ZASTOSOWANIA MATEMATYKI
APPLICATIONES MATHEMATICAE
XIX, 3-4 (1987), pp. 505-517

M. KUBALE (Gdaiisk)

INTERVAL EDGE-COLORING OF CATERPILLARS WITH HAIRS
OF ARBITRARY LENGTH

1. INTRODUCTION

The interval edge-coloring of a weighted graph so that each edge
Teceives a number of consecutive colors and no colors of the edges at any
Vertex are the same is a generalization of the classical edge-coloring problem
to graphs with integer weights on the edges. The problem is clearly NP-hard,
35 it is already NP-complete to determine the chromatic index of a simple
graph [4]. However, unlike the standard problem, the generalized edge-
Coloring remains NP-hard even for some restrictive families of graphs for
“{hjCh polynomial-time algorithms for the classical problem are known, e.g.,
b_lpartite graphs [3], serics-parallel graphs [7], and trees [6]. Nevertheless, in
View of potential applications in scheduling and timetabling, it would be
Useful to have efficient algorithms for polynomially solvable subproblems,
and such subproblems concerning caterpillars are considered in this paper.
It is well known that deciding interval edge-colorability of a weighted
tl_’ee is strongly NP-complete [2]. In the paper we consider, at first, a
Simplified problem of coloring the edges of caterpillars, i.e., trees in which the
T®moval of all pendant vertices results in a path. These pendant vertices can
be thought of as hairs attached to the body of the caterpillar, ie., a path of
11Oll-penQant vertices. Then we deal only with caterpillars with hairs of
Tbitrary length (or generalized caterpillars as we shall call them). In these
Sraphs, paths of one or more edges can be attached to any vertex in the
Body of the caterpillar [1].
" We begin by showing in the next section that the edges of caterpillars
With hairs of length 1 can be colored in linear time. In Section 3 we consider

€ complexity of coloring the edges of caterpillars with hairs of arbitrary
®0gth and prove that interval colorability remains NP-complete even for
“terpillars with a hair ‘of length 2. Next, in Section 4 we consider a very
Testrictive case of binomial caterpillars, i.e., ones that contain two kinds of
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edges, namely: edges of unit weight and edges of weight L, where L is an
arbitrary integer greater than 1. We develop two linear-time algorithms for
two special cases of generalized binomial caterpillars. Finally, we give a
sharp bound on the chromatic index of such a graph.

2. POLYNOMIAL SOLVABILITY IN THE CASE OF CATERPILLARS

We begin with definitions concerning the interval coloring of the edges
of a graph. Given a graph G =(V(G), E(G)), to each edge ecE(G) we
associate a positive integer w(e). The pair (G, w) is said to be a weighted
graph. Let I(v) denote the set of edges incident with vertex ve V(G) We
define the weighted degree of v to be

4,= ) w(e) for any veV(G).

ecl(v)
The maximum weighted degree of (G, w) is the quantity
. A=max{4,: ve V(G)}.
By an interval coloring of the edges of (G, w) we mean a function
c: EG)—{S<{l,..., k}}

whose values are sets of consecutive integers satisfying |c(e)] = w(e) and
c(e) nc(f) = @ whenever e Nf # Q. The chromatic index ' (G, w) is the least
integer k for which there is an interval k-coloring of (G, w). A chromatic
coloring of (G, w) is an interval coloring attaining the chromatic index y' (G, w)-
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Fig. 1. A caterpillar

Let C =(V(C), E(C)) be an n-vertex caterpillar with hairs of length 1.
Let P be a k-vertex body of C. The pair (C, w) is said to be a wezghted
caterpillar with hairs of length 1 or, briefly, a caterpillar. An example of such
a caterpillar is shown in Fig. 1. Consequently, the pair (G, w), where G is 2
caterpillar with hairs of arbitrary length, is called a generalized caterpillar.

A chromatic coloring of (C, w) can be found efficiently .as stated in the
following )

THEOREM 1. A chromatic coloring of a caterpillar (C, w) can be found in
time O(n).

Proof. It is obwous that 4 < x'(C, w). The following algorithm uses /1
colors, so x'(C, w) =

1]
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Let the colors be 1, 2, ..., 4 and let w(i, i+ 1) be the weight of the edge
i, i+1! of the body P (see Flg 1). At first we color the edges

{i, 1+1} with colors 1, 2, ..., w(i, i+1) if i is odd,

{i, i+1} with colors 4, A+1 ~w(i,i+1) if i is even.
Next, for each i=2,. k 1 we color the hairs incident with i w1th
Consecutive colors chosen greedily in the interval

[w(i—1,9)+1, d-w(i,i+1)] if iis even,
[w(i,i+1)+1, A—w(i—1,9)] ifiis odd.

Since our algorithm clearly has a linear running time, the theorem is
proved.

3. NP-COMPLETENESS OF COLORING GENERALIZED CATERPILLARS

In the previous section we have shown that the problem of finding a
chromatic coloring of caterpillars can be solved efﬁcnently, i.e, by a polyno-
Mial-time algorithm. However, the same problem but in the case of general-
ized caterpillars becomes NP-hard, and hence it is unlikely to be solvable
efficiently. |

Given a generalized caterpillar (G, w) and a positive integer k. By
CHROMATIC INDEX we mean the question: “is ¥'(G, w) < k?.

THEOREM 2. CHROMATIC INDEX is NP-complete even when (G, w) is
Q generalized caterpillar with a hair of length 2.

Proof. We transform the following NP-complete PARTITION problem
[5): “Given a set of positive integers 4 = {a,, ..., a,} such that Ya, = 2b,
1 <ign, is there a partition P of A such that

Y a=Fa=br
icP igP
to CHROMATIC INDEX. | |
Given an instance of PARTITION, the generalized caterpillar (G, w) is
Constructed from a path of three edges d,, b, and ¢ with weights w(d,) =b
*+1, w(b,) = b and w(c) = 1. The end point of the path which belongs to c is
the centre of a star with n edges of weights @, through a,. To.the other end
Point of edge c there is attached a hair consisting of two edges b, and d,, as
Shown in Fig. 2. The weights of these edges are w(b,) = b and w(d,) =b+1.
Suppose that y'(G, w) < 2b+1. In other words, there is an interval
Coloring of (G, w) with k = 2b+1 colors. Since w(d,)+ w(b,) = k, b; must be
Assigned either colors ¢(by) = {1, ..., b} or ¢(by) = {b+2, ..., k}. By symme-
'y, this must also hold for the edge b,. Thus one must be assigned the first
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interval of colors, and the other the second one. This implies that the unit-
weight edge ¢ must be colored with b+ 1. Thus some of the edges a; must be
colored within the first interval [1, ] and the others within the second
interval [b+2, k]. Now it is easy to see that (G, w) can be colored with k
colors if and only if there is a partition P of A.

d1 b1 (4

]

Fig. 2. A generalized caterpillar with a hair of length 2

The NP-completeness of CHROMATIC INDEX provides strong evi-
dence that the general optimization problem cannot be solved by a polyno-
mial-time algorithm. However, by restrlctlng the weights of a generalized
caterpillar to just two integers it is possible to obtain polynormal-tlme
algorithms for special cases of the problem.

4. TWO LINEAR ALGORITHMS FOR GENERALIZED BINOMIAL CATERPILLARS

Let (B, w) be a generalized caterpillar with two kinds of edges: light
edges with weight 1 and heavy edges with weight L, where L is an arbitrary
integer greater than 1. From here on, such a graph will be called 2
generalized binomial caterpillar. Furthermore, any edge ee E(B) with weight L
will be called an L-edge and any vertex ve V(B) belonging to an L-edge ab
L-vertex. Similarly, any edge e E(B) with weight 1 will be called 1-edge. ¥of
clarity, we shall use the term “l1-edge” whenever we wish to exclude L-edges-
Maximal subtrees of B induced by L-edges will be called L-trees. For any
vertex ve V(B) we distinguish the following degrees: the ordinary degree dy
the L-degree D, defined to be the number of L-edges incident with vertex %
and the weighted degree A, = d,+(L—1) D, (defined In Section 2). We use d,
D and 4 to denote the maximum degree, L-degree and weighted degree of
any vertex of (B, w), respectively. In this section we give two linear algo*
rithms for interval coloring the edges of (B, w), depending on the value of itS
maximum L-degree D.

. 4.1. Algorithm for generalized binomial catefpillars with D > 2. It is well
known that any unweighted tree can be d-colored by a linear-time algorithi?
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Which traverses that tree in a depth-first (DF) manner and assigns colors to
the edges in a “greedy” way [6). For the purpose of efficient coloring we
assume that the vertices of a generalized binomial caterpillar (B, w) are
Numbered in a DF order starting with any L-vertex v with D, = D to be
vertex 1 and searching for succeeding vertices in favor of those which are
adjacent by L-edges to already numbered vertices. If, however, there is no such
an L-vertex, then ties are broken by choosing a vertex v with D, = D. Our
algorithm colors the edges of (B, w) greedily in the DF order. The colormg of
any edge is usually done by assigning the first available interval of colors
€xcept two cases where an edge e = {u, v} contains u or v as the lowest
Dumbered vertex of an L-tree. First, if v is the root of L-tree and D, = D, to
avoid introducing an additional color, the color for 1-edge e is chosen to be
One of the following:

(1) 1, L+1,2L+1,...,DL+1, ..., 41, A.

Second if u is the root of L-tree such that D, < D and e is an L-edge, then it
18 colored with the first available mterval of colors among [1 L]l,.
(b—1yL+1, pL]. .

A control abstraction for the algorithm is as follows:

Procedure GBCI (B, w);
n _
» number the vertices of (B, w) 'in a DF order;
for v2 to n do
begin |
u «—immediate predecessor of v in the DF ordering;
case |
v is the root of an L-tree and D, = D: _
color {u, v} with the first available color in order (1)
: u is the root of an L-tree and D, <D and {u, v} is an L-edge:
color {u, v} with the first available interval of colors among
[1, L], . [(D—l)L+1 DL]
: else: color {u, v} in the greedy way
endcase

end
end

Tueorem 3. If D > 2, then algorithm GBCI produces a A-coloring of

s W) in time O(n).
- Proof. We begin by proving the chromaticity of coloring produced by
BC1. First, observe that no 1-edge requires the use of a color 4+ 1. Also,
;‘9 edge belonging to a path of L-edges contained in a hair of (B, w) needs
Nroducing the color A+1 because every such L-edge requires the interval
1, L] or [L+1, 2L]. Therefore, we can focus our attention on coloring the
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edges of L-trees rooted at the body P of the caterpillar, We shall show that if
there are at least two L-edges having a vertex in common, then no L-edge
requires introducing the color A4+ 1. This is particularly obvious for the first
L-tree rooted at v = 1, so assume v # 1 to be the root of any L-tree attached
to P and let e = {u, v}. We shall consider two cases depending on the L-
degree of vertex .v.

Fig. 3. Tllustration for Theorem 3; heavy lines denote L-edges

Case 1. D, =D. If u is not an L-vertex, then there is a 1-edge d such
that both 4 and e belong to the body P. This situation is shown in Fig. 3,
where the remaining hairs attached to the end points of edges d and e are left
out. According to algorithm GBCI, edge e receives either color 1 if
c(d) # {1}, or L+1 if ¢(d) = {1}. Since all the edges of L-tree rooted at v are
colored in a greedy way, the maximum color required. for this tree is DL
+1< 4, < A. If uis an L-vertex, then, by the fact that L-edges incident with
u are colored with consecutive intervals, it follows that either D, or D,+1
colors specified in (1) are not available for e, depending on the number of
colors used for edge d. Hence, if D, < D, then at least one of the first D+1
colors from (1) is available to e. Also, if D, = D and d, < D+1, at least on¢
of the first D+1 colors is available to e. If, however, D, = D and d, > D+1,
then color DL+2 < 4, < 4 is feasible for e. By greedy coloring, in all the
cases the maximum color required by the L-tree rooted at v is clearly DL
+1<4. - _ |

Case 2. D, < D. Regardless of the color assigned to edge e the L-edges
incident with v require (D,+1)L < DL colors. By greedy coloring, the
remaining edges of the L-tree rooted at v require at most DL< 4 colors.,

Now we estimate the time complexity of GBCI. First observe that the
preparatory numbering of the vertices can be done in linear time. In the
colonng phase, determining a feasible interval for any edge in E(B) can b¢
done in constant time provided that intervals of unavailable colors at each
vertex are stored as one, two or at most three pairs of integers. With this
data structure, O (1) time is used to insert a set of colors assigned to an edgé
into the lists of tight intervals of unavailable colors associated with end
points of that edge. Thus the overall running time for GBCI is O(n).
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4.2. Algorithm for generalized binomial caterpillars with D = 1. Unexpect-
edly, the problem of optimal coloring the generalized binomial caterpillars
With D =1 is much more complicated than that of coloring (B, w) with
D > 2. First of all notice that these caterpillars may require more than 4
Colors. An illustration of this fact is a generalized binomial caterpillar shown
in Fig. 8. We shall call such a graph a superstar. For each vertex v eV(B) by
the superdegree s, we mean the quantity

number of L-vertices adjacent to v if D, = 0,

S"‘{o : | if D, =1.
S is used to denote the maximum superdegree of any vertex in V(B). By an
S-vertex we mean any vertex v with s, = S. o

It is not so hard to see that y'(B,w)=4 if (B, w) is a generalized

Caterpillar with D = 1 and such that S =0 or S = 1. However, if § > 2, then
the chromatic index of (B, w) can be greater than A. In what follows we
develop a procedure for optimal coloring the edges of (B, w) in the case S
2 3. (The possibility of the efficient coloring of binomial caterpillars with
S <2 is discussed in concluding of this section.) A crucial point of this
approach is a careful coloring of 1-edges incident with S-vertices, since their
colors affect the colors to be used for L-edges belonging to such superstars
and, consequently, the total number of colors required by a caterpillar.
For this purpose, we preserve certain colors for 1-edges adjacent to L-edges
of the superstars and use them in a greedy way with respect to the interval
Coloring of the succeeding L-edges. Hence, the remaining 1-edges. incident
With S-vertices can be colored with non-preserved colors only.
- To design a procedure for optimal coloring the edges of (B, w) we
Change slightly the coloring order of Section 4.1. Namely, we first look for
the set of all vertices with the superdegree equal to S. Then, starting from the
first S-vertex (say, the leftmost S-vertex in the body P) to be vertex 1 we
Tumber the vertices in a DF order searching for vertices in favor of those
Which are adjacent by L-edges to already numbered vertices. If, however,
there are no such vertices, then ties are broken first by choosing an L-vertex
bfilonging to the body, second by choosing an L-vertex belonging to a hair.
Results of this preparatory ordering are stored in the form of a FATHER
array in which the i-th entry indicates the immediate predecessor of vertex i,
2<i<n For example, such an ordering was used to number the vertlces of
Caterpillars shown in Figs. 5, 7 and 8.

After numbering the vertices, we proceed to the second stage of the
algorlthrn, that is, the partial coloring of the paths joining consecutive S-
Vertices. Starting with the last S-vertex in P, say v, we color the path

P, = ({v, FATHER (v)}, {FATHER (v), FATHER(FATHER())}, ...)

Up the body with colors L and L—1 alternately, until an S-vertex or a vertex
adjacent to an L-vertex in P is encountered. In either case we continue the
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alternate coloring starting with the S-vertex followed by v, and so on until
vertex 1 is reached. More precisely, in most of the cases the colors used for
consecutive edges of P, are L, L—1,L ..., respectively, or L—1, L, L
—1,...,if {v, FATHER (v)} cannot be colored with L. If, however, 4 = S+1
and P, is a path of length 2k, k > 2, passing through 2k—1 vertices other
than L-vertices, then we first check whether there is a vertex ue P, such that
s, <S—2 and d(u, v) = 2j, 1 <j <k, where d(u, v) is the length of the path
between u and v. If so, we color consecutive edges of P, with L,L
—1,...,L,4,L-1, ..., L, respectively, where 4 and L—1 are the colors
used for the edges incident with vertex u. Otherwise, we apply the following
coloring scheme: L, L—1, ..., L, L-1.

In the third stage, our algorithm colors all the remaining edges greedily
in the order prespecified by the DF-numbering of vertices. The coloring of
any edge is usually done by assigning the lowest possible interval of colors
except when 1-edge {FATHER((v), v} containing v as an L-vertex is encoun-
tered. Namely, if v is the root of an L-edge, to avoid introducing' an
additional color as far as possible, the color for {FATHER (v), v} is chosen
to be the first feasible color among

(2) 1, L+1,L+2,...,k—1,k,2,...,L—1, L,

where k < y'(B, w) is a current lower bound on the chromatic index of the
caterpillar (initially k = A).
A control abstraction for the algorithm is as follows:

procedure GBC2(B, w);
begin |
number the vertices of (B, w) in a DF order;
if (B, w) has at least two S-vertices then
for v < n downto 2 do
~ if v is an S-vertex and FATHER(v) is not an L-vertex |
then color path P, up the body in the above-described way
endif _
endif of the preparatory coloring;
k—4;
for v <2 to n do
begin
u <« FATHER(v),
if {v, v+1} is an L-edge :
then ¢ « first color available to {u v} in order-(2);
ifc<Land c+L>k
then color {u, v} with k+1; k «k+1
else color {u v} with ¢
endif :
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else if {u, v} is uncolored
then color {u, v} in a greedy way
endif
~ endif
end of the main coloring
end

TueoreM 4. If S = 3, then algorithm GBC2 uses O(n) time to produce a
chromatic coloring of (B, w).

Proof. Let (B, w) be a generalized caterpillar with no two " L-edges
having a vertex in common and such that S > 3. If no additional color is
Introduced, algorithm GBC2 produces clearly a legal A-coloring. So suppose
fhat for some edge an additional color k+1 was used. Note that 1-edges
incident with a vertex v satisfying 1 <s, < S can always be colored within
Fhe same S colors that were used for the first superstar. Also, due to the way
In which ties are resolved, no additional color is introduced when coloring
an edge incident with an L-vertex, even if this is a 1-edge adjacent to another
l-edge with a color assigned in the preparatory coloring of P. Thus, a new
Color k+1 can be introduced only for a 1-edge incident with an S-vertex. Let
u be any S-vertex of the caterpillar (B, w). When for an L-vertex v adjacent
't0 u a 1-edge {u, v} gets a color ¢ < L such that c+L<k, no additional
color will be used. However, if ¢+ L > k, an additional color k+1 for edge
u, v! will be introduced. We shall consider this case in full detail.

If vertex u = 1 is the only S-vertex in V(B), then because of the way the
edges incident with u are colored and the fact that they are all adjacent to
€ach other, it follows that no interchange ofeolors makes it possible to avoid
Color k+ 1. Since this holds for all additional colors, the number of colors
Used for the neighbourhood of u =1 is chromatic.

Now suppose that (B, w) contains at least two S-vertices. Let u be any
S-vertex and let {p, u} and {u,q}, where p=FATHER(u) and u
= FATHER(q), be two 1-edges of the body P that are incident with u.
Fllrthermore:, let w be the next vertex of P such that s, = S. This situation is
shown in Fig. 4, where the remaining hairs attached to vertices p, u, g, and w
are left out. In order to show that a new color is necessary, we shall consider

w

Fig. 4. Illustration for Theorem 4
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four cases depending on the colors used for edges {p, u} and {u, q} in the
preparatory coloring of P.

Case 1. Neither of the edges was precolored This case is analogous to
that where u = 1 is the only S-vertex of the caterpillar. By a similar argument
to that used above, the number of colors assigned to edges incident w1th u
cannot be diminished. '

Case 2. Both of the edges were precolored. In this case one edge is
colored with L and the other with L—1. Since S+2 < d, < 4 <k, we have
S < k—2. Because all colors 1, L+1, ..., c—1 used for the edges incident
with u are chosen greedily in order (2) and precede L—1, no interchange of
the colors including L—1 and L results in a better coloring of the superstar.
Thus, color k+1 is necessary.

Case 3. One edge was precolored with L and the other was uncolored.
Since §+1 < d, < 4 <k, we have S < k—1. Because all the colors precede L
in order (2), by a similar argument to that used in Case 2, the additional
color assigned to {u, v} cannot be avoided.

Case 4. One edge was precolored with L—1 and the other was
uncolored. In this case either S+2< A<k or A=S+1 and path P,
consists of odd vertices different from L-vertices. In the former case we have
§ < k-2 and, by the same argument as used above, color k+1 cannot be
avoided. In the latter case, by the way P,, is colored it follows that either the
caterpillar contains a 2-superstar (see Fig. 5) or P,, is of length 2k, k > 2, and
to every second vertex re P, there are attached S—1 hairs such that s, =S
—1 (see Fig. 6). If ¢ < L—1, no interchange of the colors 1, L+1, ..., c—1

16 17

Fig. 6. Caterpillar used in the proof of Case 4
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Mmakes it possible to avoid the color k+1. If ¢ = L, then, by symmetry of
the induced caterpillar, any recoloring of path P, would block the same
Colors preceding L in (2) either in the neighbourhood of a vertex r with s,
= §—1 or in the superstar attached to the S-vertex w. Thus in all the cases a
New color is necessary.

Now we proceed to estimate the time complexity of GBC2. The prepara-
tory ordering of vertices takes O(n) time. Also, the preparatory coloring of
the body can be done in linear time. In the main coloring, the most time
consuming operation is the coloring of an edge {u, v} with D, = 1. Neverthe-
less, this can be done in constant time because there is a bounded number of
tight intervals of unavailable colors at vertex u. Since the coloring of all the
?dges of (B, w) can be accomplished in linear time, the complexity of GBC2
18 O(n), as required.

1 1 2 [2313 & 4 1 5 2 6

3 7 1 3
1 7 9
(1,2 [2,3) (1,2]
12 8 10

Fig. 7. A counterexample to algorithm GBC2

In concluding of this section we comment on the possibility of the
efficient coloring of generalized binomial caterpillars with D = 1 in the case
8 < 2. First of all notice that binomial caterpillars with S <1 can be 4-
Colored by algorithm GBCI. If S =2, the same algorithm produces a
Chromatic coloring of caterpillars without S-vertices in the body P. If,
hOWever, there is .only one such S-vertex in P, we can successfully use -
algorithm GBC2. Finally, if P contains at least two S-vertices, § = 2, then
GBC?2 fails to guarantee an optimal coloring. A simple example is shown in
Fig. 7. In this caterpillar, after the vertex numbering and precoloring of the
body, namely {4, 5} with 1 and {5, 6} with 2, edge {3, 4} requires color 4
despite that 3 colors suffice.

5. BOUNDS ON THE CHROMATIC INDEX OF (B, w)

. It is obvious that 4 < y'(B, w) for any binomial caterpillar (B, w). From

ction 4.1 it follows that y'(B, w) = 4 if a caterpillar contains at least two

ges having a vertex in common. The following theorem establishes a
&nera] upper bound on the chromatic index of (B, w).
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THEOREM 5. For any generalized binomial caterpillar (B, w),

3) X (B, w)=4 if D=2
4) X (B, W< 4+LS82] ifD=1.

Proof. Equality (3) is an immediate consequence of Theorem 3. To
prove inequality (4) suppose that (B, w) is a generalized binomial caterpillar
whose chromatic index is greater than 4. If S < 2, then clearly y'(B, w) < 4
+1. Therefore, assume that S>3. In this case (4) can be proved by
estimating the number of colors used by GBC2 when applied to (B, w). Let v
be any L-vertex adjacent to an S-vertex u and let ¢ be the first color in (2)
which is available to 1-edge {u, v} considered in the proof of Theorem 4 (se€
Fig. 4). If ¢ > L, then no additional color is introduced for that edge, so
suppose that ¢ < L. By the way the neighbourhood of u is colored, edge
{u, v} is assigned a color not greater than c+ L. Since a new color can be
introduced for at most every two l-edges incident with u and there are S
such edges, we have ¢ < |LS/21+ 1. Since no edge of the caterplllar is colored
with a color greater than L+0S/21+1, we obtain

(B, w) < A—1+18/21+1 = 4+L5/2],

and the upper bound follows.

Fig. 8. Superstar with § =5

The bound (4) is tlght in the sense that there are caterpillars (B, w) suck
that y'(B, w) equals the upper bound. Upper bound examples are superstars
with L>S—1 for every §=3,5,... An example of such a superstar 18
shown in Fig. 8.
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