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L. Introduction. In this paper methods of decision theory are applied
to determine a minimax control of the stochastic system defined by the
®quation (1). The situation in which the performance index depends on the
Parameter of disturbances is considered and is measured in terms of their
variance. It is assumed that the horizon of control is a bounded r.anc!om
variable with known distribution and that the disturbances h.ave a c_!lstrll_)l:l:-
tion belonging 1o the exponential family. The problem is considered in detail
also in the cage when a priori information about the parameter of distur-
bances, resulting in the fixing of an expectation parameter, is given.
‘The problem of determining a minimax control, often considered in
analytical contro] theory, in the theory of control of stochast?(: systems is not
treated so frequently [1], [8], [10]. Problems in which the dlsturb'fmces have
@ distribution different from the normal one are also seldom considered [2],
(4], [9]. On the other hand, there are situations in which the dlstur'bances
have distributions other than normal ones [2] and the theory assuming thp
disturbances to" haye a distribution belonging to the expon.entlal family is
glore general. This paper is preceded by the paper [11] in which problems of

ayes control for disturbances belonging to the exponential family are
considered,

Random variables and stqchasgic processes belonging to the exponential

class are considered in 131, [5), 161, [T

2. Statement of a minimax control problem. In the paper we use the
Notation intfoduced in Ty

Let us consider t
and random hotizon

(1)

he discrete linear system with complete observations

Xn+1 =°‘nxn+“n+7’n”m Xo =€, n=0a 19“-’ N9
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where x, is the state variable, u, is the control, vy, v,, ... are independent
random variables with the same distribution, N is a random variable
independent of vy, v, ..., distributed according to the law

M
PIN=i)=p, i=1,..,.M, py>0, Y p=1,
i=1

A, Yn, € are given constants, y, # 0.

It is assumed that the random variables v, vy, -.. have the distribution
P; belonging to the exponential family, i.e. its density with respect to a a-
finite measure gy, on R =(—x¢, o) is

p(v, A) = S(v, g)exp[qA4 (1) +vB(})] ,v

where 4 is a parameter. We suppose that the parametrization is chosen so as
to satisfy the conditions of the paper [11]. Then we have

E;(vn) = g4
for some g > 0. Moreover, we additionally assume that
E;(v7) = g1 4’ +q2 A+ 45

for some constants q,, g,, q;. Here, E,(-) denotes the expectation with
“respect to the distribution P;.

We assume that p(v, /{) is known with the only exception of the
parameter Ae A,.

Let u, be a (Borel) function of the data X, = (xo, x,, ..., x,) and Uy
= (ug, Uy, ..., U,—;) available at moment n=0, 1,..., M. We call u, the
control at moment n.

The vector U = (ug, uy, ..., uy) is called a control policy.

Given the initial state e and the a priori distribution P of the random
variable N, choose a control policy U® e # such that |

(2) sup R(4, U) = inf sup R(4, U),

Aedg Ue¥ Aedp

where
N .
3 R(A,U)=F (A Ep {EA [Z (& xiz +21; x; A+ G A? +k; ) I Xo]}

and E,(-) denotes the expectation with respect to the distribution P of the
random variable N; % is the set of all control policies. U. for which R(4, U)
exists for each AeA,.

If the equation (2) holds, the policy U‘°’ is called a minimax control.
policy.

The function R(A, U) is called the risk function or shortly the risk.
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We suppose that

&Gli—nt 20, &>0, k>O0.

The derivative B'(4) is connected with the variance D? 7 (vy) of the random
variable v, by the formula

@ B'(3) = ¢/D} (v,)
(see [11]). From (4) it follows that the performance index

N
J =3 (Gx?+2nxA+0 2%+ kuf)
i=0
1S measured in (3) in terms of the variance of the random variable v,.

M .
3. Recurrence equations for the risk. Let m =Y p; and let P, be the
L i=k
distribution of the random variables Vo, Uy, ... Define

M ‘
Rn(}*s U) = B'(X)EZ[Z % (6, xi2+2'h' x,-/?.+C,- iz'{"k;‘uiz)l Xm Un—l:ls

'Ver}:ere E,(-1X,, U,_,) denotes the conditional expectation given X,, U,_;.
en

R(/l: U) = Ro(l]., U)
and R,(1,U), n=0o, 1, ... satisfy the recurrence equation

) R, U)=p(;E, (&0 X2+ 207, X A+ o A2+ kyu2)| Xy Un_ 11+

B BWE[ Y — o x?

n i=n+1 ‘“nt+1

T2 A+ G Ak ud) | Xy, Un] X, Un—l}

n'l
++

—B(l)(é X2+2r7,,x 2+C"12+k u2)+ n+1EA[Rn+1(}~ U)IXm Un l]

Let U, = (ug, ut, ..., uy) be the control policy for which

uy =0,
T
:c+1anAn+l :I+1(ynqAn+1 +ﬁn+1 n+1) r
(6) u: == - Xp— - .Bia
(A n, n
kn"’""’_"l'l'An-b 1 k”+¢An'+ 1

T, n

where
n—1

(7)

Bn=ﬁ+n‘1a rn=r+z ;.

i=0
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The constants A4,, B, satisfy the equations

'n::l knar% An+1
8) A=t —— )
kn+ n+1An+1

n

Mn | Bn+y _ankn(ynqAn+1+ﬁn+l Bn+1) _L

9) B,=—+
ﬁn n, k"_*_n;l:l A,,+1 ﬁn

and the boundary conditions Ay = &y, By = u/Bu- _
This control policy is Bayes with respect to the a priori distribution of
the parameter 4 with the density

(10) g(4; B, r) = D(B, ryexp [BA(A) +rB(4)]

if (B,r)eS (see [11] for a corresponding result and the definition of the
set S).

For the control u, we obtain
Ex Ctne 1] X Upc1) = By (@ Xg bt 9000l Xy Upc 1) =ty Xy, + 70
Ei(rae 11 Xp Up—t) = E;(ra+ 0,1 Xy, Upo ) = 1,444,
Ea (%34 1| X Unz 1) = (0 Xy 4 ) >+ 275 (0 X+ Up) g2 +92 (9 A2+ 42 A+ 43),
(1) Ey(Xps1Pusy| Xy Up_y) '
= (0t Xy + Uy + 75 QA 1+ (%0 X+ ) GA+ 74(q; A2 + 95 A+ q3),
Ey(r?ei| Xp Upey) =124+ 292r,+4, A+, 4+ q;.

Denote
,oz,.x,,+u:‘ = ann+Gnrm
i.e.
_ A _ ‘nn+1.ynqAn+l+Bn+an+l' 1
12 Fa= Tp+ 1y » Gn= Ty Top+ 1 B:
kn+ Agey ' kn+ An+i
Ty n

From the recurrence equation (5) with the help of equations (11) we prove
that

(13)  Ry(4, U},) = B'()(@, X2 +Cy 12 +2d, Xy A+ 6,02+ 2y 1 Atip A+ ]y,

where the constants a,, ..., j, satisfy the recurrence equations
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a,=4,,
Tn+1 2 2
C,,= (Gnan+l+cn+l)+knGns
n
1'.’,,+1
dn = (anFuan+1+Fndn+1)+nm
i ‘
(14) ey = :1()}:‘11 a,,+1+q1C,,+1+2'}',,d,.+1+en+1+2‘1favn+1)+€m
1t,,+1
ﬂl: p (’Yqunan+1+qcn+l+Gndn+l+.f;l+l)’
Tp+t 2 .
In = 1z (Y2 9205+ 1+q26n41 Fins 1)
n
. nn+1 2 .
n=—( 3 0ns 1 + 43 Cas1Hins1)
n

and the boundary conditions
(15)

Ou=Cyu, dy=ny, em={m» cu=fu=in=ju=0.

4. A minimax theorem. We are looking for a minimax control policy
defined by (2) and (3). | .
. For this purpose let us consider the equations (8), (12) and (14). From (8)
t follows that the A4, are independent of . Then F, do not depend on f, as
Well a5 g, and d,. For the remaining constants we write c,(8), €.(B). fn(B),
'"(B). j(B) instead of c,, e,, f, in Ja to underline their dependence on

Parameter B. All these constants are independent of the parameters r and 4.
Write

Z,(B) = eo(P),
Z,(B, ) = 2dy xo+ Ao (B)r+i0 (B),
Zy(B, 1) = agx§+co(B)r*+jo (B)-

Let E,(-) denote the expectation with respect to the distribution = f’f
the parameter A and let U be a control policy. The Bayes risk connected with

% and U is defined by
r(n, U) = E.(R(4, U)).
Let ny,, (B, r)eS, be a distribution with density (10) and let U}, be the
control policy Bayes with respect to 7, (see equations (6)<9)). From (13)
and the results of the paper [11] it follows that

r (., UE,) = By, [B'(D(Z1(B)2*+2Z2(B, NA+Z5(8, 1]
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Z,(p) (%) +Z, (8, ")‘;5"‘23(5, r) Z,(B)
—~ =
(@1 -4 (E) +¢12§+‘13

From the corresponding theorem of decision theory (see, for example,
[12], p. 374), we obtain the following theorem:

_Ba—a,+q*
B

THEOREM 1. Suppose that there is a sequence {my) 4}, k=1,2, ..., 0f a
priori distributions with density (10), (B, r®)eS, for which the correspondmg
sequence .Uﬁm r(kH of Baves control policies satisfies the condition

klim r(nﬂ(k),,(k), v ;(k),,-(k)) =cC.
—ac

If there is a control policy U'® such that
R, U®) =¢

for each AeA,, then U is a minimax control policy.
From (14) we obtain that

(16) ca(B) = Z h 2
: M—1 1 .
(17) en(B) =t,+ Z tin gt )
M-1 1
(18) f;:(ﬁ) z xmB.+ Z+1 xm 2
M-1 1
n(ﬁ) q2 (yu+ Z-l-] Yin 2),
(19) | i
]n(ﬁ) ds (Z,,"' Z+1 Zin 2):

whére only the variables B; depend on B.
From (9) and (14) it follows that

dn = ﬁﬂ Bﬂ
For the normal distribution (with variance 1)

1 2
(v’ j') = e—(v_l) ”2’
P G

- Di()=1, S={pB,n: >0}
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For the Poisson distribution
v -
PO, =2 e,

Diw)=2A, S=B,r: >0, r>0.
For the gamma distribution

p(v, 4) =

q—1 e-—v/).I o (U),
F@n’ o

Di(w)=q2%, S={B,n: f>1,r>0}

where I.(v) denotes the characteristic function of the set C.
For the binomial distribution

p, ) = (z)ml — Ay,

Di(v) =qi(1—2), S=1B,r:r>0, f—r>0}.
For the negative binomial distribution
r (q+v). A’
I'(q)v! (1+3~)“+”’

D}(v) =gA(1+4), S={@B,r: p>1,r>0.
Iﬂt the l'a,ndorn
=4(q+1), g, = ¢,

plv, A) =

variables vy, v,, ... have a gamma distribution. Then g,
=0 and

¥

2
eo(B) ) +2(do xo+fo (B))
r(nﬂ,r’ U;:,r =ﬁ_1 0 (ﬁ 0o

r

B + eo (B) '
B (r )2 B
B ) | |
If xo =0, 7 is fixed, B — 1+, then from the above and the conditions (16)-
(18) we obtain
(20)

+a0x5+eo(ﬁ)"2

—————

r(nﬂ,n U#,r) - “eO (1) .
Denote by U, , the control policy defined by equations (6)-(9) with 8 = lt
andr = 0.(1, 0) ¢ S and the policy U, , is not Bayes (the distribution (10) does no
exist for g = 1

and r = 0) but for this policy equations (11)~(15) hold. Then from
(13) and (19) we have

(21) R(4, Uy,0) = eo(1)

if xo = Q. From. (20), (21) and Theorem 1 it follows that if xo = 0 then the
policy U, , is. a Mminimax control policy.

4 - Zastosowania Matematyki 19.1
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Let the random variables v,, v,, ... have the normal distribution and let
Uj.o be the control policy defined by (6)(9) for r =0 and given 8 > 0. We
have

lim r(mgo, Ufo) = llm (ao X0 +Jo(ﬁ)+eo(ﬁ)/ﬁ)

B—0+

From (17) and (19) it follows that this limit is finite if lim (eo(B)/B) is finite

-0+
which holds only for special performance indices.
Let, for example, P(N = 2) = 1. In this case from (14) we obtain

k

ki+¢;
2
+W(ﬁ2 ﬁl)‘*'h a2y ma+{+{+ 8o

(?1 Er+1n2)° (ﬁ
ki+&, B4

5151 ézCz“"?z
- e 5 T

Then lim (ey(B)/B) is finite if

B0+

eo(B) =75 (61+

[(Yoxs +71) €2+ 2]

1 k,
) +T—()’051+'11) +w(k1+§2)§

Yo&i+m =0, (vooy+y1)8a+m, =0,
(=0, ¢8—ni=0, &28,—n3=0.

If this is not satisfied then for each K there is an a priori distribution of the
parameter A4 such that the Bayes risk is greater than K for each control

policy.

5. Use of previous experience. Sometimes we have additional information
about the parameter A which results from previous experience.

Let us assume that we know that the a priori distribution of the
parameter A belongs to the class I'. In this case we define the minimax policy
as follows: U®¢ %, is a minimax control policy if

sup r(n, U?) = inf sup r(n, U).

nel Ueitp nel
Here “#; denotes the class of all control policies ‘U for which r(n, U) exists
for each ner.
The following theorem holds:

THEOREM 2. Suppose that there is a pair- (B, r)e S such that the Bayes risk
r(m, Uf,) = const for each nel, where U}, is defined by (6}9). If the a
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: then the
priori distribution s, with the density (10) belongs to the class I
control policy U$., is a minimax control policy.

. es risk
Proof. It is well known from decision theory that a C‘_’;’St?:l: ?t?l" s a
Strategy which is Bayes with respect to an a priori d;strl u
minimax strategy. Then U3, is a minimax control policy.

istributi d let
Let the random variables v, v;, ... have the norll}ali distribution an
I’ be the class of all a priori distributions n for whic

En (Az) = My,

iori distributio i it
where m, > 0 is given. For the a priori distribution my, with density

B(, rY
g(4; B, r)=\/—§;exp[—“2~( —3)]

we have

Then ng, el if

@) (%)2 +% — my.

For (8, 1) satisfying equation (22) with g > 0, we obtain

r(®, UR) = ag x3+co (B)r+jo (B)+eo(BYm+2 (o x0+fo (B)7) E.,, (4)
for each ner. The Bayes risk r(n, U¥,) does not depend on = if
) doxo+fo(B)r = 0.

. ith >0
From Theorem 2 it follows that if conditions (22) laumiﬁ(cZy-") hold with f
then the control policy Uf, is a minimax control policy. be
We prove now a theorem for which Theorems 1 and 2 can
Considered as particular cases. k=12 of a
THEOREM 3, Suppose that there is a sequence {"B"‘.’"w}l’o ai"k)’ ,.(’k)) e,S, for
priori distributions belonging to I' and having the density (10), (8%,

. J ! ntrol policies satisfies
Which the corresponding sequence | U;(k).r(k) } of Bayes co p
the condition

(24) lim r(nﬂ(k)”(k), U ;(k)',.(k)) =c.
k—m

If there is a control policy U®e 4, such that

r(n, UM =c¢  for each nerl,

then U9 is g minimax control policy.
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The theorem results from the general theorems of decision theory. Sine
we could not find it in the literature, we present a formal proof of th#
theorem.

Suppose that U® is not a minimax control policy. Then there is
control policy U’ such that

sup r(n, U > sup r(n, U') = c—e,

nel nel

where ¢ > 0. But, on the other hand,

- C—E = Sup r(n, U’) ; r(nﬂ(k).r(k)’ U’) 2 r(nﬁ(k).r(k)’ U;"‘).r(k))

mel

in contrary to (24).

Assume that the random variables v, Uy, ... are distributed according t0
the Poisson law. Let the class I be the class of all a priori distributions x 0
the parameter A for which

Eu (;{) =
where m > 0 is given. Consider the a priori distribution g, with the density

r+1
rir+1

where f=(1+¢)/m and r =¢c. We obtain E., S =(@+1)/f=m; thud
ng.€ . Moreover, for the same parameters f -~(l+s)/m, r=¢ we obtaif
that the Bayes risk

gii; B, r) =

Are P Lo, 0 (4),

r (nﬂ,r’ U;}‘,r)

2
= g[eo(ﬂ) (%) +(2do X0+ 26 (B r + i(ﬁ))%

¢ (B

+aq x2+ ¢ (ﬂ)r2]+ 3
has the finite limit _
¢ £ eq (1/m)m+iq(1/m)

for e—0 if x, = 0.
Let U, be defined as imU¥,. Assuming x, = 0 we obtain from (13)

r—0
R(A, Ug,o) = eo(B) A+io (B).
Then for B =1/m and any nel
r(r, Ugo) = eo(1/mym+io(1/m) = ¢

which proves that the policy Uy, is a minimax control policy.
In the next two examples we also assume that x, = 0.
Let the random variables vy, vy, ... have the binomial distribution and
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I be the class of all a priori distributions 7 of the parameter A for which

1
25 Al (P
(25) E, (1_1) m,

where m > 1 is given. For the a priori distribution =,, with the density

: 1
A, B, r)= "1—=APF "L A
gli; B, r BGr+1, ﬁ—-r+1)'1 (1-4) (0,1)( )
we have
1 p+1
E""-’(l—/l)— [
If

B=1m—-1)+me, r=(m-1e,
the equation (25) holds and

| r r

2
e (B)( ) +(2o (B r+io(B)z+eo (B |
r (., UB‘,,)=£;;1_. °T\B °r 2 °r B +eof§ﬁ) |
‘“(B‘) "'(3;) |
| %
;’oe"(mi-l)(m__l)*“(m—l)m=‘-"

control policy Uy m-1y0, defined as in the

On the other hand, for the
Previous example, we have

1 1
eo( )A2+io( )A
N Y——" 1
R(l’ Ull(m‘ 1) ~ &

0 =

Thus

(7, Usym-1),0) =€

for each nerl and the policy Uyy,-4,0 is a minimax control policy.
Let the random variables Vg, Uy, ... have the negative binomial distribu-

tion and let I' be the class of all a priori distributions n of the parameter
4 for which '

En(m)=m’ o
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where m < 1 is given. For the distribution ng, with the density
1 A

g('{; ﬁ# r) = B(ﬁ—l, r+1)'(1+l)ﬂ+,l(0,w(;{)

1\ p-1
Ees. (m) ~ B4r’

For B =1/(1-m)+ms, r =(1 —m)e the distribution nz,eI’ and

1 1
r(mg,, UF,) — e (l*m)(l_m)-“o (1_m)m Ze.

£—0
,(1 e(l
1)’°1—m °\1—m
+ .

we have

On the other hand

R(4, UI/(I—m),O)=eO (l—m 1+4

Thus for any nerl’

r(m, Ul,l(l—-m),O) =cC

and the policy U, _m,o i$ @ minimax control policy.

Finally we find the minimax controls in the case when the class I'
consists of a priori distributions on which two special kinds of conditions are
imposed.

Let the random variables vy, v,, ... have the normal distribution and let
the class I' be the class of all distributions n for which |
(26) E.()=m, E (A})=m,,

where m, m, are given and m, —m? > 0. In this case for each fixed policy Ug,
with § >0

r(m, Uf,) =const for each nel.

From the above we obtain that if nz, eI’ then U}, is a minimax control
policy.
Conditions (26) give for the distribution =g,

1.e.
B* = 1/(my—m?, r*= m/(mz-—mz)

determine the minimax policy Ups,s.
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In a similar way one can determine minimax control policies U}« for

other distributions of random variables v, 1, ... belonging to an
€xponential family.

Let the class I' be determined by the conditions:
for the Poisson distribution

Ech=m, E(/H=m_, (m>0, mm,>1);
for the gamma distribution
B/ =m_,, E () =m_, (m_,>0,m —mi, >0);
for the binomial distribution
B =m_, B (f1-A)=r_, (m_,>1, fi, > 1)
for the negative binomial distribution
Bl =m_,, E,(1+D)=rm_, ©<m<l,m_,>m/L-m).
This leads to the solutions:
for the Poisson distribution
Br=m_,f(mm_,—1), r*=1/(mm_,~1);
for the gamma distribution
B* =m_pfim_p—mk,), r*=m_ /(m.,—mi));
for the binomial distribution |
B =(m_y+m_ )fm_y iy —m_y =i y),
rr=m_mo Ao —m_y —iiy);
for the Degative binomial distribution
B* = (m_y —sit_ )(m_y —th_ —m_y i),
Y I S T

* : . . .
Uk being a minimax control policy.
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