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DECISION MAKING IN AN INCOMPLETELY KNOWN
STOCHASTIC SYSTEM, 1

1. Introduction. In the paper a Bayes control policy of the system (6) hls
determined in the case when the performance index c.lepenc.is on t e
Parameter of disturbances and is measured in terms of their varnance. It. s
assumed that the horizon of control is a bounded randgm .vanable wﬁh
known distribution and that the disturbances have a distnb.uuon belon%‘n.g
to the exponential family. The Bayes risk for the OPtImal, conttr(}: l:s
determined. The paper is also an introduction to the paper [5] in v.vhlc tde
exact analytical form of a minimax control policy of the. system 1is found.
. The problém of determining a Bayes control _pohcy of paramet;r
ptive control systems for disturbances with distributions belonging to. the
cXponential family was considered in [2], [3], [4]. Followed by an exposition
concerning the exponential class of distributions (.sectlon. 2) and by Sbo]me
remarks concerning the problem stated (Section 3), in Section 4 the prol egl
of filtering and in Section 5 that of determining a Bayes control is solved.

ada

2. Exponential class of probability distributions. In probability theory
and statistics the exponential class of probability dlst}'lbutnons is c?f.ten
Considered. In this section we present some of its properties. The exposition
is based mainly on the paper [1]. o

Definition. Let A SRuU{+ow] with card4>2 and .let Fa
= {P;: A€ A} be a family of probability distributions on R. The family # , is
called an exponential family of probability distributions if there are a norm'ed
Measure u om: R, two real-valued functions A(-), B(-) on A, with
B(4)# B(1") if ' # 1", and a constant g > 0 such that

(1) dP; (v) = exp {A(A) g+ B(A) v} du(v).

The set of all probability measures i belonging to the exponential family is

called the exponential class of distributions.
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For each probability measure u let
Z,={zeR, ¢,(z) < o0},
where
Py (z) = 1{ exp (zv) u(dv).

The function ¢,(z) is convex, thus Z, i1s an interval which includes zero.
Define

exp(zv)du(v)
() dP.(v) = = exp(—y,(2)+zv)du(v),
i
}{ exp(zv) u(dv)
where
Yu(2) = ~In [ exp(zv) u(dv).
R
The family

Fz,= By 282}

is an exponential family. Representation (2) is called the canonical
representation of the exponential family.

Sometimes it is convenient to have a representation by a parameter A
which has a statistical interpretation, for example A is the mean value of P;.
It can be proved that for any exponential family of distributions having the
canonical representation (2) with Z, nondegenerate there exists a
representation (1) such that

(3)  B(‘) is strictly increasing on A, B(A) =z,

(40 A(:) and B(-) are holomorphic on Ag =(41, 4;), where 4,
and A, are end points of A,

(5) for each ie A,

_ A4
I_‘; UP;_(dU) = Ql = —qB’(A),
IJ;U P;(dv)—(k" UP;.(dU)) __B'(A)'

We assume that the exponential family has a canonical representation with
Z, nondegenerate.

3. The Bayes control problem. Let us consider the discrete linear system
with complete observations and random horizon

(6) Xps1 = Oy Xp+Up+ Y, Uy, Xo = e, n==0, 1,..., Na
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where x, is the state variable, u, is the control, vy, vy, ..., are indepen.dent
random variables with the same distribution, N is a random variable
independent of Vo, ¥y, ... with given distribution

. M
() PIN=i)=p, i=1,2,..,M, py>0, Y p=1,
i=1

%> ¥n, € are given constants, 7, 5 0.

It is assumed that the random variables v, vy, ... have the distribution

P; belonging to the exponential family, ie. its density with respect to a o-
finite measure Ho on R is '

®) p(v, ) = S(v, g)exp[gA(A)+vB(A)],

Where 1 is a parameter. We suppose that the parametrization is chosen so as
to satisfy. the conditions (3)-(5).

We assume that p(v, 4) is known with the only exception of the
Parameter le A,. -

Let us formulate now the problem of Bayes control. Suppose that 4 is a
random variable. Let the distribution 7 of the parameter A have the density

®) g(3: B. 1) = D(B, Nexp[BAD+rB(A)]., AeA,.

Given the initial state e, the a priori distribution 7 of the parameter 4 with
the density g(1; 8, ) and the distribution P of N, P(N < M) = 1, choose
controls u,, n =0, 1, ..., N, based on all available data X, = (xq, Xy, ..., X,)

and U,_, = (4o, u,, ..., u,_,) such that the Bayes risk

(10) r(n’ U)
N
=Ey{E. E,[B(A) ¥ (&xZ+2m %A+ 12+ kud)| Xo]))
i=0

N
=Ex[E[B' () Y (&x2+2n %A+ 22 +kud)| X))
i=0

attains its minimum.

Here E, denotes the expectation with respect to the distribution P,
of the random variables vy, vy, ..., vy (for X, =x,=e given), E, the
°Xpectation with respect to the distribution 7 of the parameter A, Ey the

gmectation with respect to the distribution (7) of the random variable N, and
= (uO’ ul )

.-+, Uy) a control policy.
It is assumed that

&>0, &Gi—nf=20, k>0.
The Bayes risk r(r, U) attains its minimum if forn=M, M-1, ..., 1,0
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the expression

(11)  ry(n, U™)
=Ey {E [B'()») f: (& x +2m %, A+ G A+ kud)| X, U, 1:“N 2 n}

where Ey { ‘| N 2 n} denotes the conditional expectation under the condition
N2>=n, E[']|X,, U,_,] denotes the conditional expectation given X,, U,_,,
U™ = (u,, ..., uy), attains its minimum.

Since D}(v,) = g/B'(4), this means that the performance index

N
J=Y (&ExF+2m x4+ A2+ kud)

i=0

is measured in terms of the variance of the random variables U,.

4. Filtering. Let us suppose that the a priori density of the parameter A
is given by (9). When such an a priori density is assigned to 4 then the object
of filtering, to determine the Bayes control, is to produce the a posteriori
densxty for A after any new observation of x. We change the control after
obtaining the new data.

Having observed x; and for u, given, we determine the value v of the
random variable v, then the density f (4] X,) of the parameter 4 given X,,

U,- (equal to the density f(A|v, = v) of 4 given vy = v) may be calculated
according to the Bayes rule

i "j' A; ’
SOAIX) =f(Alvg =) = p(v, )g(; B, 1)

| plv, Vg (4; B, r)da

40

__ exp[(B+9) AW+ (r+v)B(A)]
[ exp[(B+q) A(A)+(r+0v)B(A)]dA
40

=D(f+q,r+v)exp[(B+ @ A(A)+(r+v)B(A)] =g(4: B;. 1),
where

By =B+q, ri=r+uv,.

Similarly, after x, is measured and U,_, is given, the a posteriori density
of parameter A is

12 AX, Uy ) = P(WOy—1, AG(A; Bue 14 Puet)
S X T P0u1 D00 Bumss e )80
0

=D(Bp-1+4, 14— +Vp-1)exp[(Bu-1 +9) AD) +(ry- +v,- 1) B(4)]
=a(A: B..rJ.
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where

(13) Bu=Bs-1+q, ra=ri-ito.-g.

‘Given X, and U n—1, the conditional density of the random variable v, is
1 hel1X, Uy ) = | plo, Hg(k; By, r)dA
g
2 p(v, g(4; Bu 7 _ S©, DB, 1)
B g(’l;ﬁn+l’rn+l) .D(ﬁn+q~ rn+v)
If the a priori density of the parameter A is

(15) g(; B,ry = C(B, r)B'(A)exp[BA(A)+rB ()],
then

](AIXM’ Un—l)

=C(Bu-1+q, rp- 1 +0,_ 1) B' (D exp[(Bu-s +9) A (D) +(ra s + 00 1) B(A)]
=§44; B, 1),

where equations (13) hold and, moreover,

S©. 9 ClBu )

C(Bn+4q, rat0)

Let, for the family (8) Ao = (4,, 4,). Suppose that there is a nonempty
%€t § of all points (8, r)eR? for which the following condition holds:

am A(A)+rB(4)]dA = !
Ajo exp[BA(A)+rB(i)] S(r. p)(B—2)

(16) h(v| X,, U,-y) =

for some qeR.
All below considered limits are finite and

llimq_ exp[BA()+rB(J)] = lir;x exp[BA(1)+rB(A)],
=4) A=dg

(18)
Alirﬁ Aexp[BA(A)+rB(A)] = lim Aexp[BA(N)+rB(A)],
: =i A~dg .
(19) | B'(Aexp[BA(1)+rB(}]dA < wc,
Ao :
(20)

if (B, r)eS then (B+g, r+v)e§ for q = E,(v,)/4 and each vesupp P,.

All the above assumptions hold for distributions that are most
frequently involved in probability theory, for example, for the binomial,
normal, gamma, Poisson and negative binomial distributions.
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For the binomial distribution

p(v, ) = (q)a"(l—m-”,

a = —1, the set § is defined by the conditions r >0, B—~r >0, S(r, p) = I'(B
+ W/ (r+ )T (B=r+1).

For the normal distribution (with variance equal to 1)

p(v, 4) = ——e P2

]

\/2n
x=0, >0, —0 <r<ow, S(r, f) =(1//2nf) e "2

For the Poisson distribution

v

p(vﬂ A') == e_la
v!
x«=0, >0,r>0, S(r, ) =p/T(r+1).
For the gamma distribution

-1 ,~v/A
v le VA

PO A= Ty

a=1, f>1,r>0, S(r, f)=r"1/I(f).

For the negative binomial distribution
rig+v) A"
F'(gyv! (1427
a=1,8>1r>0 S, p=TB+r/T (BT F+1).

Integrating by parts and taking into account the conditions (17)«(19) we
obtain

21) B | AB'(A)exp[BA(A)+rB(A)]di=r | B'(A)exp[BA(A)+rB(A)]dA,

Ag )

(22) [ (r—A4B)* B'(A)exp[BA(A)+rB(A)1dA = B/S(r, B)(B—0)
' Ag ,

p(v, ) =

for each (B, r)eS.
Moreover, from (9) and (17) it follows that

@) _ D@B,r)=58(r, p(B—a)
for each (B, r)eS.
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Let the a priori distribution of the parameter A be given by (9) when
(B, eS. Then from (12) and (15) we have

(24 E(B(W)[X,, Uy_y)=D(B,, 1) | B'(Nexp[B,A(2)+r,B(A)1dA

Ao
=’D(ﬁm rn)
C(Bm rn) .

Moreover, from (21)

25 E(AB'(D1X,, Up1) = D(B,, r,) | AB'(Dexp[B, A(A)+r,B(X)]dA
Ag

= D(B,, r,,);—" 5 B () exp B A(D)+r, B()]dA
n 49

_DBur) 1
"~ C(Bnr B,

and frogn (22) and (23)
(26 E@*B()|x, U,.,)

=D(Bi,r) | 22 B'(Aexp[B, A(A)+r, B(]dA
o ndlt

o 2

=D(B,, r,) j' [_li(r”_lﬁn)2+2r_"1_%]exp (B A(A)+r,B(A)]dA
Ag n ﬂn ﬁll

=_1_+D(ﬁ.., r) 12

ﬁ’l C(ﬁm rn)‘EE'

The existence of the integrals in (24)~(26) follows from the condition (20).
Suppose that

(27) EA(Uz)=ql‘12+Clzl+q3-

Sinee E, (v,) = g4 and D3(v,) = ¢/B'(A), we have

, - q
‘B'(}) = . ,
( ) (@1—9) A% +qrA+4q5

and |
9=E[(lg: ~q) "+ 4, 4+4)) P W) X,,, Up-1]

=l e, T, |PBurd), a1—¢
""{(‘11““‘Iz_}“—'g‘_"l-QZE;‘i-q_a]C(ﬁur r_,_,)-+' . Bn .
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Thus

D(Bm rn)__ﬁnq_‘h"'qz. 1

- - ,
C(B,, rw B, @i — ; +q2; +a,

(28)

(n=0,1,2,..).
By (26) and (28) we may put

'D (ﬂm rﬂ)
C(Bas 1)

where the coefficients T do not depend on r, (but depend on B,).
~Moreover, as in [3], we assume that

E(12B' ()] X,, U,-,) = (TP P2+ TP 1, + YY),

E(U 'Xm Un 1)_Q(n)r mqﬁ

E(U,% I Xm Un— 1) = Q(lm r3+Q(2") rn+le)s

where E(| X,, U,-,) is the expectation with respect to the distribution (16).

Suppositions (27) and (29) also hold for all special distributions men-
tioned before.

From (13), (14) and (16) we obtain

D(ﬂn+1, rn+1) )
30 E( it X Une
( ) C(ﬁn-i-l’ rn+1)x ll '

© D(Bas 1> Tarr) S DBy, 1)
C(Bn+1’ rn+1) D(ﬁtﬂ-l’ rn+1)
_D@Bur) 2 S(v,qClBa, 1)
" CBuy 1) C(Butq, a0,
_D@, 1)
C(ﬂm rn)

___D(ﬁm rn) n
= C(ﬂm r") [auxn+un+'ynQ rn]-

Since r,4, =r,+v,, we obtain also

D(Bn+ls Fas 1) ) ﬁm
31 E( r X, U,- 14+Q0™)r,,
( ) C(Bn+1,rn+1) "+1| ! C(ﬂns n)( Q

D(Bysys Tnry)
32) E x2,
( ) (C(ﬁn+19 n+1) Fae1

= B it 4 205 1) Q1 1R 4 Q1+ QP

(29)

Xu+1 Mo (dV)

1

(an Xn + u, + Yn U) Ho (dU)

[anxn+un+'}’nE(vn|Xm Un— 1)]

IXm Un 1)
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D(ﬁn+ s Tp+ )
(33 E( 1 1/ _2
) C(ﬂn+1s Fat l)r'H.l'Xm Uﬂ'.l)

_ D(ﬁm rn) " A L2 (n) ")
=CET [(14+20" + Q) ri+ 0P 1.+ 0P,
D(ﬁn+ s T + )
34 1s "'n+1
( ) E(C(ﬂn+1, r"+l)xn+1rn+1|Xna Un—l)

D ) .
) z:%ﬁ"*’?% [7a(@ + Q) 72 + (@0 X, + ) (1+ Q™)+ 7, Q)17 08)-

S. Solution of the Bayes control problem. Suppose that the disturbances
Ua have the distributions given by (8), that the a priori distribution = of the
Parameter 1 is given by (9), and that the conditions (3)~(5), (17)20), (27) and
(29)'1.101d. Let the distribution of the random horizon N be given by (7).
Consider the problem of determining the Bayes control policy U
= (uo, uy, ..., uy) which minimizes the Bayes risk r(n, U) defined by (10). It
15 sufficient to minimize, for n = M , ..., 1,0, the function r,(n, U™ defined
by (11) which can be presented in the form

N .
T UM <Ey B[B'(Y) ¥ (& x7+2n %A+ A2+ kud)| Xy, Uy i]| N > 1)

M k
L E[BW T @xt+2mx4+02 k)| Xy, Upe ]

k i=n k

——
—
—
=4

M
EI:B’(}‘) Z ':T:L (éixi2+2’7ixil+Ci)‘_2+kiui2')|Xm Un—]]’

where

M
M=) P
i=k
Let

W, = min r,(x, U™) = r,(n, U™¥),
)

Where U™* = (4%, u#, .. ..., uf). From Bellman's dynamic programming

Optimality principle we obtain

35 w,= min {E [B (D) (Enxa + 21, %, A+, 22+ Ky 3)| Xy U—1]

M
+ min E[B‘(A) Z Zti(éixi2+2mxl.l+cilg+kiui2)lX”, Un—l:l}

i=n+1 n
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oo g 4 (0 T, Tk |

M 7

—— (& x?

i=n+1 Tp+1

o]

N mm {ED*{%—:Q)[& 3+2£" XpTut Ca(TP P2+ T 1+ T3)+k,,u3]

nn
+=2E W] X,, U,,-IJ}.

+ min E[“"“E[B’(/l)
¥p

Up g freens n

+2ﬂixi)-+(i}~2+kiu?)|Xn+1, Un]

n
Then for the Bayes control u* we have

D(ern) * Nypyq (aw/mi-l
2Byt B

OF, SiNCe X4 = &, X, +u*+7,0,,

D(ﬁm rn) * Tn+ 1 (6W;+1
C(ﬂm niln * Ny E a'xn+1

Suppose that W, is of the form

Xm Un—l) = Oa

(36) 0.

H

Xm Un— 1)

(37 W, = DB, r ")(A,, x2+2B, Xy, +C,r2+D,r,+E,).
C(By, 1w

For n =M this is fulfilled with

(38)

Au=§u, BM=??M/3M, CM=€MT(M)a DM‘_'CMT(M)a E = HM)

and the optimal u}; = 0. Assuming (37) to be true for n+1 we obtain, using
(36),

D(Bn’ rn) * Myt D(ﬂn+l,rn+l)
C(ﬁm T,,) k" o * E [C(ﬂrﬁl! rn+1)

(Aps1 X4 1+ Bps 1 Thi 1) | X, Un-—l]

D(ﬁ ’ n)[ Tnts

S et = [y @ X+ + 920 1)+ By (1407, ] [ =
C(ﬁns ) y [A4n+1( Q7T +1 )

or
Eman Aniy 11::: [ Q® Ay +(1+ Q™) B,+ 1]
u: = — i x,,— 2 rll'
kIl PR R
7 n
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Moreover, by inductive argument, using (35) with the l.lelp of (301H34) we
prove (37) with 4,, B,, C,, D,, E, satisfying the equations

Tlp+ 1

knarzl An+l
T,
An = €n+ A 2
kn +_'!i—1'An+1
T

B _ nn+nn+1.ankn ['}’"Q(n)A,,+1 +(1+Q(n))Bn+1],
" ﬁn T, Ryt

k,+

An+l

Com T4 2000 4, 42,0+ ) By +(1+ 20740 . |

k"+nn+1 A

n+1- 12
et
B

D" = Cn ,]..2(n)+n;‘t+i D’f Q(zm Au+1 +2')’an” Bn+1 +Q(2m Cn+1 +(1 +Qw) D,. 1]’

n
2 ky

E" = Cu ’I}n)_*__n_';t"' 1 ['))2 Q(S“} An+ 1 + 2%: Q(3") Bn+1 +Q(3n) Cn+ 1 +Eu+ 1]

and the boundary conditions (38).
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