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SOLUTION OF SOME PROBLEMS OF MINIMAX CONTROL
FOR A MULTIVARIATE LINEAR STOCHASTIC SYSTEM

In the paper, problems of optimal control are considered for a
Multivariate linear stochastic system defined by (1) when the risk functlon is
given by (4). The situation is mvestlgated in which the disturbances in the
System depend on an unknown parameter A but may have different other
(known) parameters and belong to the exponential family with quadratic
Variance function. A special attention is devoted to the binomial distribution.
Several results are -obtained concerning the different considered situations
Connected with the available information. In the problems solved in the
Paper, Bayes, minimax and I'-minimax control policies are obtained in an
analytic form.

1. Preliminary remarks and definitions. The system considered in the
Paper is defined by the equation

(1 Xp+1 = ApXp+Byu,+C,v, (n=0,1,..., N-1),

Where X, is the state variable, u, is the control, v, is the disturbance of the
System at time n, N (1 < N < M) is a random variable independent of the
Process v, (n=0,1,..., M—1), A,, B, and C, are (s xs)-, (s x[)- and (s x s)-
Matrices, respectively. | | |

Obviously, x,, u, v, are s- I- s-dimensional column vectors,
fespectively, v, being a random variable.

It is assumed that the data available at time n are X, = (xo, Xis wses Xahs
and U, , =(uy, ty,...,4,-4) and that C, (n=0,1,..., M—1) are
Nonsingular matrices. It follows then from (1) that at time n the values of the
1andom variables v, (j =0, 1, ..., n—1) are known. It follows also that at the

€ginning of the control the state Xo IS given.

The control u, is assumed to be a Borel (vector-valued) function of
(X'" Un— 1)

Put
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It is supposed that the random variables v,; (n=0;1,..., M=1; j
=1,..., s) are independent and have the distributions P{? belonging to the
exponential family, i.e. their densities with respect to the o-finite measure
on R! =(—o0, ) are

(2) pnj (U, }*) = S(Us qnj) exp [qnj A ('1) + vB ()‘)]’

where e A is a parameter.
From formula (2) it follows that the random variables

L3
Ty = ‘Z Ty and  z,= ;) 0 Z Ui
i1 =0 j=t1

have distributions belonging to the same family as v; and that §, and z, are
sufficient - statistics for 7. ‘ |
It is assumed that natural parametrization is chosen for- which the
conditions of the paper [6] hold and that the' variarice D? (v,;) of the random
variable v,; is’ quadratic in 1. Then we ‘can assume’ that
Ea (.Unj) = an’;u E, (Uv%j) = qg’ _-;'~21+‘l53) i+¢1§.‘;’-.’

for some constants g,; >0, g, g2, ¢'¥. Let us notice that the constants

() __ 2 (2) (3)
3) o=t I = L
nj qnj Gnj

are independent of n and j.

It 1s assumed that p,;(v, ) (n=0,1,..., M—1;j=1, ..., 5) are known
with the only exception of the parameter 4.
~~ Random variables:belonging to the exponential class are considered: in
[11. [2]; and [4]. )

Let ug, uy, ..., uy be controls. The (M + 1)-tuplet U =-(tig, uy, ..., ti) i
called a control policy. :

It is supposed that the horizon N of the control has a given distribution

;M‘
P(N=mn=p,, py>0, v Pe= 1.

In the paper, the matrix transposed to a matrix ‘4 is denoted by A"
Let us define the risk function for ‘the control policy U by

N

4) R(Z, U)=E, E,[ Y (x, }Si(xi, ) +u K;u]",
i=0

where

E,(-) denotes the expectation with respect to the distribution of the
random variable N:



Minimax control for a stochastic system 205

E;(*) denotes the expectation with respect to the distribution of the
random variables U, (n=0,1,...,M~=1;j=1,...,5) for fixed 4;

(x{, 4) is the vector x; with the added coordinate 4;

Si, K; are (s+1)x(s+1), I x! symmetric nonnegative definite matrices,
respectively.

We consider only these:control policies U for which the risk R(4, U) is
finite for each AeA. The set of all these .policies is denoted by 4.

A policy U?e 4 such that
(5) sup R(4, U?) = inf sup R(A, U)

ieA Ued ied

18 called a minimax control policy.

Sometimes the parameter A is a random variable with the a priori
distribution #. Then, assuming the integral to exist, the functional

(6) r(z, Uy= [ R(%, U)n(d4)
A
is called the Bayes risk.
A policy U,e4 such that

r(z, U,) = 1nf r(n, U)
U

I8 called a Bayes control policy with respect to .

A control policy which is Bayes with respect to some = is called a Bayes
Policy.

We sometimes have the information that me ", where I' is known. Let
4; be the set of all control policies Ue 4 for which the Bayes risk r(n U)
e’“StS for all mel. A policy U®e 4, ‘such that

sup r(z, U% = inf supr(n, U)
nel Uedp nel’
IS called a [I-minimax control policy. |
The aim of this paper is to determine Bayes, minimax and I'-minimax
“ontrol policies for the system (1).

2. Natural exponential families with quadratic variance function. Suppose
that the random variables v,; (n=0,1,..., M—1; j=1,...,5) are
dlstrlbuted according to the densities (2). Denote by =g, the a priori
istribution of the parameter A with density

) gl 8.1 =C(B N

explBA(A)+rB(4)].
Write

-vi'i-'l s J
=p+3Y > qj, ra=r+z,=r+ Y v

i=0 j=1 i=0 j=1
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If the distribution'n,, is assigned to A; then:the density of the a posteriori
distribution.of A given z, is.g(4, B,, r,). Then it is of the same form as the a
priori density and only new.:parameters §, and r, must be computed.

In-[6] it is proved that there are only six distributions (and linear
transformations of them) belonging to the exponential class for which the
variancé is a‘ quadratic function of the mean. The distributions are the
following (the measure p with respect to which the densities p(v, 1) are given
is the Lebesgue or the counting measure):

~ (a) the Poisson distribution

@ .

o (4 >0);

p(v, 4) =
(b) the gamma distribution

1
Nmihnrwngﬂqfw“mwﬂw (4>0),

where I, is the characteristic function of the set A4;
{c) the negative binomial distribution

Fig+vy A
I(g)v! (1+2)7*

(d), the binomial distribution

p(U, A) =

(4> 0);

Pt = (T)ra-ar ©<i<;

(e) the normal distribution (with variance gq)

| 1. | (v—qi)?
fiy A) == ex [—— -
PO =P =

() the generalized hyperbolic secant distribution (GEHS) ([3], [6)

] (= <4< w);

1 ,
»p(vs ’1) = W exp [U arctg A‘] S(U, Q)’

where

24-2 v g v
S, q)= - B(%-*!E",%+l-2-)-

: 2q'-—12r2_ ™/ w2 \~1
2D f (1, )
nl(q) =0 (g +2k)
For the random variable v having the GEHS distribution we get

E;)=qi, E,(v®)=gq(g+1)i*+q.
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From (a)-(f) it follows that Pj(v, 2) = p(v, 4) for q = q,,;.
Denote by S the set of all (8, r)e R? for which E (,12) < o0. We can
verify that, for (f, r)eS,

9

Eﬂ.’ﬂ_r (A') =

=i =

(rtq®/qr “”/q
B-@"—a>a)B F—(g"—q>)/q
df TOr 4+ TOr+ T

(compare with (3)) where E, () is the expectation with respect to the a priori
distribution n of the parameter A.

For the distributions listed in (a)«f), respectively, the sets S are

(@ >0, r>00:(b) f>1,r>00:(c) B>1,r>0;

@) f=r>0.r>0}; (0 >0, —x <r<oco}; () f>1, —x <r
<!,

®) E,,, () = =k(B.n)

3. Filtration problems. Let the a priori density g(i, B, r) of the
Parameter 4 be given by (7). Then the a posteriori density of this parameter
8iven z, js g(%, B, r,). Moreover, by the Bayes formula we have

pnl (Uﬂ13 A) s pns(vnu A’)g(j" ﬂ?l’ r”)

(9) )" n+1s Ta+1) = :
g( ﬁ b r ) [ Pnt (vnl’ )*) pns(vnu '{)g(;"’ ﬁm rn) d2.

From equation (9) it follows that the distribution p(uv,,, ..., v, |z,) of the
fandom variable (z,,. ..., v, given z, is

(10) p(vnlw ceoes Upy I:n) = ‘- pnl(vnla ‘;-) pns(vns, ;t)g("" ﬁm I',,)d}»
S(Dula in) ( Uns» qns)C(Bm n)
C(p+ Z Gnjs Tat Z Un)

In a similar way one obtains the dlsmbutlons of the random variables
(v, ') and v,; given z,, respectively, in the forms

(11) . — S(vnj’ grij)s(vnkra _an)c(ﬂm rn)
p.(UllJy vnt,l.zn) C(ﬂ,,+qm+q,*, r”.+U‘nj+l‘Jnk),
(12) S(Unjs qnj)C(ﬂm rn)

p(vnj lzn) = C(ﬁ,.+q,,j, ; +U,,j)

) Assume  that the random variable Y is a function of the random
Ariables p,,, .. , Um—1.5 4 We have

(13) E(Y| X,, U,_,) =E(Y|z,),
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where E(Y|z,) 1s the conditional expectation of Y given 2z, and
E(Y|X,, U,_) is the conditional expectation of Y given (X,, U,_,) for
unconditional measures of (Y, z,) and (Y, vy, ..., v,-,,) determined by the
distributions of v, ..., vy, given A and the distribution of J.

The equality in (13) follows from the remark that the pair (X,, U,_,)
determines ry,, ..., On-1.s (by (1)), that vy, ..., t,_, determine X, for U,_,
known, and [hdt z, is a sufficient statistic for voy, ..., t,_,,.

Taking into account (11}413) we obtain for n~n[,,, (B, r)eS, the
equalities

(14) E(0n] X,y Up— 1) = g, [; .df,Q(nn
(15) E(el1 X, Uy_ () = Q0D 12+ Q02 y 34 Q9

(16) E U Lnk,Xm Un 1)“qu1anl‘(ﬁm'n’
= GujGu (T ra + T3 1, + ™) (j # k)

and the coefficients Q¢/, @4, Q- are

(@) (b) (€) (d) (e) M
Qi G Dildmi+ ) - Al + 1) (4= 1) 4 i i+ 1)
B BaBa—1)  BulBa=1)  BulBut 1) B Ba(fa—1)
pun ol B ) .
i B BulBu=1  Bu(B+1)
oyn 0 0 0 0 q'ﬂwf’j/ji) ' f"”(q"t.t/f,"l

/;rr | ﬁn -1

for the distributions listed in (a){f), respectively. Moreover,

(17) E(A|X,, Up_y) = 2,

(18) E(A?|X,, Uy ) =T r2+ T r,+ TP,

4. Bayes control policies. Suppose that the a priofi ‘distribution n = 7y,
of the parameter A is defined by.(7) and that (B, r)e S. Consider the problem
of determining the Bayes control for the system {1):in the case where the risk
function is given by (4). Write

re(m, U™) = { [Z (X, AS(x[, AV +ui K;w)) | X,,, U, 1]|N>n}

Ty

M ;
{Z ! (xn})S x;, l]) +u,K u)lX,,, U” 1},
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where, for-given X, and U,._ 1> we have the policy U= {4, ..., uy) and

M
n, = Z Di-
Obviously, r(z, U) = ro(m, U).
Let for = = m,,, (B, reS,

W, = min r,(r, U™).
vim

Applying the optimality principle of dynamic programming we obtain
(19) W, = min {E [(xn, A) Sp(xns A b up Ky | Xy, Uy 14

M .
+ min E[ Z & [(xﬂ, /1') St’ (x:9 ;")’ + u; Kl' ui].'l-‘"Xna Un- IJ}
pint1) i=n+;1 n

= min {E [(xas A) S (xny A | Xy Uy I+, Kyt +

Uy

. M i
+7[n+l E[E[ Z T [(x;, }-)Si(x;{a ;t)"‘

n i=n+1 “n+1

+ui K] | Xpi g, Un:ll X Un—!]}

= min {E [(xt, S, (x., A | X,,, Up-1]+u, K, u,+

Up

m, '.
+ 7:1 E(vVn+ 1 I Xna Un—l)}'

n

We show that W, can be presented in the form

(20) W, = x;D,xn+2Fﬁ-x,=l§1+ G,r2+H,r,+1,,

Where D, is an (s xs) symmetric matrix nonnegative definite, F, is an
S$-dimensional vector, and G,, H,, 1, are scalars.
Divide the matrix S, into submatrices

S0 s
S"=|:S S'S+1J’

Where $3*1 is a scalar. For n=M equation (20) holds with
Dy=8%, Fu=sy. Gy= Si;,-l Ti(m,

1)
Hy=si' B, lu=s5{' B

nd the optimal control u¥ = 0.
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Assume that equation (20) is true for n+1. Since x,,;.= A,X,+ B, s
+C,v,, W, exists in (19), and to determine the Bayes control it is sufficient to
solve the equation

22 2K,y +~L grad, E(Wye | Xy Up-1) = 0,

where grad, E(W,., | X,, U,_,) is the column vector defined as usual.
But r,., =r,+7, and we have

(23) E(vVn+l Ixm Uu-'-l)
= E (An Xp + B-,n U, +C,, U,,)’ Dn+"1 (Anxn +‘Bn u,,‘:—}-éC,,,v?,;) +

L2
ﬁn+l
+Hn+l(rn+6n)+1n+l ' Xm Un— 1]-

(Agxy+ Bytty+Co0) (ry, +8)+Gpp o (ro+5,) +

Then from (22) using (14), we obtain, for the Bayes control u?,

(24) [K..+";';‘ B,D,.,B, Ju:

n

n T'n
= — s [B;an.] Anx"+B:|(Dn+l CuQn+F;+-l)B‘“]’

n.ll
where

qnl
g, = Gir2 !
L s
Assume that equation (24) has the solution #*. Then the Bayes control i$

(25) Wt = —P,x,.—-Q..g'—,

where

Ty g Tpt 1 o o\ ’
P-n=_;t— Kn""TBnpn-Fan B,D,,, A,,

(26) "
Ty + 1 Np+1 o - ' g ?
Qn = o (Kn+TBuDu+l Bn) Bn(Dn+1 quu+Fu+ l)a

and A" is the Moore-Penrose pseudoinverse-matrix to the matrix A (¢
[5], p. 407).



Minimax control for a stochastic system 211

Using (14)18), (23) and (25), we obtain
27 EL(xn, ASa(xp A | Xy, Upey]

=x, ss."x,+2s.x.—;i+s:*'(n"' 24+ TP r,+ T,

(28) E(W,., | X,, Un-1)
= Xp(4y—B, P,) Dy, 1 (A,— B, P,) x,—
2

pr
r2
ZQnC' n+lBQn 2+’

20, B, D, (A, ~ B, P,) X\ +Q, B, nDni1 B, Q..

B»

+24,CDys 1 (44— B, Py,
n

+[q; C’ Dn+1 Cn CIn—'q:.diag(C' Dn+1 Cn)qn](']"l('!) rﬁ_’_ Tzln) r,+ T;{"’)+
+Q1),2 diag(CyDpsy C) QP r2 +

+ Q(in)lrﬂ dlag (Cn Dn'+ 1 Cn) Q(Z,)IIZ r,+ Qg'.’l'ﬂ dlag (C:l Dn+ 1 Cn) Q(J",)llz +
2

+2Fn+1(A —B Pn)x 2Fn+lB Qn 2+

b’.

2

2 - — ‘
+—Fo,C, [qu—"-*'(qué..—qf)(ﬂ"’ ra+ T r,+ T3™) +
ﬁnfl. ﬁn

+Q‘f"r3+Q&’"r..+Q‘s"']+G.+x[ 2+2q..

+@n — g (T rd + T8 ry+ TI) +

B

+00r2+09r, +Q""]+H,.+n (1+—*)+’~+“

Where 4
o [varn
oy = o v Q= \/@‘Tz) ’
qux ]
q,.=§l G @ = 42, ; é&"’=§.l_ o (k=1,2,3).
4=
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Using (19} with the help of (25)28), we prove (20) with"D,, F,, G,, H,, I,
satisfying the equations

D,=S+ Ty D,.,(A,—B,P,),

n

n+l

F =S+— ( C, n+l+Fn+l)(An_BnPIn)'

n

+ 1 (m)
G,=s"" "+

- L {[q:! C;Dn+l qun—q;dlag(C;Dni-l Cn)qn] Tl(n)+

n

+07h2diag (C, Dy C) QP 12~ (9, Co Dy + F,a 1) B, Qnﬁz

7 B .
+MFM+I Cn [gi+((1n6n—Qt%) T‘l(m‘-T—-Q(imJ-'—
Bns1 B

+Gn+1[1+2[ +( —q;qn) Tl(")+QA(l")J}a

(29) 4
SHL e, Tnt1 ), -

H,=z5s 15"+ (]nC"D"+1C"¢1n’]} —

n

- CI;; dlag (C:l Dn+ 1 Cn) qn TZ("’ + Q(Z”.);/Z dlag (C; Dn+ 1 (‘n) Q(?.".)I/‘Z +

2 =
+—F, 1 G, [(4,4,— q2) T+ QP +
ﬁn+l
+Gn+l[( qnqn) T(n)+Q(n)]+Hn+l (]s+ﬁ )}
n

]n: H'1']"'(”)-{- . {(]”Cl n+1CnCIn’T3£n)_
~4ndiag(C, Dy G g, T +Q8% 2 diag (C, Dy C) Q2+
2
+ﬁ "+1C [qnqn—qn)T(n)+Q(")]+
n+ 1

+G, 1 (42— q,q,) Ts‘""+Q‘3"’]+1,.+1}

and the boundary conditions (21).
From (26) and (29) we obtain also the other form of the equation for Dy

B0 D, =S"+P,K, P+ (4,~B,P)D,.,(4,~B,P,).

n



Minimax control for a stochastic system 213

From (21) and (30) it follows that D, is a -symmetric nonnegative definite
matrix.

In the paper we assume that
(A) For each n=0,1,..., M—1 and for each y'eR%, zeR!' the
€quation

n, ’ Tt 1p ' A ’
[Kn+“'—+]'BnDn+lBk]u" == +1[Bnpn+1Any+Bn(Dn+l Cudnt Fri1)z]

n n

has a solution u,, where' D, and F, satisfy the first two equations in (29) and
the boundary conditions (21).

3. Determining the risk. Let u* be the control defined by (25), (26) and
(29), and let UF, = (d, ufs ... ufy). For (B, 1) eS we put

N .
(31) Rn(;" U;?.r)zE/[Z _[(Yn /)S(X,, /) +”*’K u*] | Xn’ n lJa
Where U*_, = (u%, ..., u¥_;). Obviously,

(32) R(4, UE,) = Ro(4, Uf,).

Moreover,

(33)  R,(4, UE,) =(x, 4)S,(x, 5 +u¥ K, u*+

M
+—*n"+lE;.[E;.[ > ~—[(xn £)Si(x{, A +ul K;u¥]
T, i=n+1 Tn+t )

'Xn+1: UnJl Xm Un—lJ

= (X}, 2)S,(x,, A) +ur K, ut+

+”;[* LE, [Rusy (4, US) | X UZ_,].

n

From equations (32) -and (33} the risk R(/ 5 ) can be determined. We
Prove that R, (4, U #,) can be expressed in the form

B4) R, (5, Uk) = X,y X+ 2b, X 5+ 2y A2+ 210 Aot iy A
For n=M it is satisfied with

(35) ay = ST, by =5, At

M=y er=Sy. ty=fy=iy=ju=0
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because u}; = 0.'But, for example,
E:(Xp+1@niy Xnt1 | X U-1)
=E; [(A4,xp+ B,uy +C,0,) a4y, (4, x,+ B,u¥+C,0,)]
= X,(4,—B,P) a,.,(A,—~B,P,)x,—

r2
'"ZQnB' n+1(A B Pn Xy ﬁ +Q,,B' n+lB Qn 2+

aYall A all r'l
+-ZQn Cn ay+ 1-(An = Bn Pn) Xn A = 24!! Cll Op+y Bn.Qn-.F A‘ +
+q; C’ Ay y qun ’12 "'q’udiag(c:zau-*- 1 Cn)qn 2'2 +
E-H:tz diag(C, a,.,C,) ‘If.,l}/z A2+ ‘15.2}'/2 diag (Catp+y C’g) qf.,’},; A+
f{:’z diag(C, a,. 1)‘1:.,1/2,

where

¥ =] VI | (k=1,23).

-----

| Vx|
Assuming the equation (34) to hold for n+1 and using this in (33) we prove
(34) for n with a,, ..., j, satisfying the equations

@y = S+ P, K, Py + =44, ~ B, P.) 6. (4,— B, P,

(an' Ay+1+bys)(A,— B, P,),

b""s n+1
h =

C ""QnK Qnﬁz n+!(Qn n n+lB Quﬂ +cn+1)s

=5+ ';c”[q..C'a..nC gn— 4, diag(C,a,., C) g, +

n

+4,))2diag(C, a,,, C) g2 +2b,.1 Corgu+
+Cp+ l-(‘Iu '-'QnQu"‘Qn )'+en+l +2.I;|+l ‘jn]:

j;”_u [ (Quclan+1+bu+l)B Qn

+Cniey Gntus 1],
Ty

Ba
n ’
iy = o 4:.2}/2 diag(C,a,+, Cn)q'a 12+ Cas1 Qu "Fipe1d,

(3)

Jn =

w qﬁ?;IZ _+Cu+l é}ls) +in+ 1],.
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Where
g9 = Z a%  (k=1,2,3)

sOlﬁng. ,tfiis system of equations with the boundary conditions (35) we obtain

1 M-1 7..,-

an=Dns b, F s C,,=;; & _:'5’

1
€y = —| %M _2 (hi—h
R"[ i= ;0-1 n)ﬁi
M-1 M-1
+ '2 (h(0)+h(1) h(m hm) 2+2 Z q‘ Z (hj .+1) :’
(36) i=n+1 ﬁ =n j=i+i B

f,,=—1~[—M21’i+ T (- h")BZ]’

n, i=n Pi  i=n+1

1
{. i e, x‘2’+ (h(z) h(Z)) A
" iy L i= %1 Bi =
1 [ N M-1
o= ¥4 (h® — h(sr) ,
In nn ) %1 ﬂl _

Where

Uy = Ty Q; Kn Qn +, Tp + IQ;IB:I Dn+ 1 Bn Qm

n—1 s n—1
=Xa=% ¥ap =3 @-dw,

i=0 j=1
n—1
W=3 " (k=1,2,3),
i?o

M-1
x(l) &y ss+1+ Z Ti+1 [qc C Dt+1 Cin
—4q;diag(C; Dy C)q;+q{Y); diag (CiDiv  Cafla+
+2F;, Cigi+siid

M-1

# = Z sy ‘I; 1/zdlag(c D;y C)‘I. 1/25
M-1

4 = T Mers 4> diag(CiDys1 C)af3ya-

i=n
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But
M-t -1 M"l

-1 Y.
2 Y g z (hi—his) ot =2 % LD Gibiy) L
ﬁ - B2

i=0 j i+1 Jj=1

M-1

i—1 .
z [zh2+z<h2-hfﬂ—q.>] b= Y (=Y )3
B; i=o  B;

=1

and the constant e, can be written in the simple form

M-1

(37) eo = »'—2 Z h/ + Z (BV+hE - Z q,q,)ﬁ2

Taking into account equations (32), (34), (36) and (37) we obtain the risk for
the control policy U} -

% | M- 1 % M- -1 .
(38) R4, U* ,)—[ Z B— _Z hm+h,-2—__z q}qj)—;J,12+
[2F0xo+x‘2’. 2r B Z + Z h‘z’ﬁ J}+

M- 1.

i=0 ﬁZ
S ZUB A+ Zy(B. ) A+Z5(B, 1),

+be0x0+%€L+r2 +’§: Hm

ﬂ,

Let n be an a priori distribution of the parameter 4 for which E (4%
< oo, From (6) and (38) it follows that -

(39 rin, U, = Z, (B)E,;(/:z)+zz (B.NE (1) +Z3(B, 1.

In particular, for (8, r)eS we have

(40) F(rg, Us) = Z, Bk (B, 1)+ 2, (B, r)%+zs (B, r)

where k(B, r) is defined in (8).

6. Limit Bayes control policies. Denote by U} mo=(Uug Uy, ..., uzy) the
control policy for which

uy =0, u =-P,x,—Qm(n=0,1,.... M—1).
Denote by Ug,, =(ug, uy, ..., uy) the control policy for which
uy =0,
{1}

o = —Poxo—~Qom, u, =—P,x,—Q,~ (n=1,..., M—1),

n
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where

n—1 s
rf,"" = Z Z ,v,-,-.-l-mﬁ.
i=1 j=1
The control policy Uy, is defined also for f =0,
Obviously, Uz = Uk sy for (B, ) =S since in this case § > 0.
We say that meS, if there is a sequence (3. )%, (3. s)eS, such
that Sk/‘;.!k —m for k— . | ‘
Similarly, we say that (8, m)eS, if there is a sequence !(3, sy)! 7,
(., SJ€S, such that y, - B, s./y, = m for k-— .
. As we have noticed, from the specification of the sets S for the particular
distributions it follows that B >0 if (B, r)eS. Then from (25), (38) and (39)
f"’f'me;‘sl,;‘(ﬁ, m)eS,, (7, s)eS we .obtain

Ul = lim :U;f's, R(Z, Uy)= lim R(4, U7,

shy—m dyom’
rn, Up) = lim r(x, U%) if E;(A) < oo
Sfyom
and |
Upm=lim U,,, RG, U= lim R(, U*),
oy i
rm, Upe) = lim r(n, U)  if  E (4) <,
| it
Tespectively.

A control policy U is called a limit Bayes policy if there is a sequence
Wil of Bayes control policies such that U'® = lim U, with probability 1.

) k— oo n &
Theﬂ'U;I and U, are limit Bayes policies for meS, and (B, m)eS,,
Tespectively.

7. A lemma from decision theory. Limit Bayes control policies are
fl"’quently minimax or I'-minimax as it is seen from the following lemma:

Lemma: Let {m ¥, m el be a sequence of a priori distributions on A
a'ld let .‘U,;}_i” and r(m, U be the corresponding sequences of Bayes
:f)mrol policies and Bayes risks. If U'® is a control policy for which the Bayes
sk r(x, U satisfies the condition

sup r(z, U®) < limsup r(=,, U,)
rnel’ k-

t . - :
hen U is a F-minimax policy.

a A proof similar to that of Theorem 6.5.2 in [8] is omitted. The lemma is
8¢neralization of that theorem.
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The control policy U is a constant Bayes risk policy if r(n, U) = ¢ for ‘all
nel.

CoroLLARY 1. A constant Bayes risk policy which is Bayes with respect
to the distribution nel’ on A is a T-minimax policy.

For minimax policies we: have -

COROLLARY 2. Let fne ) be a sequence of a-priori distributions on A and
let U, be Bayes with respect io m I U is a'Control’policy for which the risk
function R(A, U'?) satisfies the condition

sup R(4, U®) < limsup r(m, Uy,

AcA k=
then. U® is a minimax policy.

The control policy U is a constant.risk.policy. if R(4; U) = ¢ for all ied.
CoROLLARY 3.. A Bayes constant risk policy is minimax.

8. I'-minimax control -policies for disturbances .belonging to an exponerr
tial family. Suppose that .the disturbances v ‘have the distributions
belonging to an exponential family with the’ natural parameter / being als0
a random variable. Then, by (10) and (16), v;; become dependent and the
conditional distribution of v,; given (X,, U,_,) in general does not belong t0
the exponential class. ,

Let the a priori distribution of the parameter 4 belong to the set I of
all distributions # on A for which E, (4?) = m,, whére m, e(A)?— (0] is given-
Let T be the set of all.(f, r) for which k(B, r) = m,. We have

Tueorem 1. 1. If there is a point (B, e S such that

k(B,n=my; and Z,B,r)=0

then the 'I';-minimax control policy is .Ug,.

IL If Z,(B,r)>0 for each (B, r)e SN T, then the I'y-minimax contt'ﬁ’]
policy is U+1,2

1. If Zz,(B, r) <O for each (B,r)eS T, then the I -minimax contro!
policy is

(i) for the normal and GEHS distributions, the Ppolicy U* ,/2,

(11) Jor the Poisson dlstrtbutwn the poltcy Us.0:

(iii) for the gamma and the negative binomidl distributions, the policy U1, 0’

(iv) for the binomial distribution, the policy UO my -

Proof. Since the full proof of the theorem in the case s=1 W&
presented by the author in [7] and the proof for-any s differs from it if

points of minor importance, we prove only point II to present the idea of the
proof. Put

= inf #/B and u,= sup r/B.
{B.neSAT o (B.1eSAT
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The intervals (u;, i;) for the ‘particular distributions listed in (a)Af) are

@ (0, /my), (b) 0, /my), () (0, /my),

@) (ma, \/m3), () (—/myy my), (O (= /my, Smy),
Tespectively, and it can be proved that r/f— ./m; if f— oo.

Suppose that, Z,(f, r) >0 for all (8, HeSNT. Then for nel, and

(7, s)e S we have
r(m, U:'i’z) = lim r(n, U})

s~

(41)

sty =m}/2

3 lim [Z,(0)my+Z,(, ) E(A)+Zs(y, s)]

$-+00

sy ~m !,/ 2

< Hm [ZyGmy+Za(, ) Vmy+Z50, 91 lim r(x;,, U*)

§w I g
sfy =m3/2 siy-m3/2
From (41) and the remark after (41) it follows that there is a sequence
"8 eS AT for which s — oo, s/y — V/;a_z .. Then from the Lemima we infer
that the control.policy U?, , is I'y-minimax.

Let now theset I'=1T zz‘of the a priori distributions. of the parameter / be
defined by the conditions E, (i) = m and E, (%) = m,, where me A;mye(A)>?,
m? < m,. '

Since for the binomial distribution we have also A2 <1 if Ae4, to
determine the class I', we assume in addition for this distribution that m,
< m.

Tueorem 2. The control policy U}, for which r/f=m and k(B, r) =m,
(B, r)eS) is a I'y-minimax policy. This policy always exists assuming the
Condition (A) to be satisfied.

For the proof it is sufficient to use the definition of the class I',. the
Specification of the set § for the particular distributions, Corollary 1, and
table (41).

9. Minimax and I-minimax control policies for binomial distribution.

Suppose that the random variables v;; have the binomial distribution for
fixed 1. In this case the risk R(4,.U3,) is

| M-1 .. M-1 X
R(A,.U;‘_,,)=[x$,"—2 Y h>+ Y h,-(h;——l)—zJiz-i-
" =1 B s Bi
M-1, M-1
+[2F0 Xo+xG=2rf Y —=+ Y ‘h‘-%]/'ﬁ
i=0 i i=1 i
M-1

+xgDoxo+r? Y .
i=o Bi
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The constants h; >0 by definition. It.can be shown that for particular
parameters of the matrices S, and K, all of the following three cases can
occur:
I. there is B such that Z, (8) =0

II. Z,(B) <O for each § > 0;

III. Z,(B) > 0 for each B > 0.

The remaining five distributions ‘do not -have ‘this property.

Let I' = I'y be the set of all a priori distributions n of the parameter A
for which

42) E.())=m, O<m<l.

We have
THEOREM 3. Let the disturbances v,; in the system (1) have the binomial
distributions with parameters g,,; and 4, wherg A is a random variable satisfying
condition (42) with given m (0 <m < 1).
L. If there is B > 0 such that Z(B) = 0, then the I's-minimax policy is
Ump-

! IL If Z,(B) <O for each f.> 0, then the I's-minimax pelicy is U} .
HL If Z,(B) >0 for each B >0, then-the I'y-minimax policy is Ug -
Proof. We prove only proposition 111, Suppose that.Z, (8) > 0 for each

B > 0. Since E,(A%) < E_(4) = m, we have

 r(m, Uo.,,)— lim r(z, Uf .0
p—~0+

= lim [Z, (ﬁ) E,,(;.2)+zz(/i, mpB)m+Z5 (B, mp)]

-0+

< lim (2, (8)+ 2, mB)m+Zs (8, mp]

f‘ﬁk? r(“{f mp > U mp)

because

mp+.1
p+1

Since 7, mp€ '3, the policy Ug,, is I's-minimax.
Sometimes we have no information about the parameter A. In this cas®
we can use mmimax control policies for- the binomial® distribution.
THEOREM 4. Let the disturbances v,; in the system (1) be dtstributed
according to the binomial law with the parameters q,; and 1, respectively-
I. If there is B> 0 such that Z  (f) =0 and for this p

(a) there is r~(0 <r < B) such Ihal Z,(B,.r) =0, then the policy U}, is
minimax; |

(T, mp> U_:,mﬁ) (Zl 1)) +Z,(B; mﬁ))m +Z3(8, mﬁ)
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(®) if Z,(B, r) <O for all v (0 < r < By, then the policy Ug is minimax;
(© if Z,(B,r)>0 for all r (0 <r < f), then the policy Uj, is minimax.
II. Let

S my

M-1 .
2( ) #—xy)
i=0

mo=2Fyxo+%5 and m=

M-1

If Z,(p) <0 for all B>0 and if Y w—x§) >0, then the minimax
i=0

Control policy is
@ U if 0<m<1,
(b) U if m<0,
© Uy if m=21. |
M-1

If Z,(B)<O0 for all B>0 and if Z #;— %) =0, then the minimax

Control policy is

(d) Ug if my <0,

(€) U if myg= 0.

IIl. Let

my = 2Foxo+x" +%F~ Y % and m=0
_ = 20

If Z,(f)>0 for all >0 and if %, >0, then the minimax control
policy s

@ Ugnif 0 <<,

(b) U, if m<0,

(© Ug, if m>=11.

If Z,(p)>0 for all §>0 and Ij #o =0, then the minimax control
POlle is

(d) Ug,o if mO\ s

(e) Ug, if ’"0 2 0

The condition Z x;—xy = 0 always holds when Z(B) <0 for all'f > 0
i=0
“"d always x;, > 0.
1 Proof. To present the dodges used we prove propositions I(b), Ii(c) and
I(a). The remaining cases can be ‘proved similarly.
SUppose that the case I(b) occurs. We have

R(4, Uzp) = lim R(/,U;"s)—hm (Z1(B.5)A+Z5(B, s))

‘yﬂ-i

sy S0+
3 4 y o .
<lim Z3 (8, 5) = x Do xo = lim r (x,,, Uf,),
.80 r—0

‘Which proves, by Corollary 3, that Uz, is a minimax control policy.
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-Suppose that Z,(f) < 0 for all B > 0. Since Z,(p) is a nondecreasmg

function of g > 0, we have x“i < 0. Since x; > 0, we get Z 1 —xy) > 0.

i=0
Assume that m > 1. We have
. . M-1
R(Z, UT) =" (1= +(2F o xo+ %P+ 2¢ 2 ¥ )i+
i=0
M-1 _
+xoDoxo+ Y my—n§
i=0
' M-—1
S 2Fg xo+xg) +2xP — Y x4+ x5 Do x
i=0

N

lim r(TL'ﬂ r UK.
r—=ox -

rp—1-

Thus proposition IlI(c) is proved.
Let us suppose that Z;(f)>0 for all B > 0. Since Zl(ﬁ) is
nondecreasing for § > 0, we obtain

x%)” - _""‘/,/0

Let #, >0.and let ( <m < 1. We have

M- httl . .
R(4, UO,,,)_( Py o z;)/,(/.—l}+x2,120xo+xorﬁz
i=1 i
< Xo Dy Xo+xom? = lirgl r(ng,, Uf,).
g -0+
r/f —+m

Thus proposition ITl(a) is proved.

The most important in applications is here the special case qnj = 1>
n=0,1,...,M—1,j=1,..., s, since then the binomial distributions reduce
to twquomt ~distril)iuti.ons.‘ '
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