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SEQUENTIAL ESTIMATION METHOD FOR THE MINIMUM
OF A QUADRATIC REGRESSION FUNCTION

_ A quadratic regression model is considered. The existence of the
minimum of a regression function is investigated. One constructs -the
confidence interval with prescribed length and asymptotic confidence level

and tries to answer the question about the optimal allocation of experimental
points, '

L Introduction. Consider a quagratic regression model
Ey(x) = a+bx+cx?,

where xeR, g, b, ¢ are unknown parameters. Assume that we can observe a
sequence of independent random variables according to this model

v =y(x)=a+bx;+ext+e, i=1,2,..,

where (g).is a sequence of independent. random variables with identical
distribution function, Ee; =0 and Ee? = 6* (unknown), ¢2€(0, + o).

‘For the existence of the minimum of the considered regression function
we need ¢ > 0. We do not assume it, so we verify if the value of the least
squares estimate (LSE) of ¢ is positive and removed from zero far enough. If
not, we decide that the minimum does not exist. If yes, we pass to the second
stage.the fixed-width estimation of x, = —bj/2c, at which the function Ey(x)’
attains its minimum. The confidence interval for x, is based on the sequence
~ of observations (y); it has a prescribed length 2d and a prescribed confidence
level, asymptotically as d tends to 0. The construction is sequential. Its
nature as the estimation of a mean of the normal distribution and the result
of Singh {6] yield that the fixed-sample version of the method is impossible
to comstruct. = | |

* The idea of the solution is due to S. K. Perng and Y. L. Tong [5}, who
gave a sequential solution of the inverse regression problem.
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2. Description of the method. Let p be a prescribed confidence level,
pe(@, 1), a=@"(p), p=d '((1+p)/2) with ¢ being the distribution
function of the normal .47(0, 1)-distribution.

Let b,, ¢, 4, be the LSE’s of the regression parameters b, ¢, a
respectively, based on the first n observations. Let

s§=(n—3)_1 Z (yi_an_ani‘é\nxiz2
i=1

be the standard estimate of o2. Let
vZ(n) = var (@)/(c*/n), vE(n) = var(b,)(c?/n).

Observe that vf(n) and v?(n) depend only on the sequence (x;);= ..., i.€. On
the plan of the experiment.

Let
1 |
Xn =1 X Xn
x? x2
be a (3 x n)-matrix.
Assume
(A) lim (1/n) X, XT = W, a positive definite (3 x 3)-matrix.
From this

lim v?(n) =v2 >0, limovZ(n)=0vZ>0,
n-*an n—an

where vf = v,,, v =033 for [0dis=125 = W1
The method consists of two stages. In the first stage we check ¢ > 0.

‘ Let d; >0 be a given number. We continue sampling until the sample
size equals

N =inf{n > 4: s2 < (a2 n)/(v? (n)a?)}.
If €y < d, we decide that c is not greater than zero and there is no minimum.

If éy>d;, we pass to the sécond stage, i.e. to the construction of the
confidence interval.

Now we proceed sampling until the sample size equals

M=inf{m>N:

3 |9

(03 (m) + 07 0m) B2/22) < (43 g‘i)/ﬁ’},
where ¢, = max(d,, ¢,). Then the interval

Iy = [—BM/(sz)_dz, ‘BM/(ZQM)+d2]
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I8 accepted as the confidence interval for x,. The confidence level is
characterized by the probability of correct decision (CD) as follows:

Pc‘(é\N;dli erIM) lf C>0,
P =
() {Pc (En < d,) if ¢<0.

Hence for ¢ > 0 is P(xoely) > P(CD).

_ 3. The properties of the method. For the quadratic regression model,
With LSE’s of the regression coefficients, under condition (A), with the

:’;zpping rules N and M defined above, the following three theorems are
e

THEOREM 1.
(@ () lim N=o0 wpl,
dl-‘o

(ii) dlimo'(df N)(v2c*a}) =1 wpl,
l —

() @) lim M= oo w.p.1, |

dy +0
(ii) dlzir_l’l0 (4d3 M)/(B? 0% (vE/c* +v2b?/c*) = 1 w.pl.
TheoREM 2.
(@ () (vd, >0) EN < 0, P(N <) =1,
@) Jim (@ EN)(o20%a?) = 1,
®) @) (Vd, > 0EM < o0, P(M <0) =1,
(i) Jim (4d3 EMY/(B* o® u3/c? +02 b)) = L.

TuroREM 3. (i) If ¢ <O then Jlim P(CD)=1.
1"’
) If ¢ =0 then diimo P(CD) =p.
1—)
(i) If ¢~ o then lim lim0 P(CD) =p.

dy =0 dy—
4. Proofs. We need the following four lemmas:

- II;EMMA 1 (Chow and Robbins [1]). Let (z,) be any sequence of random
lables such thay z,>0w.pl, lim z, =1 w.p.l. Let f(n) be any sequence of

cOnstants such that
fy>0, lmf(m=co, limf(m)f(n—1)=1

W for each t >0 define
N=N(@) =inf{k > 1: z, <f(k)t}.
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Then N is well-defined and non-decreasing as a function of t, lim N = oo,
=

lim EN = o0 and lim S(N)t=1 wp.l.

| Sandir 8

LemMa 2 (Chow and Robbins [1]). If the conditions of Lemma 1 hold, if
Iim f(ny/n=1, if for N defined in Lemma 1 there is EN < o,

limsup E(Nzy)/EN < 1 and if there exists a sequence of constants g(n) such
t—w
that g(n) >0, lim g(n) =1, z,>g(n)z,_,, then lim EN/t = 1.
h=® [ Emde ¥

Remark. Lemma 2 holds with

(i) g(n) being a sequence of random variables such that g(n) > 0 w.p.1,
Zy 2 () 24~y W.Pp.1,
(i) Iirtn sup E[(N—m)zy]/EN <1 for any fixed integer m,.

(i) requires the Egorov theorem for a proof, (ii) is a slight modification.)

LemmAa 3 (Srivastava [7]). If condition (A) holds for the linear q-di-
mensional regression model, i.e. W is a positive definite (q+ 1) x(q+ 1)-matrix,
if N satisfies the conclusion of Lemma 1 with f(n) =n, then

o (X XD (in =) 2 A0, o),

where u is a q+ 1-dimensional regression parameter vector, ji, is the LSE of u,
I, is a unit (g+1) x(g+ 1)-matrix.

Lemma 4 (Drygas [2]). Under the conditions of Lemma 3

lim fi, =u w.p.l.
n—+x

Proof of Theorem 1. From Lemma 4 we have strong consistency of
b, and &, from Gleser [4] lim st =02 w.p.l. We use Lemma 1 with:
-

(@ 2= (202 (Wa? v2), () =k, t = df ?02a? o
sz Z(k):2+ czk 52 :4 ]
2= (v3//:k2+?:f(bz)/gf*§q) SOy =k, t = B2 02 (F/c? + 02 bP/c)(Ad?).
Proof of Theorem 2. We use Lemma 2 with
(@) g(n) = [(n—4)v2(k)/[(n—3)v?(k—1)], see Remark (i),

n—4 02 (K/E2+ 02 (k) B2/
(b) n _ . b - —k [4 k :k
L T 1 1 Y < g

. The Proof follows the lines of Chow and Robbins’ proof of the asymp-
totic efficiency of their procedure [1] and is omitted.

Proof of Theorem 3. Lemma 3 implies that (en—c)(o//N)v.(N)) is
asymptotically .#°(0, 1)-distributed as d, — 0. Since (d, /N)/(x.(N)c) tends

, see Remark (i), (i1).
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0 @ wp1 as d, 0, we have for ¢ <0 the following:
Jim P(CD) = Jim P(Ly/N @Ex—aor.(N) < /N (d = (a0 (V)
= Jim P(#(0, 1) Sa—ac/ds)=1.
If ¢ =0 then
Jim P(CD) - Jim, Pea(o1/ M) (V) < duf(al /) 0. () = -

In the case ¢ > 0, standardized linear combinations of LSE’s of regression
paramgters are asymptotically normal as well. Hence

lim & . . .
dll-?o }2“_1}0 P (CD_). = dlllf_r}o alzu—l»lop (CN 2 dy, | —byf(20p) — X0l < dz)

= lim lim P|(¢ |5M+2x0.éM|

= d]:r—]slo dlilllo P (CN = dl’ [(az/m(vg(M)+ ucz (M)bZ/CZ) 1/2
< 2d;Cy
[0/ M) (vE (M) +vZ (M) b?/c?)] 12

= lim P(éy>dy, V0, DI< B)=p,

becayse ¢ =c for d, small enough and dlimo P(éy=dy) = 1.
1 —

St .Oll practical realization of the method. Planning of experiments. The
Quantities »2 (1) and v? (n) depend only on the plan of the experiment, i.e. on
cOmseql}ence (x,-),-=1,,._9_,,. This chpice is essential because of thf: necessity of
pla Puting thg regression coefficients for each.n. Moreover, using a suitable

N of experiment one can reduce the expected number of observations in

< Z S?nse of Theorem 2. Concerning this latter problem one is led to
0sing such a plan that v2(n) and ov(n)+v?(n)b?/c* are minimized.
On:Ocrems on the optimal planning of experiments (Fedorov [3]) show that
'vz(n) annot minimize v?(n) and v (n) simultaneously. We de?mde to minimize
on thln order to get the first stage shorter and a decreased influence of b%/c*

¢ length of the second stage in the sense of Theorem 2.

niﬂgh& l’r‘}inimization.of vZ(n) is a problem of D-optimal truncated plan-
.infor. ¢ lntm'prgt this problem- as L-optimal planmpg W.lth nonsmgular
on tglan_on matrix (sef% the dgﬁmtlon.below),-where L is a linear fu.nfztlonal
"”s't'e set Oi: quadratic matrices. This functional ought to be positive for
Tve definite matrices. Accordingly, let L be the value of the last element

o :
£ the last fine of a, matrix_

L((n/0%) coV (Gy, by, &) = 02 (n).
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Definition. The matrix M =n"'(X,XT) is called an information
matrix of a plan of experiment in a regression model with n observations.

LemMA 5 (Theorem 2.9.2* of Fedorov [3]). The following conditions aré
equivalent .

(1) the plan ¢* minimizes I(D), where D = (nfo®)cov(d,, b,, ¢,);

(2) max @(x, €*) = L(D), where

xe— 1,1]
o(x,e) = L(D[1, x, x2]T[1, x, x*] D).

The information matrices of plans satisfying (1) and (2) are equal.

In Lemma 5 one means by a plan the following assignment: p;+sz;, j

»k, k<n, where p;e[0,1] is a fraction of the number of
observatlons Pi+p:+ ... +p. =1 and z; is a number from [—1,1], z; # 2
for j # I, the z;’s are the values of x;, i = l , n. We denote this assignment

by s={pl" ’p"}.
215 ooy 2y
THeOoREM 4. For each n> 4 and for x;e[—1,1]), i=1, ..., n, the least

value of vZ(n) in the quadratic regression model is 4. The optimal plan has the
information matrix

1
M=]|x, (where -, denotes averaging of n numbers)
2

:xul :xml =XI
=khl :sxwl =x~|

with the optimal value

1 0 12
M*=| 0 12 0
12 0 172

-1, 0, 1
1/4, 1/2, 1/4
Proof. First we restrict ourselves to plans for which ;— =x3= 0 Then

This plan has the unique form c* ={ }fo" every n = 4.

v2(n) = (x*~(x2)*)"". So we have to maximize n ' Z (xt—n~1 Z x,)
This expression has the largest value iff the x?'s are allocated m [0 1]
equally on both sides of x2 and attain the values 0 and 1. Thus the plan has

the form -1 ! 7€(0, 1/2). Since x, =x3=2 1/2=0, © = 1/4
1/2—1, 172, ©(" t ¢

Denote such a plan by &*. This is a umque optimal plan among th¢
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Symmetric plans. Its information matrix has the form M* and

| 2.0 =2
(n/o?) cov(a,, b,, é,,)=D*=|: 0 2 OJ.
-2 0 4

By Lemma 5 this plan is also optimal among all the plans

@(x, e¥) = 16x*~16x*+4 and L(D*)=4= max o¢(x,&¥).
xd —1,1]

Every optimal plan has the same information matrix M*, so always x, = x2
= 0. Hence the plan &* is uniquely determined.

For n not divisible by 4 the following procedure satisfies the necessary
Condition of optimality (Theorem 3.3.1 of Fedorov [3]) and is intuitively
justifiable since it retains the symmetry of the optimal plan:

for n =4k+1,

1, 0, 1
kin, (2k+1)/n, k/n}’
for n = 4k+2, |

-1, 0, 1
(k+1)/n, 2k/n, (k+1)/n{’
| fOl‘ n= 4k+ 3,

-1, 0, 1 }
{(k +1)/n, (2k+1)/n, (k+1)/n}

Then v2(n) tends to 4 and v2(n) tends to 2 as n— 0.

In practice the number of observations proves to be most reduced when
We extend the sample by four in every step and when we allocate the
Observations according to the optimal plan. Then

- 20 -2
cov (@, by, 6,,)=(02/n)|: 0 2 o]
-2 0 4

for each n divisible by 4. This enables a recursive computation of the
Tegression parameters.
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