 2
and by the definition of a 1-element node. The nodes u, and u, are different
by the assumption. So by Corollary 2 we can assume, e.g., that

u\ {x;1} < f(x,)

and

“1‘\{3‘1} cg(xy), xz€us, xzeuz\{xl} < f(x2)-

Then by Lemma 16 we have u, \ {xl} < f(x,) and going on we conclude that

Uy = Uy \ ‘{x1} < f(xy).

This however gives a contradiction since u; \ {x;} = g(x,).

From Theorem 6 it follows that the graph <V, R is connected and does
ot contain simple cycles, so it is a generalization of a tree to an infinite case.
A dendroid (X,f) is called finite if it satisfies axioms (A1){A3) and
additionally the condition '

1X] < c0.

Since a finite dendroid is locally finite, Theorem 6 implies the following
THEOREM 7.. The graph (V, R> of a finite dendroid (X,f> in which
1X| > 1 is a directed tree.

References

(1] c Berge, Graphs and Hypergraphs, North-Holland, Amsterdam 1973.

2 A K oélifiski, Decompositions of graphs into the sum of direct systems and decompositions of
trees (in Polish), Report No. 211, Institute of Material Science and Applied Mechanics,
Technical University of Wroclaw, 1978.

3] - and L. Szamkolowicz, On a definition of the directed tree in: Hypergraphs and Block
Systems, Zielona Gora 1976.

4] L. Szamkolowicz, Theory of Finite Graphs (in Polish), Ossolineum, Wroclaw 1971.

INSTITUTE OF MATERIAL SCIENCE
AND APPLIED MECHANICS

CHNICAL UNIVERSITY OF WROCLAW
$-370 WROCEAW



