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THE APPLICATION OF A CLASS OF ONE-STEP METHODS
TO SOLVE THE INITIAL VALUE PROBLEM

A method for the numerical solution of initial value problems with
different step sizes is described. A procedure which realizes this method is
also given,

‘ L. Introduction. For the numerical solution of the initial value problem
Or the system of ordinary differential equations

d |
Ly }%:f(x,y), y(x0) = Yo, ¥, yoeR’, s21,

We use a one-step method. |
The realization of any one-step method may have the following form

Mo -= Yo
"1+1:=nl+hl¢(xl’ ﬂi’ hi)’ i—_—O’ 1, 2,...,

Where ®(x, y, h) is the increment function of the one-step method and
: m’ ‘D(xis ni, h,-)ERs.

Here, for the numerical solution of the problem (1.1) we use the one-step
Methods which were given by Bobkov (see Krylov et al. [2]). The Bobkov
Method is described by the parameters A;, o; (i=0,1,...,q) and some
formulae for the approximation of the solutions at knots «;. The parameters
4o (i=0,1,..., q) are obtained from the condition

: yx+h—yx)xh Y Ay x+ouh)=h Y Afire
, =o ‘ i=0

i

Where equality holds up to the terms with k¥, and p is the order of the one-
Step method. In what follows forr =f(x+h, f,.,) and 7,,, is not the final

T;nf;‘i:):al. solution of (1.1) at point x+h, i.. for #,,; we have y(x+h) = .+,
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For example, the second order Bobkov method may have the form
fin+1 = Nn+ hfp,

fns1 = M+ (B2 (f+Fns 1)
where Ag=A, =% and 0y =0, a; = 1.
This method is equivalent to the Heun method.

2. A method of step size control. The presented method may be applied
to the problem (1.1) with 5> 1, but the formulae below are given for one
differential equation only. ‘

From (1.2) we see that the local truncation error of the Bobkov method
has the following form

r=h"”y“’“’(x)[ , —-—I— i A-flf:l+0(h"+2)s
(p+1)! p' ;S " |

where p is the order of the method.
 Let

We see that y depends on the parameters 4, o; (i=0,1,...,q). If we use the

one-step method for the numerical solution of (1.1) with the step size h, we’
have

Y(x+h)—n(x+h, k) = C(x)h?*1,

where 7 (x+h, h) is the numerical solution obtained with the step size h and
p is the order of this method.

After application of the same one-step method with the step size h/2
we have [1]

(2.1) ye+h)—n(x+h, bf2) = 2C (x)(h/2)7*".

In a typical situation the step size control mechanism is made on the basis of

the splution's n(x+h, h) and n(x+h, h/2). In the paper [1] the following
algorithm of the step size control is given

(2.2) ‘ _ 7 hm“;:z hold./ws

where

@3) - wi=125 P+\1/ L TGt b, H—n et b, 1)
| 2(2°—~1) 1skss ¥ (x+ h)| - eps

and. Lo

24) R = (b, b2+ TR WD —n(x+h, by

27~ 1
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The constant 1.25 in (2.3) has been chosen experimentally and gives a
safe algorithm.,

Now we use the same mechanism for the step size control as was
described in [1] and is given above in short form. However, we obtain
M(x+h, bf2) in a different way. By a special choice of the coefficient y we
Mmay simulate calculation with the step size h/2.

If we have the Bobkov method which satisfies

Y(x+h)—thyy =y (x) P,
We may find another method of the same order which gives

‘ h p+1 y
Y(x+h)—ifpey = 2yyP* V(%) (—2-) = 2—,y"’“’(x) hP* 1,

The obtained solution #,,, may be treated as n(x+h, h/2) in (2.1) and the
formulae (2.2)(2.4) may be used with n,,, and 7, ;.

The solution at knots ; (i =0, 1, ..., g) must be obtained with local
°Tror of order not less than p. For example, consider the second order
Method. We obtain the parameters of the method from the system

q q
Z Ai=1, Z Aoy =1,
‘ i=0 i=0
Which is formed from (1.2) and also we have the relationship
) ,
Y Ajal=4-2y.
i=0

Let g =1 and ap =0, then we obtain

1—-24y
4(1—6y)’

3

“o=0, A0= M.

2, =3§(1—-6y), A, =

'1;0 hth? 4 one-step character of the method we must take 0 < a, <1 and
om this restriction we obtain

-1/12 <y < 1/6.

Instead of NMw+a WE USE y, ., in the following formulae. Taking y = —1/12
have the formula

(2.5)

we
Yn+1 = Yot (WD (fy+fps 1)
Now we have to obtain a formula with y= —3%, ie.

29 e = It W)t Yo 510)

;l;lhls formula is the same as (2.5) used with the step size h/2 (with respect to
€ first term of the error). For the calc_ulations of f4 1, Ja+354 With order not
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less than 2 we may apply for (2.5) the formulae

Yn+172 = Vut(H/2)f,,

Vn+1 = .Vn+hf;;+1/z,
and for (2.6) the formulae '
Ya+38 = Yut3 s,

Yut+3i4 = Yo+ 3 hfysas-

Of course, we may apply here also other formulae.
In a general situation we may use the formulae

yn+a/4 = yn+(a/4) hf;n
Yntarz = yn+(05/2) hf;t+rzl4'1
yn+a-= yn+a.hf;|'+¢/23

(2.7 Yne1 = yp+A4y hfn+A1 hfn+a/2
and |
(2.8) Yu+ 1 = y,,+Bo hf;,"“Bl hf;,+a-

In this paper the procedure diffsysthek (in ALGOL 60) which realizes the
formulae (2.7) and (28) with a =1 is presented. The new step size h is

computed _from the formulae (2.2)24). It is not necessary to obtain a
solution with y and y/2%, one may also use different values of y and y,.

When we know y and y, we may also apply Richardson’s extrapolation
to obtain a better solution. Heun’s method uses formula (2.4).

3. Numerical experiments. We have tested our procedure for the
problems

(A) yi=1/y,; ") =1, y =e¢,
y2 = —1/y,, y2(0) =1, Y2 =e %,

(B) ¥ =10cosl0x, y(0)=0, y =sin 10x;

(©) ¥;=10sgnsin(0x)y,,  y, () =0, y,

i _ = |sin 10x],
y2 = —10sgnsin(20x) y,, y,(0) =

1, y,=|cos10x].

The calculations were made for eps —
. _ PS=eta= (-3, 0—6, 0—9 (for
problem (C) only for eps = ;,—3) at points x = 0.5, 1.0, 15, 100, Tables 14
present the relative error (y,~y(x))/y(x)-and the number of evaluations of

n

the function f (Lf]) at points-x = 1.5 and x = 10,0,
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TABLE 1. Problem (A) (diffsysthek procedure)

x 10—3 Lf] 10—6 L1 10—9 [f]

15 —27,0-4 4 —14,,—-7 31 S5l,,—11 255
28 =4 13,57 9.7,0—11

100 -23,0—3 54 —25,—6 442 —62,,—10 4266
2.0,0—3 ~24,,—6 6.6,0— 10

TABLE 2. Problem (A) (Heun method)

109 /1

x 10—3 Lf]
15  —692,,~5 19 4.15,0—10 1089
~4:85,,—4 —1.22,4—9
10.0 191,0—2 148 194,08 13018
—295,,—2 —~242,,—8

TABLE 3. Problem (B) (diffsysthek procedure)

x -, [/] w0—6  [f1  10-9 (/]
1.5 —1.310—4 27 1.610_8 255 1.010_9 2527
100  10,,~2 447 62,0—7 4912 —24,,—8 49059

TABLE 4. Probiem (C)

(diffsysthek procedure)

(Heun method)

X 10—3 ] 10—3 (A
1.5 —1.3,,—1 129 —2.64,,-3 088
8.0,0—2 264,03
10.0 79,00 1113 —1.65,,—2 11648
4.4“)_1 _1.6510_2

4. Conclusions. In the same way as is described in Section 2 we may
Obtain methods with different values of parameter y. We may “simulate” the
Calculations with different step size sequences, for example with h/2, h/3, ...,

Ut with respect to the first term of the error only.

S. Description of i)rocedure diffsysthek

Procedure declaration. The procedure diffsysthek solves the initial value

Problem of the form

(1)

(2) Yk (Xo) = Yor
At the points x,, x,, ...

yi’: =./;¢(x’ Y1 (X), Y2 (JC), bR yn(x))a
k=1,2,...,n)
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Data:
x0 — value of x, at (2),
x1 — value of the argument for which we solve the problem (1), (2),
eps — relative error (given tolerance),
eta — number which is used instead of zero if the obtained solution
~ is zero or near to zero; this number is used to compute the
relative error,
hmin ~— least absolute value of the step size,
n — number of differential equations in (1),
yO[1:n] — values of the right-hand sides of (2).
Results:
x0 — value of xI,
yO[1:n] — values of the approxxmate solution y,(xI) (k =1,2,...,n).
Additional parameters:
notacc — label outside of the body of procedure d:jfsysrhek to which a

jump is made if the absolute value of the step size is smaller
‘than hmin; the array y0[1:n] contains the values at a point x,
where x0 < x < x1,

f ~ identifier of the procedure which computes the values of the
right-hand sides of (1) and puts them in d[I: 7] and which has

the following heading: procedure f (x, n, y, d); value x, n; real
x; integer n; array y, d.
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i tacc,f);
Procedure diffsysthek(x0,x1,eps,eta,hmin,n,y0,notacc,f);

value x1,eps,eta,hmin,n;
real x0,x1,eps,eta,hmin;
integer n;

array yo;

lEEEL notacce;
P-'wg f;

begin

real h,hh,ww,w3,wi;
Integer i;

-322‘_;0_3_!1 last;

drray d,y,yf[1:nl;
eps:=, 008/ eps;
h3=X1-x0;

-‘ast:=2_-y_§;
f(XD,n,yn,yf);

Conth;

hh:=.25xh;

for i:=1 step 1 until n do

YLid:=yO[ i J+hhxyf[i]; '

f(x0+hh,n,y,d);

hh:=hh+hh;

= il n
for i:=1 step 1 unti do

YLidi=y0[ i J+hhxd[ i ];
F(x0+hh, n,y,d);

for i:= step 1 until n

YLiJ:=yO[ i J+hxd[i];
F(x0+h,n,y,d);

Wwi=, (.

Initial value problem
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for i:=1 step | until n do
begin
w3:=y[il;
wh:=y0[ i J+hhx(d[iJ+yf[i1);
wh$=w4-w3;
w3:¥y[i]:=w3+.333333333333xw4;
wh :=abs (Wl ); “
‘w3:=abs(w3);
if wi<eta
Eﬂéﬂ w3:=eta;
w3:=wh/w3;
if w3>ww
then wwi=w3
end 13
wwi=if ww=0 then eta else 1.25x(epsxww)+.333333333333;
hh :=h/ww;
if ww>2.5

then

if abs(hh)<hmin

EEEE go to notacc;
last:=false;
end ww>2.5
else

x0 1=x0+h;

for §:=1 step 1 untjl n‘gg

yo[il:=y[il;

ii last
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then go to endp;
f(xo,n,yo,yf);
w3:=x1-x0;

if (w3-hh)xh<0

o -+
1 =

()]
— o 3
3

hh:=w3;

last:=true

end (w3-hh)xh<0
&nd ww<2.5;
hi=hh;
20 to conth;

el’ldp;

end diffsysthek;
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