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MINIMAX AND BAYES ESTIMATION
WHEN THE LOSS FUNCTION IS UNKNOWN

. s R R . . he
1. In this paper the problem of minimax estimation is conls;::rff)(: :rlh;ch
situation When the loss function is unknown but belqngs toa ;e pinelii
4 minimax estimator, the same for each loss function, ca.nte‘i Protleme of
Numeroyg exarriples, also in the sequential case, are pres_? ed- An example
Bayes estimation based partly on the above idea are considered.

fOM game theory is examined from this point of view.

V . - . P ,
2. Suppose that the random variable X ha;s ,thf: dtl)ig:\l::él?rlnd aan
dependent on the parameter 1 =(4,, ..., AyeA ;[R i ¢ lSLOE ! e s fanily
estimator d(X) < (@1 (X), ..., d,(X))is applied. Let {L(4, a),f <) bea ity
of loss functions and let I be a family of dlstr‘lbu.tlon'sn o pa:i e et
*(m, d) be the Bayes risk associated with the distribution = an e estimator
and let D be the class of all estimators for which r(z, d) exi max for L
mel and Le ¥ The problem is to determine an estimator mini
which me

ans to determine an estimator d, such that

) = inf supr(x, d)
s::‘i? r(n, dO) deb nel

for each Le &

Let R(4,
D be the clag
A€ A and Le
distributions

. : i let now
d) be the risk function associated w1t_h estimator g ?‘tzdfor -
s of estimators for which R(4, d) gx1sts and is 1 2; of a priori
2. If we do not impose any restrictions on t?e cla -
then we say that d, is minimax for Le & i

sup R(4, d) = inf sup R(4, d)
AeA del Aed
for each Le 7.
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Obviously, if an estimator is minimax for Le.? it is minimax fot
Le¥ 2.

In the situation when the minimax estimator d, for Le & exists, the
information about the loss function is not necessary to determine d,. It iS
sufficient only to know that Le.#.

We give some examples in which an estimator minimax for Le % can bé
determined.

3. Assume that the random variable X =(X,,..., X,) is normally
distributed with mean vector A =(4,, ..., 4,) and known positive definite
covariance matrix Z. Let g, be an estimate of 4,,d = (al, ..., a,), and let the
loss function be

r
L{a, ) = Z Cij(ai_)“i)(aj_")*j),
i,j=1

where matrix C = ||¢;f| is positive definite. It is well known that d(X) = X if
a minimax estimator of A for each C positive definite. Then to determine 2
minimax estimator we have not to know the exact values of ¢;; in L(a, A)-

However, the estimator d(X) X is not admissible. Better 1s the Steit
estimator

r—2

where |X] denotes the Euclidean norm of X. This estimator is also
inadmissible if r > 3. The problem of admissibility of estimators of normaf
mean 1 was considered by many authors. See, for example, Stein [11], Efron
and Morris [4], Berger and Srinivasan [2].

4. Let X =(X,,..., X,) be normally distributed with mean vector 4
= (44, ..., 4,) and unknown positive definite matrix . We observe X and
also independently observe the r xr random matrix W which has a Wishart
distribution with n degrees of freedom and parameter Z =n"'E(W). 4 is
estimated by an estimate d(X, W). Let the loss function be

L(A: &7 ) [(G—A)Q(a A)’]a

tr (EQ)

where g; is an estimate of 4, @ =(ay, ..., G,). Matrix Q is known and positive

definite. ' :
Also in this case the estimator d(X, W) =X is minimax. In 1977 Berger,

Bock, Brown, Casella and Gleser [1] found the first explicit examples of

estimators which dominate X in risk when r > 3. But these estimators

depend on the matrix Q and cannot be applied when Q is unknown.
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Minimax and Bayes estimation

S. Let X,,.... X n be independent random variables having the Poisson
distribution
P(X;=x)= 'lx e* (i=1,...,n x=0,1,2,..).
Let
k
(1) X®=(X,,....X), Y= Z X,

e situation
The problem is to find a minimax estimator of parameter 4 in th

when the loss
when we estimate systematically at step k=1,2,... and Wi
function is of the form

@ L, &)=Y -2

k=1

in step k,
where %=20(k =1, ..., n) are unknown and a, is an es:il)mzll)tesglt;) ilel 2 rI:on
a=(q,, s @,). Estlmation in step k is based on X o

dlstnbutlons of parameter A are that for which

©) E(@) =m,,

Where m, ~ 0 is given. We denote this set of dlstr;but‘l:ﬁllz hby I.
Let us consider the estimator d = (dy, ..., dy) for

(4 g = Jeto
@ T k+r

i imat: " ction is
for some 4 >0 and some r > 0. For this estimator the risk fun

" Y +a 2 _ = ki+(a-rl)2]
R(i, d) = kgl CkEl(’:+r —A.) kzl (k )2[

S
ton n of parameter A for which equation (3) holds the Baye

For a distributi
risk js

2 2 ]
r(n, d) = E(R(A, d)) =3 a;——i—-—"r)i[(k—2ar)E(A)+a +rim,

and it jg independent of z when

() Z

k= 1(k+ r)?

(k—2ar) =
Let

(6) | = Jaloc+ Djm; .

¥ is given
There always exists the solution a* > 0 of the equation (5), whete g
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by (6). On the other hand, the estimator d defined by (4) and (6) with o = o* is
a Bayes estimator with respect to the a priori distribution ne I" with density

,.a* a*—1 _—~rd ;
gu):{r(a*),t e, if 4>0,
0, if  1<0.

Then the estimator d = d° defined by (4) and (6) with a = a* is minimax,
that is '

sup r(n,d°) = inf sup r(n, d),
nel deD mnel
where D is the class of estimators for which r(m, d) exists and is finite for
each mel” and for each loss function of the form (2) for which equation (5)
holds for a = a*. '
Then a minimax estimator (of the form (4)) may be determined for each
set of vectors (cy, ..., c,) for which equation (5) holds for some a >0, r

= Ja(a+1)/m,.

The “true” vector (¢15 ..., ¢,) may be unknown but the constants c;
=20,...,¢,20 which determine the loss function L have to satisfy one
condition in this problem.

6. Let X,, ..., X,+, be independent random variables with the Poisson
distribution with parameter A and let Y, be defined by (1). We want to
predict (systematically) the random variable Y,,, on the basis of
Yi...., %, (k=1, ..., n). Since in the kth step we know the values of random

variables X, ..., X, and at this step Y, is a sufficient statistic for 1 it is
sufficient to predict the values of

n+1
Y®= Y X, k=1,..,n,
i=k+1
on the basis of ¥, (k =1, ..., n), respectively. We state the minimax problem

in the same form as in Section 5 with the only difference that now the loss
function is

n

LY, q= } cla—Y"),

k=1

where ¢; 20, ..., ¢, > 0 are unknown.
For o > 0 the predictor d =(d,, ..., d) with
Y+
k+r

(n—k+1)

k=

is minimax when it is known that the “true” vector (c,, ..., c,) satisfies the

kd



Minimax and Bayes estimation 73

Condition

k+r

n _ 2
¥ ck[(n k+1) (k—ocr)+n—k+1]=0,
k=1

Where r is given by (6) (see [15]).

7. Let X =(X,, ..., X,) be'a random variable having the multinominal
distribution
n! *1 *r
P(X =x)=P(X; =%, ..., X, =X,) =ml’1 A

Where the parameter p =(py, ..., p,) is unknown. Let d = (a,. ..., a,) be an
®Stimate of p and let the loss functlon be

r

™ L(p, @) = Z ¢;j(pi—a)(pj—ay),
ij=1
Where the matrix C = lic;jll is unknown but is assumed to be nonnegative
definite. From [15] 1t follows that, for known C, the estimator d
={d,, ..., d), where 7

X+ B /n

®)- d;(X) = 7 B =0, .Zr‘,l B = 1),

n+/n

iy Minimax if there exist a constant v and aset AcR=1{1,...,r}, |Al =2,
Such that -

: Z (C,-,--—-Zcij)ﬂj =70, for iEA,
9 Jed .
z (Cﬁ—2cij)ﬁj < U, for iER“"“A,
jed
B> 0 for jeAd, B;=0 for jeER—A.In [17] it is proved that such a constant
U and set 4 always exist.
Let, for example,

B = B: _=...=ﬁ = 1/r.

I
D this case the estimator (8) is a Steinhaus estimator. This estimator is

:nmmax if C=1 (see [12]). For B; = 1/r, the constants c; in (7) should
Aisfy the condition | '

r

Y (a—2)=w (=1..7)

i=1

for some w (see (9), and have to satisfy some inequalities which follow from
¢ Supposition that matrix C is nonnegative definite.
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If C is diagonal (and known), ¢;; =0fori#£j, ¢ =c,c; 2,2 ... 2 ¢
= 0, the constants B, in (8) are determined as follows [13]:
Let ¢, =0. Let [, be the greatest index i for which ¢; # 0 and let

S 1 s=2
(10) L= m?x[s lo, lZla> - ],
.‘ L
(11) 6=(L-2)/} (/).
j=1
Then
{1-8/c) when i<L,
12 .=
(12 P {0 when i3> L.

Let C be unknown. If L>3 then >0 and B, <12 for i=1,...,r
Suppose then that

1/2> B, > ZPr, PBry1=..=B,=0, L=3.
Conditions (11) and (12) give

(1/c,.)/i (1/e) = (1-28ML~2) for i=1,..., L

Equation (10) gives

1
—_t—>— i =L+1,...,
[/lec - L:"""l or i + r

if ¢; # 0. Then for given f; (i =1, ..., r) and a given multiplicative constant
for ¢;, the constants c,, ..., ¢, are determined uniquely when it is known that
matrix C is diagonal; the constants ¢, {, ..., ¢, are not uniquely determined.

8. Suppose that a random vanable X' =(X4, ..., X) satisfies the
condition

120,...X.20, X+ ..+X <5

(s >0). Let XM, . X XO=(X{, ..., X¥),j=1,...,n be independent
random variables having the same distribution as X’. Denote X
=(XY, ., X m =E(X), i=1,...,r, and let d(X) = - (dy (X), ..., d.(X))
be an estimator of parameter m =(m1,. ., m,). The problem is to find a
minimax estimator of m for the loss function

r

L(m, a) = Z Cij(ai"mi)(a"'m'),

i,j=1

where Cij are unknown when it is known that matrix C=|jc;l| i
nonnegative definite. :
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Denote
X,' = Z X}j).
j=1

In' the paper [16] it is proved that when C is known there always exists the
Minimax estimator d = (d,, ..., d,) of parameter m for which

(13) d; (X) ___M,
n+\/5
where
(14) i ﬁisss ﬂlzo’-"’ﬂr>0‘
i=1 .

Let 8, ..., B, be fixed and let A be the set of those indices i for which
B: > 0. From the results of [16] it follows that if

: Z(C,-;—?.c,-,-)ﬂj:v, when ieA,
15) jea

Y (ci—2c)B;<v, when ieR-A4,
Jjed

for SOme v, then the estimator (13) is minimax. Condition (15) determines the
c.lass of loss functions for which the estimator (13) is minimax. It looks
Similar to condition (9) but there is one important difference. Here, §,, ..., B,
Must satisfy condition (14). \

9. Let x(t),t >00rt =0, 1, 2, ..., be a stochastic process defined on the
Probability space (%2, .#, P,), where © is the space of right continuous
Unctions ¢ = x(-) for which the left-side limits exist and P, is probability
Measure defined on (2, #) determined by parameter A.

' Let #, be the least o-algebra with respect to which all x(s) are
Measurable for s <t and let P,, be the restriction of the measure P, to the
"_falgebra #,. Denote by Z(w, t): 2 — R a #,-measurable mapping that is
Tight continuous with respect to t, P;-almost surely. Let us suppose that for
®ach t > 0 the measures P, ., A€ A, are absolutely continuous with respect to
?li_ Measure P, ,, Aoe4, and that the density function is

dP,,

= g{t, Z(w, 1), 2, Ap),
AP, g{t, Z(w, 1) _0)

Where ¢ is a continuous function. Then Z (w, 1) is a sufficient statistic for A.
.Let T denote the set of values t and let t(w): 2 — T be a random
Variable such that for each te T ’

{w: t(w) <t} e F,
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and
P,0<t(w)<o)=1

for each AeA.

The random variable t(w) is called a stopping rule.

Let U = TxR and let # be the os-field of Borel subsets U. On (U, B)
we define measure m in the following way. For each Ae #

m;(A) = P((c (@), Z (o, 1(w))e 4).

We observe the process x(t) up to the moment 7(w) and we want to
estimate parameter A. An estimator d(u) =d(s, t) of A is a %-measurable
function defined on U with the values in R. The pair é = (¢, d) consisting of a
stopping rule r and an estimator d is called a sequential plan.

Let L(4, a) denote the loss function associated with the estimate a
= d(u) and let c(t) be the cost function connected with the observation of the
process x(s) up to the moment r. We assume that c(f) is nonnegative

continuous and that it satisfies the condition lim c(f) = o0
t—2>w
- For a given A the risk connected with the sequential plan 6 = (z, d) is
defined by

R, 8) = [ [L(3 d@)+c(®] m,(du)

In further considerations we restrict ourselves to those sequential plans &
for which R(4, &) exists and is finite for each ieA.

For the a priori distribution 7 of parameter A the Bayes risk is deﬁned
in the usual way

r(r, 8) = [ R(4, ) n(d),

assuming the integral does exist.

Let & = (¢, d) be a plan for which t(w) = for each we Q. Under this
plan, for given =, let n(-|z(t) = z) be the a posteriori distribution of 4 for
given z(w, t) =z and let

(16) r(r(-1Z(®) =z), &)= [ L(A, & @) n(dA{ Z(1) = 2)

i
be the a posteriori risk associated with = and 4. An estimator d*' is called
a t-Bayes estimator if for d' = d* the risk (16) attains its minimum.

Let I' be the set of a priori distributions. Sometimes we have the
information that e I'. Let 4 be the class of all sequential plans é = (z, d) for
which the Bayes risk r(n, d) exists and is finite for all zeI'". A sequential plan
0o = (10, do) is called minimax if

sup r(m, dy) = inf sup r(=n, ).

rel” ded nel
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Let
ro(m, &) = [ Ro(4, &) n(dA),
Where ’

Ro(4, &) = { L(A, d(w))m, (du).
v

The following theorem holds (see [15]):

THEOREM. Suppose that, Jor every te T, there is a sequence of distributions
Mk=1,?2, ...) of parameter A, m, eI, for which there are the corresponding
tBaves estimators d¥' such that the a posteriori risk ry(m (| Z (1) = z), d,;"‘)
associated with m and df' is independent of . Suppose that there is a fixed

time plan §'0 = (t, d9), toe T, such that for each & > O there is a k such that for
each teT -

F(to)+c(to) = sup ro(®, 8 +clte) < ry (m(1Z (1) =2), dF)+c(t) +e.
nel’
Then the fixed time plan §'° is a minimax plan.
If we admit all a priori distributions = then we can write in the above
i‘:? Rq (4, §'%) instead of sup ry(n, 8'°).

LI
d For a wider and more precise formulation of the problem and for
®finitions yee [15].
Example 1. Let x(t), t > 0, be Poisson process

(A* _,

P(x(t) = x) = i (x=0,1,2,..),

Whe.re A€(0, ) is unknown. It is well known that for this process the
Statistic x(t) is sufficient for 2. Let the loss function be

EPTY)
L2, o) = k9=

A

(k > 0),

and Jet the cost function be c(f). We assume that k and c¢(r) are unknown.
“hen applying the theorem (for 7, being gamma distributions) we obtain that
We restrict ourselves to the pairs (k, (1)) for which

kjto+c(to) = inf [1/t+c(n)]
t>0 .

for given to, then the plan §'° = (to,d (x)) = (to, X/to) is minimax (see [3], see
850 [8] for the exponential family of processes). .
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" Example 2. Let x(t), t > 0, be the Poisson process and let the loss
function L(J, a) be the same as before. Suppose that the family of a priori
distributions is restricted to the set I' for which

ED=m (m>0).

Then applying the theorem we obtain that if all pairs (k, c(s)) considered
(and unknown) satisfy the condition

k ) k
= t
to+1/m+c(t°) i [t+1/m+c()]

for some ty > 0, then the plan §° = (to, x/(to+1/m)) is minimax (see [157).
| Example 3. Let x(t), t > 0, be the Poisson process and suppose now
that the a priori distributions are restricted to the set I' for which

E(Q)=m, E(1/)=m_; m>0, mm_;>1). |
Let L(4, a) be as before. If all pairs (k, c(¢)) considered satisfy the condition

k .
to+m-/(mm_,—1) el = tn;ﬁ(; [t+ m_,f(mm_,—1) +C(t)]’

then the plan

0 t0+m_1 (mm_l—l)

5,0=( " x+1/(mm_, 1) )
i1s minimax . (see [15]).
Example 4. Let x(t), t > 0, be the Poisson process and let the loss
function be
L(A, a) = kA*(a~1/4)?

and let the cost function ¢(x) be a function of the value x of the process x(t) |
at the moment of stopping, c¢(x) >0, c¢(x)— o if x— . k and ¢(x) are
unknown. If all pairs (k, c(x)) considered satisfy the condition

1 1 ]
=i <
x0+1+6(xo) g[xﬂ +C(x)J 1+¢(0)

for some xoeN, N = {1, 2,...}, then the plan §™ = (¢, %), where
T=inf {: x(t) = %0}, d°(t) = t/(xo+1)

t>0
(an inverse plan) is minimax (see [15]).
Example 5. Let x(t) be the Orstein-Uhlenbeck process. x(1) is a

stationary, Gaussian, Markov process with mean A and the correlatiom
function

R(sy=e™®8 (8> 0.
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Itt i8 assumed that B is known. It is well known that for this process the
Statistic

Z(t, w)=x0)+x()+p f[x(s)ds
0

is a sufficient statistic for A. Let the loss function be
L(4, a) = k(a— A)?,

Where g is the value of the estimator d(z), and let c(t) be the cost function.

he problem is to determine the minimax plan for A when k and c(t) are
unknown.

The Radon-Nikodym derivative dP; ,/dP,, is

apr,, A? ( pt\ A
— = - -— |+= |
P, exp[ 3 1+ 3 +2Z(w, )

%et the a priori distributions m (k=1,2,..) in the theorem be defined as
ollows: 7, has the density

_1 p - Ba2jak

Applying the theorem ron_e obtains that if the pair (k, c(t)) considered (and
Unknown) satisfies the condition

2k . 2k
Brog2 T ¢(to) =min (Bt+2+c(t))

for some to = 0, then the plan §° =(t, d'°) with
d°(z) = z/(Bto +2)
8 minimax. For a corresponding result (and theorem) see [10].

10. Let P, 2=(4,,..., 4,)eA =R be a distribution of the random
Variable x dependent on parameter A. X is observed and an estimate d(X)
=4 (X), ..., d,(X)) of 4 is applied. Let {L(4, @), Le %} be a family of loss
functions, Another problem which can be considered is the following: Find
AN estimate 49 (X) of parameter 4, such that there exists an estimator d°(X)
= (] (X), .+., d°(X)) which is a minimax estimator of 4 =(4,, ..., 4,) for
“ach Le g,

Let, for example, X =(X,, ..., X,) be distributed according to the
Multinomia) law with parameter p = (py, ..., p,) and let the loss function be

r

L(p, a) = 'Z]_ 4] (ai_pi)za

Where the ¢; >0 are unknown. Consider the estimator

d9(X) = X /n+ /).
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Then for the existence of the solution corresponding to d?(X) in the sensé
given abdve, it is sufficient to satisfy

022 P ?C,?Cl >0,

3 (/) < -2

(see Section 7). Notice that the set of vectors (cy, ..., ¢,) is here determined
only by inequalities.

11. Suppose that the random variable X has the distribution P;,
dependent on parameter Ae A = R". X is observed and an estimate d(X) of 4
is applied. Let {L(Z, a), Le ¥} be a family of loss functions and let 2 be a
family of distributions 7 of parameter A. The problem is to find an estimator
d®, of parameter /A, which minimizes the Bayes risk r(n, d) for each (L, n)c #
We call this estimator Bayes for 4.

Examples of situations in which such estimators exist are numerous. The
problem can also be formulated in the sequential case. We restrict ourselves

to a presentation of the solution of the problem in a situation often
considered.

Let X be a random variable with the Poisson distribution and let the
loss function be

(17) L(A, a) = c(A)(a—2)?,

where c(A) is unknown; it is known that c(4) > 0 for each ieA = (0, x).
Let the Bayes estimator be of the form

(18) d(x) =ax+b.
It is well known that for the loss function (17) the Bayes estimator is

E(Ac(A)| X = x)
E(c(D) X =x)’

(19) d(x) =

assuming the expectations do exist together with E(4%c(})| X = x).

Let the a priori distribution 7 have the density g(A). To determine a
Bayes estimator we can apply the method used in [14] (for another approachy
see [5]). From (18) and (19) it follows that

T A le *c(Ag(A)dA=(ax+b) [ 2Xe *c(A)g(d)da
0 0

for x=0,1,2,... Let us denote
B(A) =c(Ag(he ~.
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Then

(20) T A= 1 B()dA = (ax+b) [ #* B()dA.
0 0

But

(x+1) | #*B()di = =1 BAP— [ ' B (HdA.
0 0

Let us suppose that for each x =0, 1, 2, ...
(1) AH1BAIR = 0.
Then equation (20) takes the form

| #*[aAB'(A)+(A~b+a)B()]dA =0
3 ,
0d it surely holds if

aAB'(;.)+(,1-—b+a)B(/1)
solvxng this equation we obtain

N B(J) =.CA®~ e g™ Ha
Which gives
(22) | c(A)g(d) = CAblag=4a
The integrals considered exist and condition (21) holds if
(23) a>0, b/a > —1.

Bﬁ:‘d the above discussion there follows that if all pairs (c(), g(d)
ered satisfy equation (22) and condition (23) and if g(A) is the density

% Which the expectations (19) exist, then the estimator d(X) =aX+b 1s
BW% for ®.

-haa 12, At the end let us examine an example from game theory. Player A
"one bullet which he fires in the interval [0, 1]. Player B is in the same
% ation. They fire theii bullets independently but the shot of a player is
d by the other player. Let P(f) be the probability of hitting player B
e the assumption that the bullet is fired at the moment ¢ and let Q(t) be
Qe PfObablhty of hitting player A when firing at t. The functions P(t) and
are called accuracy functzons It is assumed that P(t) and Q(r) are
P a1 in [0, 1], they increase in this interval and P(0) = Q(0) =
m y=9(1) = 1.. The game is over if one of the players is hit or at the
hemnt t =1, The player A obtains 1 if he only hits the other player, —1 if
only is hit and 0 in the other cases. It is the simplest example of the
G““illed noisy duel (see [7]). - ,
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If player A fires his bullet at the moment x < 1 and B has still his bullet,
the best what he can do is to fire his bullet at the moment x = 1. Assuming
that 4 and B play in such a way the payoff function is

2P(x)—1 i x<y,
K(x,y)=<P(x)=Q(x) if x=y,
1-20(y) if x>y,

where K (x, y) is the expected payoff in the case when A and B intend to fire
their bullets at the moments x, y, respectively.
Let xoe(0, 1) be the moment such that

(24) P(xo)+Q(xo) = 1.

Let us consider the strategy defined as follows: to wait to the moment x,
and if up to this moment there was no shot of the opponent, to fire at x,.
Otherwise fire at moment x = 1. It is easy to verify that such a strategy is
minimax.

But a minimax strategy can also be determined if P(x) and Q(x) are
known only in some neighbourhood of point x, satisfying (24) or at
point X,.

Questions of information play an important role in game theory and in
decision theory.
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