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ROBUST EXPERIMENTAL DESIGN
A COMMENT ON HUBER’S RESULT

0. This paper deals with a problem considered by P. J. Huber in

wh?ptef 9 of his monograph [2] and earlier in [1]. He obtained a solution,

hich is 5 design in the form of a density with regard to a Lebesgue

re. It is not straightforwardly applicable in practice. :

rest fi§re the problem is investigated under some additional, but typical,
Tictions and the results are compared with the solution of Huber.

- The statement of the design problem and Huber’s continuous solution
[2]). Let us start with considering the simple linear model

1
(@,

yi=oa+Px+e, i=1,..,n,

Xrlzere & are independent random errors with known normal distribution

into’ o%) and the desigh X =(x4,..., Xx,) is an n-tuple of points in the
tval I =[—14, +4] (or equivalently, the probability measure over I

(l) : } {= 51{ =% ‘Zi 5::;

Wh“’}_l is concentrated at n points with identical weights). Following Huber,
. 3SSume throughout the paper that the design is symmetric. We want to

;'::Lmate the unknown regression coefficients « and ‘B so as to minimize the
grated mean square error

Q =E [(a+px—d—px)*dx.
1

Taen the best estimators are the least squares estimators
)

Z Yis ﬂ'-‘ ign:l xiJ’i/izi x?.

x| -

&=

i=1
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Now, suppose that the regression function is only approximately linear.
In the case

Vi =f(xl')+8i’ i=1y-“a h,

when the function f(x) insignificantly differs from the linear one, the use of
the least squares estimator &+ fx may be justified, if its integrated mean
square error for the violated model

3) Q0=0(f, X)=E([f(x)—d—Bx]?dx

does not increase too much. The regret can be reduced, if we choose an
appropriate design. The error (3) takes the form

1 2
o, X)=|[f(x)—a,—B; Xszx+[; _glf(xs)—af]

{ . , o2 Lo o\
+ﬁ[i§1 xif(xi)/ig:l x,-z—ﬂf] +%[ ( ; ; ) ]

where o, = (f and B, =15 | xf are coefficients of the L?-projection of f on
the space of linear functions. From now on we put o, = f, = 0. It is obviou§
that without loss of generality we can take into account only nonlinear
disturbances of the regression function. Then

@ QU X = [[f(Pdx+ E ) f(x,-)]

+é[§1""f("")/,.=ilx‘z]z+a—:[ ( 'lﬁ:‘: )1]

Roughly, the problem is to protect by means of design against the
increase in estimation error (4), when the function f belongs to a set of smalt
deviations from the linear regression model and the least squares estimator
f(x) =&+ px with (2) is used.

Huber proposes the following approach, which consists in continuous
approximation of the problem. Continuous symmetric designs (i.e. any,
probability measures over [ -4, +3]) are allowed and the definition of the
risk function Q is extended for them

5 2 9= jf2+[jfdi]z+-1-2—[jxfd€/jx2d¢]2+a—2[1+(12J x*dg)"].

The values (4) and (5) are identical for discrete designs. Possible regress:on
functions are such that their distance in IZ2-norm to the subspace of lineaf

functions is not greater than a small positive number \/— . Thus, we
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Consider the class of disturbances

6) F={f: [f=[xf=0, [f*<n).

Huber has found a design which minimizes the value sup Q(/, &) for n, o?
feF
and 7 fixed in advance. It has a density and depends on the ratio n/(a?/n).
2

2
If n= No = i g._, then for t = t(ﬂ,dz, n)e(l, 9/5] such that

162 n
(7) 3t2(t—1) = a*/nny
the density is
(8) m(x) = 1+3(t—1)(12x>~-1).

25 ¢ '
If » <1—6§En~, then for ¢ = ¢(y, 62, n)e(0, 1) such that

) 18(3+6c+4c*+2c%°  o?

25 (14+23(1—c®

the density s

(10) _ 3
) = 01—

Thf’ Parameters r and ¢, which are given in implicit formulas (7) and (9), are
Uniquely determined. |
crit I:,et us return to the orig‘in_al p'roblefn w-ith discrc?te sampli.ng and the
canerlon fupct:on (4).‘Th§ minimax demgn is esser}tlally continuous and
y not be snmp-ly apphed 1-n'pract.lce. Unfort'upately, it appears also that no
ThCrete approximation of it implies a coinciding value of the risk function.
c class of disturbances (6) is so wide that it contains elements which attain
arl"lt.l‘arily large values at the sampling points of any discrete design. This
aCt implies the unboundedness of the error (4) and therefore, for each design

’ i‘g Q(f, X) = . In practice, however, we never consider such

Y (4x%—c?)".

::tfa‘)r.dinary functions. It seems to be reasonable to restrif:t tl?e clags of
‘ STGSSI(?n functions. We propose to take into account a finite-dimensional
® of disturbances. This assumption concerns the situation in which the real
ﬁ:::lem is. described by a linear regression model, but the model is
Irectly identified. So, the design should be robust on such mistakes.

I 2. Finite-dimensional set of disturbances. A sufficient optimality condition.
N © Purpose is to find a discrete design minimizing the supremum of (4) over
Lzset f? x> Which is the intersection of (6) and the k-dimensional subspace of

(-4, +1) with basis f;, ..., f.. It is assumed that it contains a certain
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quadratic function (let, for instance, f; be quadratic)

(11) Fy={f= Za,f, [f=0xf=0, [f2<n, fi(x) =ax*+bx+c].

This technical assumption is made because of the form of the measurement

(2 5 )

but fortunately, it often appears acceptable.

As we shall see in Theorem 1, an experimental design will be minimax if
its expectations of basis functions are identical to the corresponding expec-
tations for the continuous design m, (8). Then it is the best in the class of
all designs, not necessarily concentrated on the interval [—%, +3] and
discrete.

THEOREM 1. If a plan H = (hy, ..., h,) satisfies

Eqp J3(x) = Ep f(x),

(12) |
Eg, xfj(x) =E, xfj(x), j=1,...,k,

where &g, t > 1 and m, are as in (1), (7) and (8), respectively, then
max Q(f, H) = min max Q(f, X).
SeF

XeR? SeFy .

Proof. There is no loss of generality if we assume that {f}, ..., f;} is
orthonormal. Then

5
fi(x) = %——(12):2 -1).

The other f; can be written in the form
fi=u+v, Jj=2,...,k,
where u;(x) = %[ fj(x)+/;(—x)] are even functions, v;(x) = $[f;(x)—f;( —x)}

are odd ones. The set {1, x, f;, u, 03, ..., W, U} is an orthogonal system.
The following relations hold:

m;(x)=l+§(t—1)f,(x), xm,(x) = tx+3\8ﬁ(t—1)w(x),

where w(x) = \/_ (20x3 —3x) is orthogonal to {1, x, xz} and jw = 1. Due t@
the facts that the design is symmetric and the considered functions are odd,



Robust experimental design | 97

we have

1 _ 1 1
;}; hifi () =E§.-: h; u;(h;) =;§ v;(h) =0

Therefore, formulas (12) take the form

1 \/5
n Zl‘,fl (h) = T(t— 1),

1
- % uy(h) = fu, [1+f(t—1)f1] j=2 .0k,

28

1
E;hivf(hi)=jvjl:IX+3\/( 1)W]—i —Dfyw, j=2,..,k.
Fut‘thermore,

1 1

SV p =
nzi:h, TR

For each feF, having the form
k k
f=ynY of, with Y a?<1
i=1 =1

We have

k ) k 2
Q(f, X)=1 _; a}+[a1;1; ;fi () + _Zz aj'},‘ 2 “j(xi)]

i[/i a,l > x,.v,(xi)]z/(lg x3)2}+5’;[1+(12%; x,?)—l].

ie it suffices to show that H together with /_ nf; is a saddle point of Q,
that

(13) o/, H)<Q(\/1'1f1,H)‘SQ(\/Ef1,.X)

';.1: Cvery f and X. The left-hand inequality is obtained in the following
nNiner:

(1, H)—n{z ozj+oz1-(t—1)2+ (t—l)z[z o; fv; w]} ( %)

k o2 1
< 11[1+max{z—‘(t—l)2 T 2(t—l)2 ;Z aﬂvf”+;— (I +;)
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M:n-

and because [v? <1, a? <1 and 5/4 > 27/(28t?) for each t > 1, we have

j=2

2
o(f, B < n[1+§(t—1)2]+%(1+%)=Q(\/'_1f1, H).

On the other hand,

Q(/nfi, X) = n[1+§ (12,—11 3 xi- 1)2]+fnf[1 ; (12% ) x,?)_l]

as a function of the nonnegative argument = = 12(1/n) ¥, x7 attains its unique

minimum- at a point t>1 such that $¢? (t—l)'= o*/ny, ie. for t
= 12(1/n) Zh,". Therefore, for each symmetric X = (x,, coer X)ER"

Q(/1h, X) = Q(/nf, H),

which establishes the statement (13).

Remarks: (i) The uniquely determined function My, o2,m Deed not be
nonnegative as in the original Huber’s solution.

(i) It is easily seen that the theorem remains true if we consider
continuous designs.

3. Polynomial regression function. Now we pay our attention to the case
when the nonlinear regression function is a polynomial with degree not

greater than a known integer k. This restriction is justified by the following
reasons:

(a) Reql relations in nature are commonly characterized by polynomials.
Moreover, it is the most natural way to generalize linear relations.

(b) The geometry of the classical moment space is best elaborated and

the assumptions of Section 2 on the family of possible nonlinearities (11) are
naturally satisfied.

3.1. General properties of optimal designs. Let
k

W= {f)= ¥ a;x: [f = [xf =0, [f2<n).

j=0
At first we present the explicit formula of max Q(f, X). The set {g;(x)
e o TeW, |
=/2j+1P;(2x), j=2, ..., k}, where -

(14) P =¥ pux

I=0
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d . . . : .
®ote Legendre polynomials, is an orthonormal basis of the space spanned
k k
0
"W For f=\/n ¥ oe;, ¥ of <1,
i=2 j=2

(15) o/, X) = '1{2 acf+[z alj% Z ezj(xi)]2+

1 ) P e LY
+E[§“2J+1E;)‘€ie2j+l(xi)] (;in)}"'

oz

To Maximize Q over W;, Y o} must obviously be equal to 1. We see that
t i=2
he Second and third terms of (15) depend on different variables a;. For any

arbitl'a!'y value of the sum ) a3; = 6 [0, 1] they are maximal, if each of the

% is Bre . . I
Proportional to its coefficient:
1
afj ~ - Z e2j(xr')a Z a%j = e,
1 o ‘2
X2j+1 “‘;Z X; €541 (x;), Z azj+1 = 1-6.
i i

Thefefore

- 2
max Q(f, X) =#n max {1-&-92 [%Zezj(xa)] +

Tew, 0<0<1

11 21N LY
+(1—Q)EZ [;Z xie2j+1(xi)] /(; Z xi) }""
2

+Z [1+(121
- !

19 max Q(f, X) = n[l+max {Z I:;lz. ) eé}(fi)]z,

I Ewk Jj

1 * N ’|
n (e )
+0_2[1+(12-1
: n

S
-
o
had ™ ] .
|
L

ad e"»'entu:«.tlly

o
-
=
"t
|
T
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We notice that the regret depends only on the values

%Z ¥, j=1,...,s=[k+1)/2].

For simplicity we normalize them
1 . ,
u,-=;Z(2x,-)2’, j=1,...,S.

Let po=1 and pu=pu(X)= (o5 ---» ). When the constant terms ar€
omitted, the criterion function (16) takes the form

17) o= nmax{ Z (_4j+1)(i P2j,2i .Ui)z,
i=0

2j<k -

4 y (4'+3)('i )? -

_ L : o,

312 < J = P21+1,2~z+1#;7+1 " 3u,
where, as in (14), the p;, are coefficients of Legendre polynomials-
Unfortunately, the solution of the minimization problem depends strongly oB
the number of experiments n through constraints on the set of moment
vectors M(n) = {u(X): -—% <X <73 i=1,...,n}. The trouble is avoided, if
one considers all continuous designs whose moments form the classical
moment space of polynomials on the unit interval

(18) M ={ueR"": y;=Ex), 0<j<s,{ is a probability on [0, 1]}.

For this problem we use some well-known properties of M. For the sake of
completeness they are collected in Theorem 2. Then we shall try to answer:
whether the minimal point f of (17) over (18) belongs to the set M ()
Because M(n)=M(l'n), 1=1,2,..., we are also interested in th¢
determination of small integers n such that jie M(n). The design X
= (X1, ..., %) such that u(X) =i can be applied in the construction of
optimal strategies of experiments, the sample size of which is a multiple of #

TueoRem 2 (see [3], Chapter 4). (i) M from (18) is bounded, closed and
convex.

(i) For every ue M there exists a distribution with the support consisting
of at most [s/2}+1 points such that it generates p.

(%ii) uef?M if it is generated by exactly one distribution.
(iv) uemnt M iff the matrices

(19) 4, = [#s—z[s/zl+i+j—z]1 <i,j<[s/2]+ 1>

As = [“s— s+ 120 +i+j— 1 Hs— s+ 1)/2]+:'+_,']1 i, j<[(s+1)/2]
are positive definite.

~ So, the best continuous design exists for every n, o and 5. In th?



Robust experimental design 101

Polynomial case Theorem 1 can be expressed in terms of moments of design
distribution.

CoroLiArY 1. If a design & satisfies ,
(20) E;x¥ =E, x¥, j=1,..,s=[k+1)y2],

Where t = t(n, 6, n) is as in (7), then, for the class of disturbances W,, & is
Minimax with respect to Q in the set of all symmetric continuous designs on R'.

_ Ob_serve that the number of conditions (20) guarantecing global
°Ptltpahty appears about four times less than in the general situation. Let us
Consider now when they are fulfilled. -As before, k is' the greatest possible

25 a?
degree of polynomial d1sturbances and 7o = —la—a— is a certain particular

Point connected with Hubcrs desngn

Tueorem 3. (i) For each k =2, 3, ... there is 7,€(0, no) such that for
eery n > %, and for m, defined in (7) and (8) there exzsts a design satisfying
(20) (and for n < W, there is not).

(i) If .9 >7,, then there are an integer n and a discrete design

-(x1,, ., X,) as good as the best continuous one.
(iii) The sequence |, k = 2j is nondecreasing and tends to o-

Proof. (i) Of course, for n>rn, the conclusion holds for m,. The
OPtimal moment point u(t) w1th coordinates

(21 i (t) = 5it—3(j—1)
Ky Qi+ 1)@2i+3)
for ¢ = t(ne, 6%, n) =9/5 belongs, to the interior of M, because it is generated

Y the measure with infinite support. Therefore, by continuity
(22)

j=0,1,...,s

u(t(n, o, n)eM  for some N <Mo-

The j intersection of the convex set M and the stralght line p(t) is-a segment.
Us, (22) holds if and only if n > #, for some 7.

.. (i) Let us fix any point of M. Its coordinates, according to Theorem 2

(), may be presented in explicit form

, .
Y o (2x)*  for some r, o, xj, i=1,...,7.
i=1

. r
80, there are integer sequences {p;,, n=1}, i=1,...,7, Y p,=n such
that : i=1

5 L= ¥ @, =0,
i=1

i=1
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Hence, in particular, the increasing sequences of sets

: 24 \ 24
M2)={(1,277 3 (2x)%, ..., 279 ) (2x)®): —$<x<i), g=1,
i=1 i=1

tends to M and for large ¢ contains any inner point of M.
The remaining statement (iii) is also obvious.

Remark. 7, can be calculated by means of the recurrent formula

0.2

5 2
M = 'irs (ts_' 1)';:

where s = [(k+1)/2], t; =3 and ¢,, s > 2, is the greatest, less than ¢,_,, zer?

of the polynomial detd,det, with 4,, 4, and p; as in (19) and (21}
respectively.

For small # there are also discrete designs not worse than optim?
continuous strategies.

THEOREM 4. For every k > 2 there exists M €(0, no) such that for n <M
a symmetric plan concentrated at the pair +1/2 is minimax. Furthermore,

Mak-1 =My <

2 a?
3k(k+1)(2k+1)(2k+3) n

Proof. Let k be fixed and s = [(k+ 1)/2]. The loss function (17) may b
written shortly

nmax {f; (u), f2(u)} +(—:-1— L

3uy
We construct first a one-dimensional, smooth minorant of fi(w) on ¥
neighbourhood of 1=(1, ..., 1)e R**!. Let |
i
(pZJ(u) = Z p2j,2l' His 2] s k:
i=0
and

| 025(py) = @2;(v),
where vo =1, v = p,,

v, = {”il if P2j2: >0,
" 1 otherwise,
We notice that for every j and HeM

P25 (1) < @25() and @2;(1) = ¢,;(1) = Py(1) = 1.
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Since @,; are continuous, there exists uf < 1 such that for every j and all g,
> %

0 < @2;(11) < @2;(1),
which implies that for each pe M with u, > ut

fi6) =% @+ D030 > Y @+1) o3 (m).

The right-hand side is a polynomial and has a bounded, less than a certain
A > 0, derivative.

If n<n(d) =2

A n then for every u,e(uf, 1)

d 217
4j+1 +Z — <0
i, ['I Z @ )(sz(ﬂl) 3#1]

and, for all peM with pye(uf, 1), we have

W+ > 1 T @+ 1 ol ) + o
ﬂllu n3u1/']j J .?2]”1 31

2 21
> Z (4J'+1)9§,-(1)+ 2= 'lf1(1)+——-

' 2
I <ty = =M
D=3a5n0

i (W) +—

, then for all ueM such that u1 < uf, we have

6? 1 &2 1 6?1
n 3;1, n 3u1 > 1y (1)+_§

2 .
Therefore, if n < 1, = min {(4), n(u})}, then rzfl (,u)+a——1—— is minimized at

the point 1. " W
It remains to show that f, (1) <f;(1). Indeed,
fi)=j@j+3) for k=2 and k=2+1,
f= {%‘."‘."‘2" th i k=7
37 (2j+5) if k=2+1.
2 o?

Finally, if #,,_ less th n
Y, if 72—, OF 1y were less than RGEI D I D) then

d 6?1 ]L
—_— 1, tyyeeey P)+— >0
dp; [ﬂfl (L, pys - ui) n 3,

an:it for some p, <1 a design with the whole mass at +4./u, would be
er. - :
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Several elements of the sequences {%,} and {5} are presented in Table 1.

TABLE 1
k 2 4 6 8 o
2 .
e /"— 0.0222 0.0660 0.0892 0.1075 ... | 01543
n
=1 _ ,
,,,‘/7 00222 | 3.17-107% | 882-10% | 2<337-10°% | ... 0

For odd k the values are the same as for k+1.

The above proofs suggest that Theorems 3 and 4 hold for more general
functions than classical polynomials. If 5 belongs to the interval (n, 7;), then
the solution lies on the border of the moment space and the design
distribution is uniquely determined. One can then hardly expect that it might
be represented as a discrete design. For small k, however, we show below

that the best design is a symmetric pair close to +3, when 7 is slightly
greater than #. '

3.2. Small degree polynomial cases. The exact solutions for polynomial
regression of low degree k < 6 are shown below. Elementary methods were

used here, so only final results are presented. Unfortunately, for k > 4 all
needed formulae cannot be described in an exact analytic way.

Case of quadratic disturbances k =2. The regret function (17)
depends only on one variable #y and, as usual, on the ratio #/(c?/n). Let
t(n, o2, n) be defined implicitly, as in ).

- The best choice is p, =.min {}t, 1} and a design, whose second moment
(1/n) 3. x} equals %p,, is minimax. The most simple one concentrates at

two points

+ /112 otherwise.

Thq -relation l?etwe,en the parameters of the problem and this design (the
positive part, in fact) describes the thin curve in the Figure 1.

Cubic disturbances k = 3. The solution is the same as for k = 4, but
there are other ones, too. This is caused by the form of regret (17) expressed

by the maximum of two functions. The smaller of the

. em (at the optimal point)
has one more variable than the other. This free value can vary as long as its
function remains smaller than ‘the other . -

The remark concerns also other odd k.
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Fig. 1. The robust design for the polynomial regression functions of degree k = 2 (thin line)
) as a function of the ratio u/(a_zln). The dotted lines represent asymptotic

and k =4 (thick lines
values for g2/ = 0

Case k = 4. The quality of design is determined by two factors u, and
K (or equivalently, (1/n)Y x? and (1/n) ¥ x{). They are optimal when

GRS
(a, a?)

(ﬂl! “2) = (r lOt—3

3735

if '1 s g4:
if

Where ae[0.742, 1] is the root of the equation

f‘is defined: by relation (7) and N4

315

~ 2 a?(105a% — 135a% + 51a~—5) =

16

Na

az

Na <1 S,

;';,

are as in Table 1. The best design with

Minimga] support’ consists of one or two (for n > #,) pairs of sample points

i 7<3.17-1072,

if  3.17-1072

7 <n<0066,
n n

2

2 : 2

if >o.-0665:-.-

The thick lines in Figure 1 illustrate them.
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Studden [4], who compared the extra-risk for information matrices M, (¢)
= [E;x**/]g<i <k of the asymptotic solution & to the best M(§) with
respect to the D-optimality criterion function |det M, (¢)|, where € is a weak
limit of &,. Let us do the same for the function @, of vector ue M = R**2,
Suppose that 7 minimizes @, (1) over M and 4, = (1, E,, 2%)?, ..., E,, (2%)%)
for n>n, or p, = (1, E,,,C(Zx)z, .oe» Ep (2%)*) otherwise represents the
‘asymptotic’ solution. One should not expect it to be as good as the
_strategies specially constructed with regard to &,. Nevertheless, for n 2> g, it
15. In the consequence of Corollary 1, @, (i) = @, (1) for each k. So, looking
for a design with moments of m, is a rewarding effort.

The statement is never true for n < n, and the corresponding design m,.
Namely, &b, (1) > @, (7). It turns out, however, that the relative extra-risk

’E?k (1) — D, (1))/®, () is for n <n, and even small k almost negligible (see
able 2).

TABLE 2 The relative extra-risk [®; (1) — @, (D)/Pi (D)

1/(a’/n) 0.01 002 | 005 010 0.15 0.1543
| k=2 | 2561072 | 198-10"2 | 3.69-107 | 187-107* | 55-107° 0
| k=4 1249.1073 | 444-1073 [ 551107 | 9.61-107* | 1.1-1077 0
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