ZASTOSOWANIA  MATEMATYKI
APPLICATIONES MATHEMATICAE
20,4 (1990), pp. 625-638

W. MYDLARCZYK (Wroclaw)

GALERKIN METHODS
FOR NONLINEAR VOLTERRA TYPE EQUATIONS

1. Introduction. Our aim in this paper is to construct an approximate
solution of the nonlinear Volterra equation of the second kind

(1) x(t)— i‘m(z, k(t—s)G()(s)ds = f(), te[0, 11,
0

where G(x)(s) = g(x(s), s) for a.e. s in [0, 1], k is in a suitable Nikolskii space,
fis in a suitably chosen Hélder or Nikolskil space, and the regularity of other
functions in (1) will be specified later.

In the case of smooth integral kernels k the collocation method gives the
best results in the approximate solution of equation (1) (see [2]).

Since we are interested in the case of nonsmooth functions k, we use the
Galerkin method to approximate equation (1). We seek the approximate
solutions in spline function spaces.

We write (1) in the standard operator notation as

7] (I-KG)x =f.

We apply the theory of topological degree, which is excellently presented
in [6]. The estimates of the error of the approximation are obtained in the
supremum norm. ‘ ‘

Our method was influenced by the paper of Graham [3], where similar
questions for linear integral equations of Fredholm type were considered.

2. Basic notation and assumptions. We put
A, f@) =f@+6)—f(@®) and [0, 1],={te[0, 1]}: t+6€[0, 1]}'.
For any neN, let IT, denote the partition of [0, 1] given by

O:0=ty<t; <..<t,=1
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We use the spline function spaces Sy(I1,), where —1 < v < g are integers,
which are defined as follows:
S;U1,) = {veC’[0, 1] b][t,-ul, t] is a polynomial of degree < g}
for v>0 and
S;4,) = {v: v|(t;_,, t) is a polynomial of degree < g}.

To ensure that ve S, *(I1,) is well defined we assume its left continuity at
each knot and right continuity at 0. Throughout this paper v and q are fixed,
therefore we write S(II,) without indices.

In the sequel, as n varies, we assume that partitions I7, remain quasiuni-
form, ie., there exists a constant C with the property

max (t;—t;_,)

3 i=1:...,n
J=1,n

for each partition II,. ’
Note that condition (3) implies h—0 as n— oo, where

i

By P, we denote the orthogonal projection of I*(0, 1) onto S(II,). All
derivatives are understood in the weak (distributional) sense:

Throughout the paper C denotes an inessential constant. We permit it to
change its value from paragraph to paragraph.

3. Some auxiliary definitions and theorems. In the sequel the following
function spaces are used:

1° The Holder space CP[0, 1], 0 < B < 1, endowed with the norm

lull, = sup |u(@)|+ sup |6]” ’*IA.su(t)l
te[0,1] : ze[o 1]a

~ 2° The Nikolskii space N3 [0, 1] with noninteger y >0, 1 < p < oo, the
space of all functions ueI?(0, 1) satisfying the condition

= sup ||~ "Aabmu||L1’(0,1)¢s < 0,
5%0

Iul?ap

where [y] is the integer part of y and y, = y—[7].
It is known (see [5]) that N}[0, 1] equipped with the norm

"u”y,p = "u ”p + |u|7.p

is a Banach space. Moreover, the following well-known results hold (see [5]):
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THEOREM A. We have
Ni*e[0; 1] < NL*[0,1] = Wi(0, 1)
for 0<a< B and 1 <p<

Remark 1. It is known (see [1], Lemma 58) that W1(0, 1) cons1sts of
absolutely continuous functions.

THEOREM B. We have .
N2[0, 1] = N8[0, 1]
Jor a>0,1<p< @ and B=a—(/p—1/q) > 0. |
We need the following well-known facts from the Lebesgue theory:
TaeoreM C. Let feL'(0, 1). Then

%( { f(s)ds)=f(t) ae in '[0, 1].

THEOREM D. Let feC[O 1] be absolutely continuous. Then
If (S+5) —f(s)

6*0 o, 1]a|
For convenience of the reader we present a mmple proof of Theorem D.

—f'(s)|ds =

Proof. For an absolutely continuous function f we have

f(x+5)—f(x) jf(x+s)ds

.Reversing the. order of integration we get

@ |f (x+5) =10 prilax ! 30 [ 1) =1 dxds
[0 1]6| 6 00,115 ’
<sup | Ifflets)—f(oldx.
s<)41 10,115

Since translation is a continuous operation in L', the right-haﬂd side of (4)
tends to 0 as d »0. This completes the proof.

We make use of the following facts:
PROPOSITION 1. Let ke N4[0, 1] for some 0 <a <1 and let

1) = j k(s)ds for tel0, 1].
0 .

Then IeC*[0, 1].

Proof To éstimate |I (t+6) I(t)] we observe that
t+3 t+d

(5) | 5 k(s)ds = 5 [k(s)— k(s — &)1ds + j k(s)ds

t1—90

10 — Zastosowania Mat. 20.4
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when all the integrals make sense. Recalling that ke N[0, 1], we can estlmate
the first term on the right-hand side of (5) by const|d|*
We turn to the latter one. By Theorem C, the expression

131
67N [ k(s)ds
t1—o

tends to k(t) for a.e. t in [0, 1] as 6 > 0. Hence selecting ¢, so that this limit is
finite, we get the estimate

(6) - HE+9)—-I@) < Clof

for te[0, 1]; and |0] < 64, where §, is a sufficiently small number and the
constant C does not depend on ¢t and 6. Now our assertion follows from (6).

Theorem 4 in [3] on approx1matlon can be adapted to our case, which
gives :

PROPOSITION 2. Let feNL[0, 11N C[0, 1] for some 0 <n < 1. Then for
any neN there exists a function £,eS(I1,) such that

If =&l < Ch

where C is independent of n.

PROPOSITION 3. Let the nonnegative functwns x, f, ke}(0,d),0<d < o0,
satisfy the inequality

(7N x(t) < }k(t—ij(s)ds+f (t) ae. in [0, 1].

Then ”x"1 <C|f ||1, where C depends on k only.
Proof. Put

X(T) = [x()ds, I(T) = [k@)ds and F(T)= [ f(s)ds
0 0 1)

for Te[O, d]. After changing the order of integration we get
T

~?dt_lf‘k(t—s).x(s)ds = x(s)I‘(T—s)ds for every Te[O0, d].
0 o 0 S

Hence integrating both sides of (7) and making use-of the monotonicity of the
functions X and I we obtain
X(T) < I(ﬂX(T)+I(T—T)X(T)+F(ﬂ

for every 0 < T; < T <d. Therefore, selecting 6 >0 so that I(f) < 1/2 for
0 <t < J and applying once more the monotonicity argument, we can write

_, X(T) < 21X (T)) + Fd),
for every 0 < T; < T <d with T-T, < 4.
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Hence beginning with T, =0 and T = 6 we get the recurrent estimates of
X(9), X(25), and so on. After a finite number of steps we obtain the required
estimate of X(d) = ||x|,.

Now we return to the operators P,. It is known (see [4]) that the norms of
P, considered as operators on L*(0, 1) are uniformly bounded. Namely, there
exists a constant C independent of n such that

(8) |P,l <C for all neN.
For any £eS(11,) we have
If=Pouflls = 1f=E—Po(f =l <X+ O) f =Ll -
Therefore, in view of Proposition 2, for any fe C’[0, 1] we get
%) . If=Ppfle—>0 asn-ooo.
Since C[0, 11.is a dense subset of C[0, 1], (9) is valid for every feC[O0, 1.

4. Exact problem. In the sequel, g: Rx[0, 1]— R denotes a function
satisfying the Lipschitz condition with constant M:

@) lg(xy, 8)—g(x,, )| < Mix, —x,] for ae. se[0, 1];

(ii) |g(0, s)) < M aee. in [0, 1].

Moreover, we assume that m and k appearing in (1) satisfy

(iii) ke N3[O, 1];
(iv) me C([0, 1]x [0, 1]) and satisfies the Holder condition
Im(ty, s)—m(t,, )} < Mlt,—t,|* for t;, t,€[0, 1],

uniformly with respect to s; the exponent (0, 1) is’ the same in both cases.
Let us define the operators

Kx(t) = jm(t, s)k(t-—-s)x(s)ds, G(x)(t) = g(x(t), t) tel0, 1].
0
So we have

(10) KG(x)(t) = j'm(t, s)k(t —5) G (x)(s)ds
! _

= ~;"”(t,f—-’:‘)k(S)G(x)(t—s)ds ~for te[0, 1].
0

The essential properties of the operator KG are collected in the following
LeMMA 1. Let 0 <d < 1. Then

(a) for any x,, x, in L}(0, d),
(11) IKG)—KG(x)ly < M] k()]s [, —x, I

@if xl, x,€L*(0, d), then (11) is valid alsq with the | | -norm);
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(b) KG(x)e Ni[0, d] for every xeL'(0, d);
(c) KG(x)eC*[0, d] for every xeL*(0, d):
Proof. First let us note that for xe L'(0, d), by the Lipschitz condition, we
have | :
(12) IG(x)(s)] < MIx(s)| +|G(0)(s)) ae. in [0, d].

Hence the operator KG is well defined both in I'(0, d) and in L*(0, d).
To prove (a) note that for every x,, x,eL'(0, d) we have

1GOx)(8) = Glxa) () < Mix,(s)—x,(s)f  ae. in [0, d],

which obviously implies our assertion.
Now we turn to (b). Assume that § > 0 (the case 6 < 0 is similar). Making
the substitution 7 =t—s in (10) we get :

(13) |KG(x)(t+6)— KG(x)(1)] < |I1ll+|12|+|13|,
where

I, = }m(t+5, t—1)[k(t+0)—k(t)]G(x)(t—rT)dr,
0 ,

I, = j.‘ m(t+90, t—1)k(t+0)G(x)(t—1)dt
s _

— [mit+5, t+6— k(DG (t+6—1)ds,
0

I = jz'[m(t+5, t——'t)——m(t, t—7)]k(®)G(x)(t—1)dT

for every 0 <t <t+d <d.
We need only to estimate each term on the right-hand side of (13).
Reversing the order of integration we have
d—34 d—é d—o

(14) { it < § |k(z+8)—k(2)) [ Im(t+8, t—1)| |G(x)(t —7)ldtdr,
0 0 T :

d-3 s -5

(15) [ \lde < [ik@) | |m(t+5,t+5—-r)| IG(x) (t+ 6 —7)|dtdv.
0 0 0

~ First let us note that the integrals with respect to ¢ in (14) and (15) do not
exceed M |G(x)l|,. Hence, by ke Ni[0, 1], the right-hand side of (14) can be
estimated by C|G(x)||;é% where the constant C is independent of x and d.
Now, noting that |k{e N3[0, 1], we can apply inequality (6) with t = 0.to
get a similar estimate of the right-hand side of (15). :
Since m satisfies the Holder condition and
d-s1

I I Ik(s)G(x)(t s)ldsdt < k|| 1G]l
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we get

d—ad

[ IIlde < M|k|, |G, 6%
0

From the above considerations we obtain the estimate of the left-hand side
of (13) in the form C||G(x)|, 6%, where C is independent of d. This completes the
proof.

(c) Tt follows from (12) that G(x)e L*(0, d). Therefore the integrals I, I,
and I can be estimated by const | G(x)|| , 6* even in a simpler way than in the
proof of (b).

CorROLLARY 1. The operator KG: L*(0, 1)— C[0, 1] is continuous and
compact.

Proof. The continuity of KG follows from part (a) of Lemma 1. Inequality
(12) and the estimate

IKG(x)(t+9)— KG(x)(t)] < const|G(x)},6* for te[0, 1],
obtained in the proof of part (c) of Lemma 1 allow us to apply the
Ascoli-Arzela theorem to verify the compactness of KG.

We are now ready to consider equation (1). The essential results
concerning the existence and the uniqueness of solutions of that equation are
given in the following theorem:

TueoreM 1. Let fe L' (0, 1). Then equation (1) has a unique solution x,, which
belongs to L!'(0, 1). If feC[0, 1], then the solution X, is in C[0, 1].

Proof. Choose a sufficiently small d > 0 so that
d
M {|k(s)ds < 1.
]

By part (a) of Lemma 1 the operator KG, considered either on I1(0, d) or on
C[O0, d], is a contraction. Hence there exists a unique solution x, of (1) defined
on the interval [0, d] in both cases.

Now we consider the complete metric space

X, = {xeL'(0, 2d): x = x4 on [0, d]}
in the first case and the complete metric space
X, ={xeC[0, 2d]: x =x, on [0, d]}
in the second one. For any x, and x, either in X, or in X, we have
IKG(x,)(t)—KG(x)®) =0 for te[0, ],

IKG(x,) (1) — KG(x,) ()] < Mj'lk(t-—s)! Ix,(s)—x,(s)ds for d <t < 2d.
d
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Hence we get

IKG(x,)—KG(x,)l, < M(Elk(S)JdS llxy—x, 14
in the first case and

[KG(x)—KG(x)ll < M(jjfk(S)ldS %1 — x50l

in the second one. Therefore KG is a contraction on X, and X,. As
a consequence of this result there exists a unique extension of x, to the solution
of (1) on the interval [0, 2d]. Repeating this procedure we are led to a unique
solution of (1) defined on the whole interval [0, 1].

As a consequence of Lemma 1, Theorem 1 and the obvious imbeddings for
the Nikolskii and Holder spaces we get

COROLLARY 2. Let f e N{[0, 1] for some 0 < B < 1. Then the solution x, of
the problem (1) belongs to N[0, 1], where y = min(a, f). If f € C*[0, 17, then x,
is in C'[0, 1].

Before considering the case of more regular solutions of (1), we prove
a technical lemma essential for our considerations.
Write

(16)  F(5, 1) = 5™ [4,KG()()
- jm(t, s)k(t—s)[g (x(s+6), s+0)—g(x(s), s+ )] ds]
0 .

for 6 #0 and t€[0, 1];.

LEmMMA 2. Let (i) meC*([0, 1]x[0,1]); (i) geCY(Rx[O0, 1]); (iii)
xe C[0, 1]. Then for every de(0, 1)

F,t)>F(@) in L'0,d) as 60,

where

F(t) = m(t, 0)k(1)G(x)(0)+ j[mt(t, 8)+my(t, s)]1k(t —s)G(x)(s)ds
0

+ im(t, s)k(t—s)g(x(s), s)ds  for te[0, 1].
0

Moreover, Fe N3[0, 1].

Proof. Let de(0, 1). Making the substitution T = ¢ —s in the first integral,
adding the second one and at last making the substitution s = t+6&—1 in the
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obtained integral we notice that

t

fm(c+8, s+8)k(t—s)g(x(s+3), s+8)ds

0
t+d
+ | m(t+0, t—s5+0)k(s)g(x(t+—35), t+5—s)ds
= t}a m(t+3, s)k(t+9—s)g(x(s), s)ds.
0

Therefore we can write

F(o,t)=1,(0, )+ 1,(0, )+ 150, 1),
where
1+6

1,0, ) =071 [ m(t+9, t—s+9k(s)g(x(t+6—s), t+—s)ds,
t

t

1,0, =67 [[m(t+9, s+ ) —m(t, s} k(t—s)g(x(s+9), s+ )ds,

o
1,(6,t) =671 jr'm(t+s)k(t—s) [9(x(s), s+8)—g(x(s), s)]ds.
4]

If we compare I,(d, t) with

t+d

m(t, 0)g(x(0), 0)6~* [ k(s)ds,

in view of the continuity of m, g, and x and Theorem D, we notice that

1,6, t)=1,(t) in I}0,d) as 60,
where

1,(5) = m(t, 0)g(x(0), 0)k(z).

By the mean value theorem applied to 6~ '[m(t+6, s+8)—m(t, 5)] we
Obtain '
1,6, )~ 1,(t) in I}0, d) as 0,
Where

t

1,(t) = [ [m,(t, s)+m(t, s)]k(t—s)g(x(s), s)ds.

0

Finally, applying the mean value theorem to 6~ *[g(x(s), s+9)—g(x(s), s)] we
get

I,(6, )~ 15(t) in L'(0,d) as 60,
where

I,(0) = _tfm(t, s)k(t—s)g4(x(s), s)ds.
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Since F(t) =1,(t)+1,(t)+15(t), we have finally

F(b,t)-»F(t) in L'(0, d) as 6 0.
Since m is regular, I,(¢) is in N{[0, 1]. By Lemma 1 (c), the integrals I, and I,
are also in N{[0, 1]. Hence Fe N[0, 1].

Assume that m and g appearing in equation (1) are more regular. Namely,
assume that they satisfy assumption (i) and (ii) of Lemma 2, respectively. Then
we get

THEOREM 2. Let fe N1 P[0, 1] for some B (0 < B < 1). Then there exists
a unique solution x,e€ N1*7[0, 1] of equation (1), where y = min(a, f).

Proof. Since fe N} *#[0, 1] < C?[0, 1], by Corollary 2 a unique solution
x, of (1) is in C’[0, 1].

Write x; = 8 ' A;x4(r) and f;(t) = 61 4, f (2). In view of (i) and (16) we see
that x; satisfies the equation

(17) x5(t)— fmlt, Yk(t—sYp(s, B)xy(5)ds = F(6, D+(0),
0
where
g(xo(s+9), s+8)—g(xo(s), s+9)

Y(s, 0) = Xo (s +8)—x,(s)
gulxo(s), 5+9) if xo(5) = xo(5-+9),

if x4(s) # xo(s+9),

valid for a.e. te[0, d].
Together with (17) we consider the equation

(18)  x(O)— [m(t, )k(t—s)g,(xo(s), s)x(s)ds = F () +f'(t), te[O, d].
0 .
Asf'e N&[0, 1] and Fe N5[0, 1], the right-hand side of (18)is in N[O, 1].

Therefore, Iby Corollary 2, there exists a unique solution xe N[0, 1] of (18).
Subtracting equation (17) from (18) we get

19) (<(0=5,(0)~ [m(t, =G, 9 (x(6)~x(5)ds
=[F(,)—F (f)_]+(fa(t)"-f ')
+ jt'm(t, s)k(t—s)[Y (s, 0)—gi(x(s), s)] x(s)ds.
Using the mean value theo(;em we get Y (s, 0) > gx(x(s), s) uniformly on
(0, d] as 6—0.

By Theorem D, f;—f in L!(0, d). Therefore the right-hand side of (19)
tends to 0 in L!(0, d) as 6 0.



Volterra type equations 635

By definition, [/(-, d)||, < M. Therefore we can apply Proposition 3 to
verify that x;(t)—x(t) in L'(0, d) as 6 —0.
Since d is an arbitrary number in (0, 1),.we derive

x;—»x in D'(0, 1),
and hence x = x5, on [0, 1]. Therefore xy e N} [0, 1]. This completes the proof.

S. Approximate problem. Now we are going to construct some ap-
proximations to the solution of (1). They are defined as solutions to the
following problem:

(20) x,—P,KG(x,) = P, f.

_ To study this problem it is convenient to introduce the auxiliary function
@1) Yo = +KG(x,).

It is easy to see that y, satisfies the equations

(22) | Xy =Py,

(23) Ya—KGP,(y,) = f.

Before proving the unique solvability of equations (20) and (23) we prove
a lemma which is essential for our further considerations.

For an arbitrary function ¥ € L*(0, 1) with ||, < M and for any ne N
we define the linear operators L(n, /) on L®(0, 1) by the formula

L{n, y)x = yP,x for every xeL>(0, 1).

The family of all the operators of this form is denoted by ..

LEMMA 3. There exists N, > 0 such that for any n > N, y e L*(0, 1) with
¥, <M, and xeC[O0, 1]. '

(24) CilIxll < |7 = KL(m, Y))x]| < Cy l1x]l
where the positive constants C, and C, depend on M only.

Proof. Since the operators KL, Le %, are linear, it suffices to consider
the case ||x||,, = 1 only. By our assumptions the operator norms of Le ¥ are
uniformly bounded. In view of Corollary 1 (the case G =Id) the operator

K: L*(0, 1)~ C[0,1]

is bounded and compact. So the operators KL, Le %, considered as operators

on C[0, 1] form a collectively compact family, i.e., the set (J KL(B), where
. LeZ
B is the unit ball in C[0, 1], is conditionally compact.

~As all the operators KL, Le %, are uniformly bounded, the right-hand
side of (24) is obvious. To prove the left-hand side we assume, to get
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a contradiction, that there exist a sequence of continuous functions x,
x|, =1, and operators L, = L(n,, ¥, with n,—»> o0 as /- o such that

(25) I —KL)x,i,,—0.

From the collective compactness of the operators {KL}, Le 2, it follows
that there exists a subsequence of {KL,x;}, [e N, which is convergent in C[0,
1]. Choosing such a subsequence (for simplicity we do not change the notation)
we have

(26) KL,x,—x,

in C[0, 1] as |- co for some x,.
Now from (25) it follows that x,—x, in C[0, 1] as [— o0 and ||x,| , = 1.
Note that v, x,—L,x; = ¥(xo— P, xo)+ L,(x,—X)), and hence

(27) X0 =Ly Xl o < M lixg— P, Xoll o + 1Lyl 1%, — ol

where ||L,| denotes the operator norm of L,.
Since L, are uniformly bounded and x;— x,, by (9) and (27) it follows that
Y xg—Lyx;—0 in L*(0, 1) as [— o0.
Now, as the operator K: L*(0,1)— C[0, 1] is bounded, we deduce easily
that
KW, xo—L,x)—0 in C[O0, 1].

Finally, by (26) we get Ky,x,—x, in C[0, 1] as [— c0.
Consequently, the functions f; = x, — Ky, x, converge to 0 in C[0, 1] as
|- 0. On the other hand, we have

Ixo(®)] < const § [k(t—s)||x, (s ds + ] £,(2)]-
0

Hence, in view of Proposition 3, || x,[; < C| f|l, for each e N. So x, must be
equal to 0, which contradicts ||x,|| = 1, and (24) is proved.

The first step in obtaining the required estimates of the approximations is
assured by the following

THEOREM 3. Let feC[0, 1]. Then for sufficiently large n
(1) the problem (20) has a unique solution x,eS(IT)) for which

(28) Cyllxo—=PyXolle S 1Xo—Xulles < CyllXo—PuXoll o5

(i) the problem (23) has a unique solution y, e C[O0, 1] for which
(29) 10— Yall o < Cllxo—PpXoll oo
where C(, C, and C, are independent of n and x, is the solution of (1).

Proof. Consider first y,. Since KG: L®(0, 1)-C[0, 1], in view of
Corollary 1, is continuous and compact and P,, ne N, are bounded on L®(0, 1),
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all the operators tKGP,, te[0, 1], are continuous and compact on C[0, 1].
Let us notice that G(x)—G(0) =y x for some ¥,,eL®(0, 1) satisfying
Wi, <M. So applying Lemma 2 we deduce easily the estimates

B0)  Cylxllo—IKGO) < (I —tKGP x|, < ColI%ll 4+ KGO}l

valid for every xeC[0, 1], te[0, 1] and n> N,. Here C, and C, are
independent of x and t.

Due to (30) the Leray—Schauder degree deg(f, B, [—-tKGP,) of the
operators I —tKGP, may be defined in the ball B = C[0, 1] centered at 0 with
a sufficiently large radlus r. In our case we can assume that

1+C

» T 1KGO)] ).

From the inequality | f “oo < r deg(f, B, I) = 1 and from the propertles of
the topological degree we obtain

deg(f,B, I —tKGP,) =deg(f, B,I)=1 for te[0, 1].
So the problem (23) has a solution in B.
By (22) the problem (20) also has a solution.
Now let us notice, as above, that
GPn(xl)_GPn(xz) = l/1(361,362)1:’11()61_-x?a)

for some 4, x, € L*(0, 1) satisfying | (x,.x»ll« < M. Therefore an application
of Lemma 2 yields

(31) Clixy—x,ll, < ”(xl _xz)‘“(KGPn(xl)_KGPn(xz))”oo'
From (31) we obtain immediately the uniqueness of the solution of the problem
(23) and, by (21) and (22), of the problem {20).

To prove inequalities (28) and (29) we notice that from (2) and (23) we
obtain
(32) (xo—¥,) —(KGP,(xo) — KGP,(y,)) = KG(xo) —KGP,(xo).

Estimating the left-hand side of (32) by using (31) and applying Lemma 1 (a) to
the right-hand side we get (29).
To obtain (28) we observe that in view of (22) we have

xO_xn = (xO_anO)_I—Pn(xO*__yn)'

Now the uniform boundedness of the operator norms of P, and (29) yield the
right-hand inequality of (28).

To prove the left-hand inequality of (28) we observe, in view of (2) and (20),
that

P(KG(x;)— KG(x,)).
Hence by (8) and Lemma 1 (a) we have
l[xo— anou, (1+C)uxo Xl oo

Xo—P,xog = Xo—x,—P
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This completes the proof of Theorem 3.

The regular solutions of equation (1), as in Corollary 1 or in Theorem 2,
may be approximated with the following convergence rates:

THEOREM 4. Let feCF[0, 1] for some 0 < 8 < 1. Then
IXo—X,lo < CiH  and  |x—y,l, < C,H7,
where y = min(a, 8} dhd C, and C, are independent of n.
Proof. From Corollary 2 it follows that
xoeC’[0, 1] = N% [0, 1].
Now
%o —PpXoll o = lI—P,)(xog—E ) o, < CH

with &, for given x, suitably chosen in S(I7,) in accordance with Proposition 2.
Therefore the required result follows from Theorem 3.

The author would like to express his thanks to Prof. H. Marcinkowska for
her helpful comments and suggestions concerning the paper.
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