ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XIX. 2 (1987, pp. 300 324

W. MYDLARCZYK (Wroclaw)
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I. Intreduction. The aim of the paper is to find approximate solution of
the heat conduction equation

O | ty = Uy
in the plane domain Dy = R%,, defined by the inequalities
) <x<y(t) for 0<t<T.
We are looking for a solution u of (1) satisfying the boundary conditions
(2) u(y (0, ) =£(t) for 0KI<T (j=1,2)
nd the initial condition
3) u(x, 00 =0 for 3,(0) <x < 7,(0).

Representing the function u as a sum of two heat potentials of the
Second kind, we are led to the system (31)-of two integral equations of
Volterra type, which has to be satisfied by the unknown densities. The
l"“.mdaryrelement method now consists in an approximate solution of this
System by the Galerkin method in the space of piecewise constant functions.

. After proving the unique solvability of the system (31) in suitably chosen
tkolskil spaces we obtain estimates of the error in the L®(0, T)-norm.

Our method was influenced by the paper of Graham [3], where similar
Questions for the integral equation of Fredholm type were considered.

2 Basic notation and assumptions. Throughout this paper we assume
that the following conditions hold:

@ HECHO, T =1,2),  3,() <320 for 1€[0, T],
f;€Cl0, T] and f;(0)=0- (j=1,2).
We put
df ) =f@+0)—f(®) and [0, T], = {te[0, T]: t+ee[0, T]..
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For any ne N, let I1, denote the partition of [0, T] given by
I, 0=ty <t; < ... <t,=T.

Let now S(I1,) be a finite-dimensional space of functions which aré
constant on each interval (t,_,, ;) for i=1, ..., n and, to ensure that they
are well defined, we assume left continuity at each knot and right continuity
at 0.

By P, we denote the orthogonal projection of L?(0, T) onto S(I1,) and,
when it does not lead to mlsunderstandmgs the matrix operator

o 5]

In the sequel, as n varies, we assume that the partitions IT, remain
quasiuniform, ie.. there exists a constant ¢ with the property

max (f;—t;—y)
5) . i=l:.-.," , < c
( "~ min (r,-‘—rj_l) =
j=1....n

for each partltlon II,.

We note that condmon (5) implies that h—0 as n— oo, where F
—max(t —ti—y):

For X =(x;, x,) with x,, x,eL*(0, T) we write

lIxll o = max (||x]l 5, [1X2H o)
We denote by [X]? the Cartesian product of the function space X with
itself, for instance ,
[c[o, T1]* = C[0, TI1xC[0, T1.
We need also the function
- 2
Vix,t,z,5) = (T?_:S;);Tfe"p l:-—%t:fl—)],

defined for any x, zeR and t > s.
All derivatives are understood in the weak distributional sense.
Throughout this paper, ¢ always denotes a constant. We permit it t©
change its value from paragraph to paragraph.

3. Some auxiliary definitions and theorems. We consider now the
function spaces we shall need in the sequel.
1° The Sobolev space W' (0, T) is a space with the norm
lulls,e = 3, ID%ully.

Jal €1
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It is known (see [1], Lemma 5.8) that the fd]lowing theorem holds true:
THEOREM A. We have

(6) u’ll (0’ T) < C[Os T']

with continuous imbedding.

2° The Nikolskii space N%[0, T] with noninteger « >0, 1 < p < o, is
the space of all functions (peL”(O T) satisfying the condition

|@la.p = sup |8]“°||45 D

6+0

(P”LP(O,T)‘; < oG b

‘where [a] is the integer part of o and oy = a—[a].
It is known (sec [7]) that N%[0, T] equipped with the norm

lolle,p = el +19le,p

i a Banach space. Moreover, the -following known results hold (see [7]):
THeEOREM B. We have

1)) N,T2[0, T = N, 1[0, T] = W(0, T)

Jor 0<o, <a,<1,1< p < o0, with continuous imbedding.
Tueorem C. We have

(8) N2[0, T] = N£[0, T]

)fO" x>0, I<p<g<x and p=x2—(1/p—1/q9) >0 with -continuous
imbedding.

Remark 1. From [6] it follows that all imbeddings in Theorem B are
COmpact.

We need the following proposition:

Prorosimion 1. Let me C'[~M, M]. Then
m(s)

45
[_M.M]‘s \'/ITY_

©)

ds < c(max |m(r)| + max |m' (1)) \/lgl_, te[~M, M].
t t

Proof. Applying the mean value theorem we have

() ( R
il \/FT&\/F il

With some 8e(0, 1). As both functions m and m’ are bounded, the calculation
of the mtegrals yields our assertion.

: Now we return to the operator P,. We prove that the operator norm of
P,, considered as an operator on L*(0, T), is uniformly bounded, namely:

)+ Sm' ¢+ 06)
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ProrosiTiON 2. We have
(10 1Pl < 1
Proof. For ¢eL™(0, T) let us set P,oly,_,.) =c:. Then

Ui

[ o@®ds, i=1,...,n,

Li—bli-y 42,

C,- =
and hence

YV IP.oll. <1 for flofl, <1
neN

Remark 2. Note that in the proof of Proposition 2 we do not use the
assumption (5).

Let us define
Lot = | "2 00 ds = {029 gy
t—s 0 \ /s

We collect the properties of the operator L in the following proposi-
tions:

" ProposiTion 3. Let me C([0, T] x[0, T]). Then the operator

(i) L: L*(0, T)— C[0, T] is compact,

(i) L: L'(0, T)— L'(0, T) is bounded.

Proof. (i) Assuming that ¢ L*(0, T), we have for 0<1t, t+6< T

! 1 1
a1  4d;Le() = g (\/t+5—s_\/t—-s)m(t+5’ s)(p(s)ds-j-
'M(t'.-&, S)—M(t, S) (r+6 s)
d —_— ds
RS g sy | LD gty

and

12 ILo@l < |/ ,._dsncpuw

o —

From (11), (12) and the continuity of m it follows that the set A

= {Lo: ll¢ll, <1} is bounded in C[0, T] and the functions belonging to 4

are eqmcontmuous on [0, T]. By the Ascoli-Arzeli theorem, the set A is

precompact in C[0, T]. |
(i) For @eL'(0, T) we have

T im(, s)

ILeoll, < g g

Itp ()l dsdt;

ﬁ
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therefore, changing the order of integration, ‘we obtain

Lol < f o [ ™ 9 s N 4eds.

s \/F—S

~As m is bounded, the last: mequahty ylelds lILo|l; € clloll, with.c¢ not
depending: on ¢.

“Prorosrtion 4. Let me C*([0, T] x[O T]) ‘Then the operator .
- L: W0, T)— N3?[0, T]
is bounded.

Proof. We start with calculating the derivative of the function Le¢ in
the interval (0, T]. Assuming first that ¢ is smooth and putting ¥ (1)
=mt, t—1)p(t—1), for 0 <1 < T we have

: r+3
(13} Lo+8)~L _1_ 5 dit |[/r(1+5) "
¢+ —Lo() = g\/;(:/;t(w Y=, (1)) j =
and therefore ._
k 1+6 5
_(L(p(t+5) Lo (1) = \1/ (t +05) dt +; [ Yelt+9)
0\/1' t \'T

- In the first integral on the right-hand side we may pass to the limit with

= 0 according to the Lebesgue theorem and the second integral may be
Sstimated a5

t+4 dt \z+6 zt+5 t+3 dr
m(zé)ffs_'“/) <M, 9 | —=
t /T t v t\‘t

Where m(t, 3) and M(t, 6) denote mf Y, and sup V., respectlvely, for 7 in
e, e +6]. Hence Lo(t) is dlfferentlable at any point te(0, T] and

(14) Loy = { X9 ae+ ™09 o).
(Lo) (1) i\/r v ¢ (0)

From (13) it follows that
t+4 d,c ;
\Lo(t+8)— Lo ()] < (2a\ﬁ+ f f)
Where ¢ is the ‘upper bound for y, and u,lf, Hence the function L¢ is
4 Solutely continuous on {0, T]. and therefore the derivative on the left-

d side of (14) may be understood in the distributional sense.

o
0 Zastos, Mar. 192
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Let now ¢@eW}! (0 T) be an arbitrary function and let ¢, — ¢ in
Wi (0, T), where ¢, are smooth. Then L, — Lo in L'(0, T) according to
part (i) of Proposition 3. Thus :

(15) - Le,—Lp in 2'(0, T).

- Formula (14) is valid with ¢ replaced by ¢,. Using the imbedding (6)
and applying once more part (i) of Proposition 3 to the integral operator on
the right-hand side of (14) we. state in view of (15) that (14) remains valid for
e W20, T) as well.

To estimate |Lg|s;, ; let us consider 4;(Lo). We assume 8 > 0; the case
0 <0 may be treated similarly. Denoting by m; (j=1,2) the partial
derivative of m with respect to the j-th argument we have

2

Y@ =" mt, t-Det—0+m(t, t—1) ¢/ (t—1).

j=1

Therefore, after the substitution of T =544 in the integral occurring if
(Lo) (t+6), we obtain

2 2
(16) A5(Lo) ()= 3, J;(t, 0)+ Y K;(t, d)+R(t, ),
i=0 ; '

i=0

where

Jo(t §) = j](t S, é)cp(t—s)ds
with
m(t+0, t—s) m(t,t—ﬁ)

J(ts s, 5) = \/S—ﬁ - \/E s

O m(t+8,t—s)

Ko(t; o= 5 (t—-s)ds, |
- e +0
R R ,0
R(, 8) = @(O)Aam(t/; ).

\

and for j =1, 2 we have

7 (t 5 = j(m i(t+0, t—s) —'mj(t’t;_s))cp(t—s)ds,

o\ s+5 \/.;
Kt é) [ my(t+3, 1~ S)cp(r;s)ds
N s \/S+5»I :
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As-
j(t, s, 9) ( ! : )m(t+5 r—s)+
> I = Frera s =S8
4 ¥Ry 84‘6 \K; ‘
; ‘
+—=(m(t+35, t—s)—m(t, t—s)),
S
after Changing the order of integration we have
T-6 . )
[ Wolt, dldt < Jo(8)+T,(9),
0

Where

; T-6 T-4

% J (8= i1V B Fel s
0(9) ‘![m \/5 sf Im(t +6, t —s)| @' (t — s)| drds,
T-6 T-6

(18) ‘f(;(é)z j ~—l—~ j fm(t+5,—t——s)—-m(t,t'—s)H(p’(tms)ldtds.
0 \/E s

The integral with respect to ¢ in (17) does not exceed const ||¢||; 4, and

Falculating the integral with respect to s, we obtain for é < T the following
Inequality ' L '

Wo(®) < const. Sl
. Similarly, applying the' mean value theorem to the difference on the
Hight-hand ' side of ( 18), we obtain :
o(8) < const 3l
and go
T+é

(19) [ W, 6)ldt < const ;J"§||’¢||1',1
| .

for.j = 0. Using quite the same arguments as above we may prove that (19) is
Valid for j = 1, 2 as well. |
Considering now the integral K, we have

T-3 0 1 T-4
[ IKolt, Ndt = | ——= [ |m(t+86, t—s)|l¢’(t —s)|dids.
0 -3 \/s+0 0 .

As the integral with respect to t may be estimated by const||¢||,,,, after
®Valuating the integral with respect to s, we obtain

T-3 '

20) [ IK;(t, 8)ldt < const \/3]igll;.,
. 0 :

for j < 0 and in a similar way for Je=1, 2.
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It remains to estimate the last member on the right-hand side of (16).
From (9) we get

T-6 ; f', 0 —
| ’A,m( = )‘dt < const |- &
0 N

and therefore, in view of (6), we obtain

T-§

(1) | f IR(, 3l dr < const \/3llglly,; -

The estimates (19)(21) complete the proof.

Proposition 5. (i) Let me C2([0, T] x{0, T1). Then for each 1€ [0, T]
and neN there exists a function u'eS(I1,) such that

m(t, s)

N

where c is independent of t and n.

(i) Let @eN"[0, T)NC[0, T] for some n (0 <y < 1). Then rhere
exists a function ve S(I1,) such that ||¢—1v)|,, < ch" and c is independent of n.

Proof. Munteanu and Schumaker obtained in [5], Lemma 5_-5’
estimates of the error of spline approximations to functions defined on 3
rectangle [a, b] x [c, d]. We can apply their result in the case of fanctions of
one variable. Namely, we can prove the following

LeMMA. Let fel?(0, T), 1< p< o, or f€C[0, T], p=oo. Then

(22) inf |lf-gll, < c(hllfll, + (R £, p),

geS(iT,)

ds < ch'/?,

- u'(s)

f!

where

o (h,f, p) = |sup 145 oo, 1,

and c is mdependent of n.

Proof of the Lemma. We consider first the extension of the functiof
fel?(0, T), 1<p<w, on H=[0, T]x[0, T] defined by /(x, y) =/ *
for x, ye[0, T]. By Lemma 5.5 from [5] we have

(23) inf ||f—gll, < C(h||f||p+wx(hfp))

geS2(1,)
where

Sz(nn) = :sl (X)Sz (.V):"S1 »'Sze S(nn)}
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and

W, (h’ﬁ p) o sup |lf(x+ hls y+ hl)_f(x’ y)”[_p(th,hz)

lagl.thal € h

With H, . = {(x, y)eH: (x+h,, y+h)eH).
We note that

“f(x_"h_la Y+hz)—f(3(, yy)”f'p(ﬂhl,hz) g T”f(x+hl)_f(x)lliP(O.T);,l
and hence we obtain
(24) o, (h, f, p) < T w, (h, f, p).
Now, for any g(x, y) =s,(x)s,(y) with s,, s,eS(I1,) we have
TT
(25) IF=glie = | {17, y)—sy ()5, () dxdy
o0

=.Z

i=1

Lf (x) =5, (x) clPdx(yi—yi-1),

=R |

Where ¢, = Saltg;_ 0 (=1, :.., m) are constants. Thus from (25) we obtain

If~gll, = T 'lrgiil /=51 cill.

Therefore we have

(26) inf |f—gll,=c inf [[f—gll,.

geS2001,) geSU,)
Since | 7] o, = T2ILf Nl pyo, 7, OUr assertion follows from (23), (24), and (26).

We deal similarly in the case feC[0, T], p= .

Now we may pass to the proof of part (i) of Proposition 5. Note that
(22) implies that there exists a ge.S(/1,) such that

27) f=gll; < 2e(RIfN,+ 1 (h, £, D)),

Where ¢ s as in (22). .
For fixed te[0, T] for the function

filsy = L9

by Proposition 1 we have
(28). oy (h,fi, 1) < ch'?,

Where ¢-is- independent of t.

: As m is bounded, ||fll, <c¢ is valid uniformly in r and our assertion
ollows from (22), (27), and (28).

b To obtain (i) we note.that w, (h, ¢, n) < ch" and our assertion follows
fom (27),
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ProrosiTioN 6. Let me C*([0, T] x[0, T)) and e C[0, T]. Then
(L~ LP,) ¢ll, < ch'?|lp—P

where ¢ is independent of n and ¢. ;
Proof. For any ¢eC[0, T] and te[t;_,, t;] we have

"'m(t, s i1 t o om(t,s)
(t, s) + (t

~ P, ¢(s))ds = — P, ¢ (s))ds.
£¢:TWM o ()ds =( ] J)Jz;wm mms

By Proposition 5 and by the L?-orthogonality of P, we estrmate the first
integral as follows:

-1

(29) H m(t, s)

(@ —P,@(s))ds

\ t—

i1

-] J (’f/‘:__is’—u(s))(cp(s)—ano(s))ds

< Chl/z ”(P_P" (p”w’

where #'(s) = u'(s) for se[0, t;_,], and i'(s) =0 for se(t,_; T].
As m is bounded, calculating the integral we have
t H

Gy |J 9 (o (5)= P o (5) ds| < chV? o P, ..

Ji—s

'i 1 .

Now the required result follows from (29) and (30).-. ‘
An elementary calculation shows that the following proposition holds:
ProrosiTion 7. Let ye C*[0, T]. Then the function ¢ defined by

0 9="""" joius gt =y

belongs to C*([0, T] x[0, T]).

In our considerations we apply the collectively compact approxlm.«,ttwn
theory of Anselone [2].

Let [27 denote the Banach space of bounded linear operators T ¥
— X, where & is a Banach space. Then a set XH c [4] is collectwel}’

compact provided that the set #'2 = {Kx: Ke X, |Ix|l, < 1} is relatively
compact.

We need the followmg theorem ([2] Theorem 1.6): |
Tueorem D. Let K, K,e[¥], n=1, ... Assume that K,— K pointwisé
K, is collectively compact. and K is compact. Then (I —K)™ ! exists if and only



Heat conduction equation 319

if for some N and all n> N the operators (I —K,)™ ! exist and are uniformly
bounded, in which case (I—-K,) "' > (I—-K)™ ! pointwise.

4. The exact problem. We seek a solution of the problem (I}(3) in the
form of a sum of two heat potentials (see [4]):

H

1
u(x, t) = E(j Vix, 1, y1(s), s)yy (s)ds+
0 . )

f

+ [ V(x; t, y2(5), 5)y2(s)ds)  for (x, )e Dy.
0
Now, applying the properties of the heat potentials (see [4]) and using
(2) we obtain for the unknown densities y, and y, the system of Volterra
¥pe integral equations |

Y1 (t)—(‘[ Ky, (t, s)yl(s)ds+j K;,(t, s)yz(s)ds) =f1(8),
(31) 0 - 0 4 ;
J’2(f)—(j K31 (t, 5) ¥y (S)d3+f Kja (2, $)y2(s)ds) = —f, (1),
0 | 0
Where
Kij(t’ S) = \/tl——srflij(ta S)’ s <t (ls.] = 1: 2)a
With

2
i (8)— asf,- (s) exp[_(vi (t)—7;(5) ]

1 .
(0, ) = - (=1 1= T

2n
for s <t (i, j=1,2).
We abbreviate (31), using the standard operator notation, to the form

(32) (I-K)y =/,
Where K - [K;] (i,j=1,2) with

t

(Kijo) (1) = [ K;(t, do(s)ds  (i,j=1,2).
0
Assumptions (4) yield the following

h PROPOSITION 8. There exists an extension of my; on [0, T] x[0, T] such

9 m;e C*([0, TIx[0, TY) (,j=1,2).
. Proof. In the case i # j we put my(t, s) = 0 for t < s. Then.there are no-
Sngularities and m;; belongs even to C*[0, T1.

In the case i=j our assertion follows from Proposition 7. This
“ompletes the proof,
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- We deal furthermore with the system (31). When the functions £, and f3
belong to a suitable Nikolskii space we have the following. - A
. THeorem 1. Let fy, f,e N{*P[0, T] for some f (Q < < 1). Then rhere
exists a unique solution v, y,e€ N'*7[0. T] of (31). where y = min ‘1/2 Bl

Proof. It is a well-known fact (see [8]) that for any f,, f,e C[0, T] the
system (31) has a unique solution y = (y,, y,) with y,, y,e C[0, T]. Hence
and by (6) the homogeneous equation y = Ky has no nontrivial solutions in
[Wi'(0, ]2

From Proposition 4. it follows:that the operator

(33) K: [W (0, T]* - [N}2[0, TT]?

is bounded and by (7) we have [N3/[0, T]] < [W(0, T)]? with compact
inclusion. Therefore, the operator K: [W}' (0. T)]2 — [W(0Q. T)]? is compagct:
Now from the Fredholm Alternative it follows that for any functions f
feNIHT0, T] CW1(0 T) there uniquely exist y,, yze W (0, T) such
that equation (31) is satisfied. Since y =f+Ky, the result follows by $33}
and (7).

S. Approximate problem. We are going to approximate the solution of
(31). We formulate the approximate problem as follows:

(34)  Find y, = (y,,, ¥20) With y,,, y,,€S(I1,) satisfying the equation

(35 Vo = P.f+P,Ky,.
We consider also the iterated Galerkin solution y, defined by
Yn =S+ Ky,.
It is easy to see that y, satisfies the equations
(36) ¥n=Pyyn
and |
(37 Yo =f+KP,y,.

We now pass to the error estimation of the approximations. The first
step in proving the required estimates is given in-the: following

THEOREM 2. Let f,, f,eC[0, T]. Then for sufficiently large n we havé

(i) the problem (34) has a unique solution y,e{L®(0,; TY}? and

(38) C:"l}’“‘PnJ’”w < “y—.Vrl“oo < 5] ”y_Pniy”oo%
(i) the problem (37) has a unique-solution j/,,e[C [0, ;T]]2' and
(39 | Iy =yl < esll Ky~KPy ¥l

where ¢y, ¢» and ¢y are independent of n.
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- Proof. We first consider y,. From Proposition 3 it follows immediately
that the operator K: [L*(0, NP -[C[0 T:I]2 is compact, and so the
Operator KP, is compact on [C[0, T]]". From the estimate given in
PrOposition 6 we infer that KP,— K pointwise on [C[O, T]]? By
Proposition 2 it is straightforward to show that the set 4

(KP,¢: neN, ¢e[C[0, TT], ligll.. < 1}

has a compact closure in [C[O, T]]z, and hence |KP,: neN} is a
Collectively compact set of operators on [C [0, T]]Z. Since (I —K)~ ! exists
°n [CTo, T"_I]2 (see £8]), it follows from Theorem D that (/—KP,) ! also
€xists on [C[0, T]]" for sufficiently large n and

(40) lI—KP) Y <c, neN,

Where‘c is independent of n. ,
Since y, = (I—KP,)"'f, y, exists for sufficiently large n, and by (37) and
(32) we have

@1 y—yn=U~KP) (K—KP,)y.

Hence by (40) we obtain inequality (39).
Now, returning to y,, by (41) and (36) we may write

Yy=Ya=(—=P,y)+P,(I-KP) " (K~KP,)y,
Whence
(42) 1y =Yillw < (LHNP T = K P~ Y- IIKH) Y = Po Yl o

The estimates (42) and (40) yield now the right-hand side of (38).
To obtain the left-hand side of (38) we note, in view of (32) and (35), that

(I—P,K)(y—y) =y—P,y.
Hence by (10) we have
ly—Puyll, < (+|IKIHy =yl -

This completes the proof of Theorem 2.
THeOREM 3. Let f,, foe NI*E[0, T for some B {0 <f <1). Then
ly=yal, Scih’ and fly—yll <c B2,

Where 3 = miin /2, ﬁ}, and ¢, and c, are independent of n.
Proof. From Theorem 1 and (8) it follows that

ye[Ni*1[0, TI)® < [N% [0, T1]".
Smce, in view of (6) and (7), ye[C [0, T_l]z, we have
ly—=Paylle ST =P (y—=EMlle < 2y —Eall . < B,
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where £, is, in view of Proposition 5 (ii), an element of [S(I1,)}? suitably

chosen for y. Now the requ1red result follows from Theorem 2 and
Proposmon 6. | ‘ :

We can estimate now the error of approximation of a solution of the
problem (1}-3). We define u, and u, by

1 L 3 .
Up(x, 1) = z—n-(J Vix,t, 7,05, s)yin(s)ds+
0

t
.

+J V(X, L, 7, (S), S)yZH(S)dS)
0
and

t

1
i‘—n(xa t) = E(J‘V(X’ L, 71 (S)’ S)fl,,(S)dS“i—

0

!

+fV(x, t, v2(s), s)fZR(s) ds) for (x, t)eD,;.
0

To estimate sup |u—u,| and sup|u—iz,| note that we may represent v as
br br
the following sum:

V(x: L, yi(s)9 S) = Vli(xa L, S)+—/: VZi(xa ta S) (1 = ls 2))

JVi—s

where
X0 (=)

e £ 9 = gl S’e"p[‘ﬁ]

and
‘ 2

Ve, 1,9 =202 1 e | -E2OL ]

with

~ =1 @O)EO-1)T [ O (s))’]
m(x,t,s)= exp[— 2—s) exp| — s
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As m; and V3 (i=1,2) by Proposition 7 are uniformly bounded’ for
&, )eDy, ¢ > s >0, we have

t t t

f V{x, , 3:(9), s)ds < 'J'm.:l ds+ J L Walds

Jims

0 0 0
t ( 2 '
"x—(t) x=7()" ds ]
S T ~a/3 i T d ‘ —— 3R = "27
(e SGE o [ ) e
0 0
Where ¢ is independent of (x, t)e Dy.
Substituting
_x=7(1)

v =
| 2. /t=s

n the first integral on the right-hand side and integrating, we note that the
CXpression is bounded by a constant not depending on (x, t)e D,. Adding the

Second integral we obtain
e

suple(x, t, 7;(s), s)‘ds<oo i=12),

{x.1)

and hence ’

43) sup lu—u,| < C1l ”.y"'.VnHao’ (x, )e Dy,
and (xn

44) suplu—i,| < cally—Fullo» (%, €D,

(x,1)

Where ¢, and c, are independent of n.
We have thus

Tueorem 4. Let f;, f,e N}*#[0, T] for some B (0 <p <1). Then
© suplu—u)=O0() and suplu—a,l =O0(h/**), (x,t)eDr,
Where y = min {1/2, B). |

Proof. The required result follows from Theorem 3 and the estimates
(43) ang (44). , | |
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