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WITH STATE DEPENDENT DELAYS

Abstract. We discuss one-step methods for the numerical solution of
Volterra neutral delay-differential equations with state dependent delays

v © =1(t, y@), wat, y0), y (B, y®)), tela, bl,
() =g(®) tely, al,

?<a < b. A convergence theorem is given and the asymptotic behaviour of
the global discretization error is discussed. These methods are implemented in
Variable-step mode with local discretization error estimated by local ex-
trapolation. The results of the paper* are illustrated by numerical examples.

. L. Introduction. This paper is concerned with the numerical solution of the
Initial-value problem for neutral delay-differential equations (NDDEs) with
State dependent delays

y®)=F(t,y,y), tela,b],
y(®) = g(0), tely, al,
? < a < b, where for any te[a, b] and functions y, ze C[a, b], F is defined by

F(t, y, 2:=£(t, ), yedt, y0)), 2(B(2, ¥(1))),

YSoa(t, y)<t, y< B(t, y) <t. Here C[a, b] denotes the set of real-valued

Continuous functions defined on [a, b]. The function f, the initial function g,

and the delay functions «, B are assumed to satisfy certain conditions which will
given later.

\""————.

(1)
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Equations of type (1) form a model for a two-body problem of classical
electrodynamics and have been studied by Driver [4]-[6]. He proved, among
other things, existence and uniqueness for the case where y < f(t, y) < t. These
equations have been also studied by Hale and Cruz [8], Grimm [12], Kamont
and Kwapisz [19], and the author [18].

It is assumed throughout this paper that (1) has a unique solution
Ye C![y, b], where C'[y, b] denotes the space of real-valued functions with
continuous derivative on [y, b].

Let a stepsize h > 0 be given and put

t,=a+ih, i=0,1,...,N, Nh=b—a.

We will consider the class of fully implicit one-step methods for (1) defined by

ValtiATh) = () +h S a()zy(ts+bEh),

i=1
p+1
@) zu(titrh) = ), cfT 1)z, + b5 ),

i=1

Zh(tf’*‘b.’iﬁlh) e F(ti+b_ll?+1h9 Vi Zn)s

i=0,1,..., N—1, re(0, 1], where y, and z, are continuous approximations
to Y and Y’, respectively, and Y is the solution of (1). It is assumed that y, and
z; are given on the initial interval [y, a]. The coefficients b2, b¥*1 [0, 1] and
the functions a?, ¢?*'e C[0, 1] will be chosen in such a way that method (2)
would have the hlghest possible order. Usually, the b9 are distinct, b§*! =0,

b2ii=1, and

r

() ai(r) = | ci(s)ds,
0

where ¢4 are Lagrange’s fundamental polynomials
4 r—bf

@ ci(r) = iUl b —bi
iFj

Methods of type (2) have been examined in [16] for the equations
y(@®=F(, y(), y(), tela,b],
y() = g(0), tely, al,
where F: [a, b] x C[a, b] x C[a, b]—R is a Volterra operator which is not
state dependent (see also [14], [17]).

In recent years the numerical solution of functional differential equations

(FDEs), i.e., equations of type (5) with F independent of y', has received wide
attention in the literature (Cryer [3] gives an extensive survey of the work doné

G -
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in this area prior to 1972; for more recent developments see [11], [13],
[20]-[23]). On the other hand, less is known about equations with delays
dependent on the solution. Neves [20], [21] described an algorithm based on
Runge-Kutta-Merson formulas of the fourth order for a system of FDEs
which is also applicable in the case of solution-dependent delays. An
adaptation of algorithms for ordinary differential equations to delay-differen-
tial equations (DDEs) has also been considered by Arndt [1]. Tavernini [25]
discussed construction of one-step methods of any order for FDEs where the
delays can depend on the solution. High order methods for state-dependent
DDES with non-smooth solutions were also developed by Feldstein and Neves
In a recent paper [7]. All these papers are primarily concerned with equations
of type (1) with F independent of y’, while there is an almost complete lack of
results for equations of neutral type. The only paper the author is aware of
Concerning the numerical solution of (1) is the paper by Castleton and Grimm
[2] in which two first order methods were constructed. In [15] the results of
Numerical experiments were presented which suggest that the construction of
higher order methods for (1) is possible. However, the theoretical analysis of
numerical methods considered in [15] was restricted to the equations of type
(5). This paper partially fills this gap providing the analysis of one-step methods
(2) for NDDEs (1). The analysis of linear multistep methods for these equations
I8 currently under investigation.

The organization of this paper is as follows. In Section 2 we investigate if
method (2) is well defined and also consider the iteration scheme for solving (2).
A convergence theorem is given in Section 3 and the asymptotic behaviour of
the global discretization error is examined in Section 4. Local error estimation
and step changing strategy are discussed in Section 5. Finally, in Section 6,
some results of numerical experiments are presented.

2. Existence and uniqueness of solutions of system (2). We have the
following existence result:

THEOREM 1. Assume that f, o, B are continuous; g€ C'[y, al; b%, b1 are
distinct; a?(0) = 0; 2 '(bf*')=3;4; and that (1) has a unique solution
YeC'[y, b]. Then for any h > 0 system (2) with y,(t) = g(t), z,(t) = g'(¢) for
tely, a] has a continuous solution (y,, z,) (not necessarily unique).

Proof. Observe first that the condition that (1) has a unique solution
Y allows us to assume, without loss of generality, that the function f is
bounded. Indeed, put

f=1la, b]1x[~M, M]x[—M,, M, ] x[—M;, M],
Where M, M,, and M, are constants such that
M > sup{|Y(t): te[y, b1},
M, > sup{]Y(oz(t, Y(t)))(: tely, b1},
Mg, > sup{|Y(ﬂ(t, Y(t)))|: tely, b]},
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and denote by f a continuous, bounded extension of f to [a, b] x R3. Then

problems (1) with f and f, respectively, have the same solution Y.
Assume that y, and z, are already defined on [y, t;]. We will show that

they can be continuously extended on [y, t;,]. To this end define the mapping

F: RPH1 S RPH!
by .
(ﬁ(x)).; zf(ti+bf+lh’ (yx)" (yx.a)ja (Zx,ﬁ)j)s

j=12,...,p+1, where

0=t +h 3. z aB(bg )8 (B,
WEt B 6)),  alrbh (0)) <1
(Vxa); = {yh(ti)-rhé:l g ah((r0))cs ™ 1 (BD)x,,  alt;+bE2 LR, (v,)) > t:;
A(B+bE h, 0)),  BlL+bEth, 0)) <1
et {z S rep)x BB (1)) > ¢

(rsa); = (x(t:+ 051, (v,)) /R
(rx,ﬂ')j = (ﬁ(&-l—bﬁ” 'h, (yx)j)—ti)/h
and for any ze R?*1, (2) ; denotes the j-th component of z. Since we can assume

f to be bounded, it follows from the Schauder fixed point theorem that the
system x = #(x)-has at least one solution x. Putting

p+1

zy(ti+rh) = ) & (n)x,,
v=1

P
yu(t;+rh) = Vu(t)+h Z ay(r)z,(t,+bEh),

=1

re(0, 1], we can extend y» and z, on the interval [y, t;,,]. It is also clear that
the conditions imposed on the coefficients of method (2) guarantee that these
extensions are continuous. This completes the proof.

To discuss the uniqueness of solutions of (2) we require the following:
(1) g and ¢ are Lipschitz-continuous with constants L, and L, respectively;
(i) f is bounded by a constant M 720 and
Lf (2, yis uys 2)—f (25, Y2, U, 2,))
S Ly(ty—tal +Hlyy —yol +luy —uy))+ Ly |z, —z,),
L,L, 20, t,,t,ela, bl, y,, y5» 4y, uy, zy, 2, €R;
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(1ii) loe(ty, yi)—alts, ¥o)l < Aylty —to]+Azly, —yal,
Ay, A, 20, ty, t,ela, bl, y,, y,€R;
(iv) 1B(ty, y1)—B(ty, ¥o)l < Bylt; —tol+ Byly; —yals

B,,B, >0, t,, t,ela, b], y,, y,€R.

Additional conditions on some Lipschitz constants appearing above will be
given in the formulation of the uniqueness theorem.

Using the Newton 1nterpolat10n formula we can write the approximation
Z, to Y’ in the form

pt1
Z(t+rh) = Y W lq(nz,[t,+ b5 h, ..., t;+ b2 k],
i=1
where
j=1
(6) g =] ¢r—b""),
v=1

0 .
J=1,2,...,p+1, [] =1and z,[t;+b5* h, ..., t;+ b ' h] are Newton divid-
v=1
ed differences. Denote by Q;, j =2, 3, ..., p+1, Lipschitz constants of g; on

[0, 17 and by E; the Lipschitz constants of the coefficients a? defined by (3).
Define
d=min{|b2*! —-bE*1|: pu# v},

pti

0="S @205, E=3E
ji=2 ji=1

p+1
L,=max{L,, EM,}, C =sup{ .21 lcE* 1 (r)l: re(0, 17}.
i=

We have the following uniqueness result:

THEOREM 2. Assume that (i(iv) hold; L,C < 1; QL,(B; +B,L) < 1; b4,
4= p, p+1, are distinct numbers from [0, 1]; b5** = 0; a? and "' are defined
by (3) and (4), respectively, and that problem (1) has a unique solution Y. Then for
Sufficiently small h system (2) has a unique solution (y,, z,).

Proof. The existence follows from Theorem 1. To show the uniqueness we
will prove first that y, and z, defined by (2) are uniformly bounded and
uniformly Lipschitz-continuous. For any function xeC[y, b] and [c, d]
< [y, b] put

1%/l e.ay: = sup{Ix(@)l: te[c, d]}.

In view of (i) it is clear that

lzpliyy < M, = CM,.
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We also have
"yhu[)',tiH] < Ilyhll[)’,ti]+hA ”zh”[)’-h‘+1]9
i=0,1,..., N—1, where

A= sup{i la?(r)l: re(0, 17}.

j=1
Consequently,

IV allies i1 < 1Pallgpa + hACMf
and
IVhllgy.e0 < M= gy, +(b—a)ACM ;.

Now we will show that y, and z, are uniformly Lipschitz-continuous. By (i) this
is true on [y, a]. Denote by L, > L, a constant such that

QL,(1+L,(1+A,+A,L)+QL,L,(B,+B,L)<L,
the existence of which follows from the condition
QL,(B,+B,L) < 1.

Assume that y, and z, are Lipschitz-continuous on [y, t;] with constants L, and
L,, respectively. We will show that there exist Lipschitz-continuous extensions of
¥, and z, on [y, t;+1] and that the Lipschitz constants are preserved. Put

W) =y, ZMO=2z(), n=0,1,...,
for te[y, t;] and define the following iteration scheme on [t;, ¢;4,]:

zn+1](ti+b5_:+1h) - F(Ei+bf+1h, y;ln], Zn]),

pt+1
A0 4rh) = Y ()t O+ bet R,
j=1

p
2t +rh) = p,t)+h Y @Bzt (e, + bRk,
ji=1

i=

n=0,1,...,re(0, 1], with
2t +rh) = z,(t),
yLO](ti+rh) = y(t)+hrz,(t),

re(0, 1]. It is clear that zi” and y”! are Lipschitz-continuous on [y, t;. ] with
constants L, and L, respectively. Assume that this is true for zJ! and y}"!. Then
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in view of (ii)-(iv) we obtain
|2k (e, + bR+ h)— 2t (e, + bR h)| < Ly (1+ L2+t —b2+ 1|k
+ Ly | yR ot + BE+ b, Y+ b2 2 h)) — v (et + B2 L by pi(E + BET L R)))
+ Ly [y (e, + b2+ L, yi(e, 4 b2t R))) — P (oe(t; 4+ B2 LRy yiO(E + B2 L R)))
+ L, |Z(B(e,+ b2 b, yi(e,+ bR ) — 2 (B(t+ b2 L, (e + B2 R)))
+ L |2 (B(e, 4+ b2 Lh, (e, + bE* 1)) — 20 (B(2;+ B2+ LRy p(E,+ b 1 h))
<[L,(1+L,(1+A,+A,L)+L,L,(B,+B,L)]Ibs**—b2*1|h
< (L/Q)bL™ 1 =bE" YA,
Using the Newton representation of z}"*11 we obtain

|Z’|" " ll(ti +rih)— s ll(ti +rh)l

pt1 .
< X lar) =gl W20+ 68 h, L 40T ],
j=2
Where the g; are defined by (6). It can easily be proved by induction that
j—2 [n+1] +1 +1 2j_sz
IhJ ZL [t1+b’i’ h, o ti+b§ h]| < -6]—_—2'6,

j=2,3,...,p+1. Hence

ptinj—2

Izl,"*1](t3+r1h)—ZL"“](t,-—i-"zh)‘ < Z 61 2Q1Q| r2|h = Lz|r1'—72|h.

It follows from the Arzela-Ascoli theorem that {)}"},v and {z}},.y are
relatively compact in C[y, t;+,]. Let {)}"}.er and {Zf},n» N <N,
sup{N'} = o0, be any convergent subsequences of {y¥"},.y and {z}},.x and
denote their limits by y, and z,. It is clear that y, and z, satisfy (2) on [, t;4+]
and are Lipschitz-continuous with the same constants L, and L, respectively.

To show that (y,, z,) is the unique solution let us assume that there is
another solution (y,, z,) of (2). Then it follows that

|za(t;+ b5 B)— Zy(t; 4+ bE* M B)| < Ly |y, (645 )= 7, (1,4 BE* 1 )

+ Ly [ynlec(t;+B2% b, yult+bE* 1) — yulee(t, + B2+ b, Fult;+ DL+ h)))

+ Ly |yaloc(t;+b2F L, §ult;+ b 1 R)) — gt + B2 Ry (e, + 527 1))

+ Ly |za(B(e;+ B2 1, yult, + b2+ 1)) — zi(B(t;+ bE* M, $iult,+ b5 1 b))

+ Ly |za(B(t;+ b2 L by 7yt + bE B) — 2 (B(t; +bEF b, 5yt + b2 R))
<(Ly@+LyAy)+ Ly LB ya— Fallonte s 0+ L2 126 = Zall iy 115
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and
12— Zulty,tie 1
| < C(Ly(2+L,A) + Ly L Bo) |y — Fullpyscs n+ CL 20— Zilliyati
In view of the condition L,C <1 we get
(7 Izh—Zulliptir 1 S DUYe—Falltrtis 10

where ,
p._ ClLy@+L,A)+L,L.B)
o 1-L,C '

Subtracting the equations for y, and y, and taking (7) into account we obtain

U¥n—Pallair 1 < ||yh_J7hH['y,t.']+hAD 1Ya— Pallty.tisn2-
Let h, > 0 be such that 1—hyAD > 0. Then for h < h, we get

1% = Palltyses .1 S (L+BGYH v — Falliy,a0
where G:= AD/(1—hyAD). But |y, — ¥,llfy. = O, therefore y, = y, and z, = Z,
on [y, b], which is our claim.

3. A convergence theorem. Define the local errors n and v of method (2) by

nit, r, hy:=Y(t+rh)—Y({)—h i af(r)Y'(t+b¥h),
j=1

(8)

p+1

vie, v, hy:= Y (t+rh)— Y FHHO Y (e+b3 h),

j=1
where Y is the solution of (1). Method (2) is said to be consistent if
nie, r,h)=o0(1), n(t,1,h)=o0(h), and v(t, r, h)=o0(1)
uniformly in ¢t and r as h—0. Method (2) is said to be of order p if
ne, r, )y =0MH?), nit,1,h)=0HPY), and v(t, r, h) = Ok

uniformly in ¢t and r as h—0 (cf. [14]-[17]). Method (2) is said to be
convergent if

IVi—Ylpoy—0 as h—0.

The order of convergence is p if
1¥s=Yllpsy = Oh")  as h—0.

We have the following convergence result:

THEOREM 3. Assume that conditions (i(iv) hold, L,C < 1; method (2) is
consistent and

1¥e =Gl = 0(1),  l24—9 Iy = 0(1)  as h—0.
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Moreover, assume that problem (1) has a unique solution Y whose derivative is
Lipschitz-continuous. Then every solution of (2) is convergent to Y. If, in addition,
method (2) is of order p and starting errors are of order p, then the order of
convergence is also p.

Proof. The proof of this theorem is similar to that in [16] and [17] with
some modifications to take into account state-dependent delays. Put

gi=y—Y, e :=z-Y,
and

n(h):= sup{|n(t, r, h)|: tela, b—h], re(0, 11},
p(h):= sup{[n(t, 1, h)|: te[a, b—h]},
v(h):= sup{|v(t, r, h)|: te[a, b—h], re(0, 13}.
Subtracting (2) and (8) we obtain

P
eyt +rh) = g,(t)+h Y al(r)e,(t;+bIR)—nlt;, 7, h),
i=1

J

p+1

e,(t;+rh) = 2t (e, (t; + b2 L h)—v(t;, 1, h),
=1

J

eh(t,-+bf+lh) = F(ti‘l"bf-’-lh, yh, Zh)—F(ti+b§'+lh, },, Y’),

i=0,1,..., N—1,re(0, 1]. Denote by L, and L,. the Lipschitz constants of
Y and Y’, respectively. Then proceeding similarly as in the proof of Theorem
2 we obtain

le,(t; + bf+ Yh) < (Ll(z +LyA,)+L, LY'Bz) llenlliyeie 0+ Lo lenlliyie 130
and

”eh “[J'J.'+ 1] S “eh"[y.a] +(Ll (2 + LYAZ) : LZLY'BZ)C “8}1” [7.ti+1]
+ L, Cllegllgy.tin +V(R).

Taking the condition L,C <1 into account and putting

B 1 (L,2+LyA,)+L,L,.B,)C
b “max{lmch’ 1-L,C ’
we get

(9) ”eh”[r.lu. 1] ss D(“eh“[v.a] + ueh“[y,!n 1}+ V(h)),

i=0,1,..., N—1. To estimate ||&,,... ; observe first that

len(t; DI < len(€l +hA lleyll .0, 1+ 1(R),
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and by induction it follows that

et < ley(toll +hA Y llenlpy.eq+in(h).
j=1

We also have
lenlliiss 1 < lesEN+hAl eyl a+1(R),
i+1
(10) lenllpyiess 1 < leglliya+hA4 Y lleylly.q+ b—a)um)/h+n(h).
j=1

J
Combining (9) and (10) we get
e, N[y,t,»“] < g, N[y,a]"’(b_a)AD ”eh”[y,a]
i+1

+hAD ¥ eyl +b—a) ADv(h)+(b—a)u(h)/h+n(h),

i=1
i=0,1,..., N—1. Let hy > 0 be such that 1—hyAD > 0. Then for h < h,,
using standard arguments as in [16] and [17], we obtain
lealliy.er < MLlenllty.ar+ lenlly.a+ k) + )k +v(h)]
for some non-negative constant M, which completes the proof.

4. Asymptotic behaviour of the global discretization error. Method (2) is
said to be of strong order p if n(t, r, h) = O(h***) and v(t, r, h) = O(h?*?) as
h— 0 uniformly in ¢ and r, where the local errors # and v are defined by (8). It is
easy to check that (2) has strong order p if b9 are distinct, a? are defined by (3),
and c?*! are defined by (4). We have the following generalization of the result
given in [17]:

THEOREM 4. Assume that f and Y are sufficiently smooth; ¢,(t) = O(h**?)
and e,(t) = O(h**") for te[y, al; method (2) is of strong order p; there exists
a function ue C[a, b] such that

n(e, 1, B) = kP 1u(@®)+0(h**?)  for tela, b] as h—0;
moreover, the system of equations
8’(t)—€(t) = _u(t)> tE[a, b]a
e(t) = D, f(w)e(t)+ D, f (w)[e(oft, Y(O)+ Y'(x(t, Y())D,e(t, Y(®)e()]

(11) |
+D, f(@)[e(B(t, Y0)+Y"(B(t. YO)D,B(t, Y(®)e()], tela, b,

S(t) = e(t) =0, tE['y, a]a

where w = (t, Y(@), Y(a(t, Y(0))), Y'(B(t, Y(t)))), has a solution (¢, e) of class C*.
Then

en(t) = y, (=Y () = WPe(t) + O(hP*Y),  e,(t) = z,(t) = Y'(t) = hPe(t) + O (WP 1)
for te[y, b] as h—0.
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Proof. As in [17], substituting Y(t)+hPs(t) and Y’(t)+ h?e(t) into (2) in
Place of y, () and z,(t) and denoting the resulting residues by £ and g, we obtain

Y(t,+rh)+hPe(t;+rh) = Y(t)+hPe(t)

P
+h Y aB)Y (5, +b2h) + hPe(t, + bER) + E(t;, 7, B,
i=1
and
Y'(t;+rh)+hPe(t,+rh)
p+1
= Y B NP)F(t,+b?"  h, Y+ hPe, Y +hPe)+o(t;, r, h).
j=1
It follows that

p
$(ty, vy ) = n(t;, v, A)+hP[e(t,+rh)—e(t)—h Y, ab(r)e(t;+b?h)].
j=1
EXpanding ¢ and e around ¢; and taking the relation

p

Y ad(r)=r

ji=1
into account, we get
E(ti, 1y B) = n(t;, r, ) +hP L[ (t) —re(t)]+ O(hP*2).
Hence £(t, r, h) = O(h**?!) and &(t;, 1, h) = O(hP*?) as h—0. We also have
et;, r, h)=v(t;, r, h)
pt+1

Rt )= Y, ¢ 0D S @i et B )

i=1
+D; f(w; ) e(@(6; )} + Y'(2(0:, ) D, (0; et + b2+ 1 )]
D4 f (@1, )[e(B0.)+ Y (BO:))D2BO: et + b5 h)]))

+O0HhP™ Y,
where
;5= (t; +b8"1h, Y(t,+b2"h),
; ;= (015, Y((6:.), Y'(B(6;)-
pt1
If we expand around ¢, since ¥ ¢2*!(r) =1, it follows that
j=1

oty 7. ) = v(t,, 1, B)+hP(e(t) =D, f (0)s(2)
— D, f (@)[e(2(0)) + Y (2(6)) D,2(6)()]
— D, f (@)[e(BOI)+ Y (B6I)D,BO)e(t)])+ Ok *Y),
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where 0, = (t;, Y(t), o; = (0,, Y(x(0,), Y'(B(6,))). Consequently, in view of (11),
ot;, 1, )= O(W**Y)  as h—0. |
From this point, putting
@(t) = Y () +hPe(t)— y, (1),
w(t) = Y' () +hPe(t)—z,(2),
and proceeding exactly as in the proof of Theorem 3, we obtain
e(t)=0h**Y) and yY(@)=0Mh*Y) as h—0,
which is our claim. '

5. Local error estimation and step changing strategy. We use local
extrapolation (see [9] and [10]) to estimate the local discretization error of
method (2). Performing one step of size A we obtain

14
Wltis1) = y(t)+h Y, ab(1)z,(t,+ b h),
j=1
and the corresponding local discretization error is

n(t, 1, ) = Y(t+)—Y(t)—h Z ai(1)Y'(t; + bYh).

P
ji=1

Performing two steps of size h/2 we get

H(te1) = 06+ (D) Y, R0+ BEHD 42802 + DR,

ji=1

and the corresponding local discretization error is

¥, 1, B) = Y(ti+1)— Y (£)—(h/2) i aj(DLY'(t;+bFh/2)+ Y (tis 1 )2+ b h/2)]

j=1

= n(ti9 15 h/2)+’1(tl+ 1/2» 19 h/2).

Assuming that #(t, 1, k) = h?*'u()+ O(h**2) as h—0 and that the function
u 1s continuously differentiable, we obtain

Tt 1, By = BPRP+ Lu(t) + O(h*+2)  as h—0.

The function u is called the principal error function. To estimate the principal
part of n(¢;, 1, h) and n*(¢;, 1, h), ie, hP*1u(t) and ($)PhP* Lu(r), we assume
that the conditions of Theorem 4 are satisfied. Then

n(t) = Y(O)+hPe(t)+ O (hP*Y),
z(t) = Y'(O)+hPe()+O(h"Y),
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and it follows that

Yaltivy) = Y(t) +&,(t)+h Zp: af (LY’ (t;+ b2 h)+ hPe(t; + b?h)]+O(h**?)

ji=1

= Y(t;r1)—n(t;, 1, h)+¢,(t)

p
+HPYL Y ab(1)e(t,+ bRR)+ O(h?*2).
i=t
Similarly,

VE(tiey) = Y(t)+8,(t)+(h/2) f aZ()[Y'(t;+bFh/2) + hPe(t, + b2 h)2)
i=1

+ Y (tiv 12+ BR/2)+ WPe(tis 1 + BER/2)]+ O (hP+2)
P
= Y(tir)=n*t 1, B +e,(t)+ (P 1/2) Y ab(1)[e(t,+b2h/2)
j=1

+e(tiv12 +b2R/2)]+ 0 *2).
Hence

Yalliv1) = Y(tiv 1) —n(t;, 1, h)+&,(t)+h? te(t)+ORP*2)
and

VE(tis) = Yl ) =10 1, B)+ey(t)+h0e(t) + O(hP+2),
Subtracting these equations we get

VR )= Valtis ) = nts, 1, =%, 1, )+ O(hP*2),

COnsequently, the principal parts of the local errors nt;, 1, h) and n*(t;, 1, h)
are ‘

pt Yitiv1)— yultis1) P+
(12) Rt ly() = 28 1_2_’; =+ O0(h*?)
and
(13) (_‘%_)php.plu(ti) — }’;r(tw 1)—yh(ti+ 1)+O(hp+2).

2P—1

We summarize the above discussion in the following

THEOREM 5. Under the conditions of Theorem 4, the principal part of the
local discretization error n(t;, 1, h) corresponding to one step of size h is given by
(12) and the principal part of the local discretization error w*(t;, 1, h) cor-
Fesponding to two steps of size h/2 is given by (13).

After completing one step we have a choice of starting the integration with
Yu(t;4 ) or y¥(ti+ ). In our numerical examples in the next section we start the
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integration with y¥(¢;,,). Put

i )=t v )
LE:= T !

If LE is less than or equal to the given tolerance TOL, the step is accepted and
the new step size is computed from the formula

Hpew = min{2hg4, 0.95,4(TOL/LE)Y/®+ 1}

If LE > TOL, the step is rejected. In this case the step size is halved and the
computations start again. :

6. Numerical examples. To illustrate the results of this paper we have
solved the following initial-value problems.

ExaMPLE 1 (Castleton and Grimm [2]).
i —4ty* ()
) = fogilcos ) +4
y(0) = y'(0) = 0,
where z(t) = y'(ty*(¢)/(1 + y*(¢)). The theoretical solution is
Y (1) = —4log(cos(2¢)).
ExampLE 2 (Castleton and Grimm [2]).
y'(€) = cos(t(1 +u(®))+ y(t)z(t)—sin(¢(1 +sin?(#)),  te[0, 1],
y0 =0, y©0)=1,
where u(t) = y(ty*(1), z(2) = y'(ty*(t)). The theoretical solution is
‘ Y (t) = sin(2).

+tan(2t)+3arctan(z(?)), te[0, 0.75],

ExAMPLE 3 (Driver [5)).
Y@ = —y(—y*@®)/4), te[0,1],
y(@) =1—t, t<0.
The theoretical solution is '
Y() =1+t

Numerical methods described in this paper are also applicable to DDES
vhich are not of neutral type. We have included two examples of this form.

EXAMPLE 4 (Feldstein and Neves [7]).

YO = —y(r®—/2+1/20, tell, 3],
() =1, t<1.
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The unique solution to this problem is

t)_{\/i, tefl, 2],
 a+124(1- 202 /8, tel2,3].

ExampLE 5 (Neves [20]).

y(®) =y@y(n(y@®)t, tell,el,
y(t) =1, t<1.

The unique solution is

t, te[l, e],
Y= {exp(t/e), tefe, e?].

These examples have been solved by methods (2) of orders from 2 to 10 with
bi=(G—-1)/4q, j=1,2,...,9+1,

the functions a? defined by (3) and the functions c?*! defined by (4). The
Method was implemented in variable-step mode with step changing strategy
described in Section 5. The local error was estimated by local extrapolation.
Following Shampine and Watts [24] the initial step size h, was computed from
the formula ‘

hy = min{(b—a)/2, (TOL/|z,(a)})"/"* V},

Where TOL is a given tolerance. When solving systems of non-linear equations,
the iterations were terminated if two successive approximations differed by less
than TOL. In integrating Examples 1, 2, 4, 5 the computations were stopped if
We passed the end point b, and the approximate solution y,(b) was computed
by interpolation. In integrating Example 3 the end point was forced to be in
@ mesh. The reason for doing this is that, in this example, ¢ = 1 is a bifurcation
Point (for te[1, 3] both y(t) =14+t and y(t) = 3—t are solutions). The
Selection of numerical results for the tolerances TOL = 10~ and 10~8 is given
In Tables 1-10.
The abbreviations in the tables have the following meaning;
NS — number of successful steps (we count two steps of length h/2 as one
step);
NRS — number of rejected steps;
NFE — pumber of evaluations of the right-hand side;
HMIN - the minimum step size;
HMAX — the maximum step size;
ERR — the absolute error at the end point b;
TIME — computation time in seconds on the Amdahl 370/V-II computer.
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TABLE 1. Example 1. TOL =104

p NS NRS NFE HMIN HMAX ERR TIME
2 77 4 976 .16E—2 23E—1 4.1E—4 2.98
3 52 4 1011  24E—2 29E—1 72E—8 3.04
4 35 3 916 J35E—2 A4TE—1  43E-7 3.24
s 30 6 1085  42E—2 53E—1 33E—8 4.05
6 2 6 1014  42E—2 94E—1 7.E-8 427
7 17 6 973  52E—2 96E—1 1.1E—7 4.70
8 13 5 896  97E—2 .19 4389 5.34
9 10 5 900 .11E—1 .19 21E-7 6.00
10 9 5 960  .13E—1 .20 29E -7 729
TABLE 2. Example 1. TOL = 10~®
p NS NRS NFE HMIN HMAX ERR TIME
5 2922 9 87960 40E—4 73E—3 30E—14  247.18
6 2158 9 78048 SSE—4 18E—3 69E—14  237.54
7 1597 8 67452 JT4E—4  1SE—2 18E—13 23324
8 118 8 57360 .10E—3 .1SE—2 43E—13 23185
9 877 7 47781 13E—3 29E—2 11E—12  229.14
10 650 7 39470 .18E—3 29E—2 26E—12 22266
TABLE 3. Example 2. TOL = 10™*
p NS NRS NFE HMIN HMAX ERR TIME
2 42 1 404 22E—1 28E—1 7.7E=5 222
3 28 1 444 32E—1 S50E—1 12E-5 2.32
4 2 2 532 4E—1 S2E—1 14E—5 2.61
5 16 2 520 S4E—1 68E—1 1.9E—S5 2.76
6 10 i 462 88E—1 .13 3.7E—5 2.96
9 8 1 483 12 16 9.6E—6 328
8 6 1 448 16 18 20E—5 3.50
9 5 1 459 20 20 33E—5 387
10 30 300 37 43 1.1IE—3 3.58
TABLE 4. Example 2. TOL = 10~®
p NS NRS NFE HMIN HMAX ERR TIME
2 4088 3 38320 22E—3 .30E—3 7.7JE—9 94.40
3 2821 5 43161 31E—3 43E-3 17E-9 84.63
4 2032 6 45972 39E—3 59E—3 1.0E—9 84.90
5 1490 6 43785 61E—3 81E—3 64E—10 89.39
6 1101 6 39408 82E—2 .11E—2 42E—10 94.98
7 818 6 34461 11E—2 .16E—2 36E—10  100.88
8 608 6 29472 1SE—2 20E—2 46E—10  105.5!
9 453 6 24885 20E—2 20E—2 70E—10  108.30
10 334 5 20550 27E—2 59E—2 1.6E—9 109.34
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TABLE 5. Example 3. TOL = 1074

p NS NRS NFE HMIN  HMAX ERR TIME
2 240 160 2898 18E-3 19 1.9E—4 3.02
3 164 110 2988  .39E-3 20 9.8E—5 3.38
4 112 65 2612  49E—3 16 86E—4 3.8
5 85 56 2580  .14E-2 22 1.8E—4 428
6 58 34 2052 26E—2 13 49E—3 4.44
7 4 28 1869 A1E=2 16 99E—5 5.09
8 26 16 1264  94E-2 18 1.8E—2 4.53
9 16 7 810  .22E-1 20 1.4E—3 4.13

10 13 8 830  40E—1 22 77E—2 4.69

TABLE 6. Example 3. TOL = 10~%

p NS NRS NFE HMIN  HMAX ERR TIME
7 4471 2440 176433 .55E—6 20 34E—6 583.54
8 3233 1668 143592 .18E—6 13 2.8E—6 47348
9 2361 1162 116523 44E—6 .16 1.7JE—6 408.11

10 1790 878 98100 .12E—5 19 20E—6 389.78

TABLE 7. Example 4. TOL =10"*

p NS NRS NFE HMIN  HMAX ERR TIME
2 23 0 254 S59E—1 12 1.8E—4 1.98
3 17 1 306 60E—1 17 1.1IE=5 2.18
4 13 1 324 91E—1 23 1.1IE—8 2.14
5 9 0 270 22 30 2.3E—6 2.00
6 7 0 252 29 38 1.1IE=5 2.17
7 6 0 252 35 48 54E—6 241
8 5 0 248 39 56 1.5E—5 2.36
9 4 0 234 43 60 40E—5 242

10 4 0 280 46 A 12E~5 2.83

TABLE 8. Example 4. TOL =10"%

p NS NRS NFE HMIN HMAX ERR TIME
2 2m 2 24294  S9E—3  .13E-2 1.5E-8 24.34
3 1499 4 25209 74E-3 .18E-2 9.1E—10 21.48
4 1081 5 26064 90E—3  25E—2 1.6E-9 24.60
5 7193 5 23940 .16E—2 34E-2 8.0E-—10 25.79
6 587 5 21312 22E—-2 . 46E-2 1.1E-9 27.60
7 437 5 18564 30E—2 62E—2 12E-9 29.36
8 326 5 15888 41E—2 84E—2 26E—9 30.56
9 244 5 13446  S3E—2  .11E—1 29E-9 31.27

10 180 4 11040 .79E—2  .1SE—1 3.TJE-—8 32.06

461
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TABLE 9. Example 5. TOL = 10~*

P NS NRS NFE HMIN HMAX ERR TIME
2 156 1 1480 23E~1 49E—-1  22E-3 2.82
3 107 , 1 1638 46E~1 71IE—1 44E—4 3.07
4 77 1 1636 G6TE—1 98E—1 54E—-5 3.54
5 56 | 1710 95E—1 13 3.2E—4 4.13
6 42 1 1566 13 .18 34E—4 4.70
7 32 1 1547 .16 23 37E—4 5.49
8 22 0 1376 25 .36 99E—4 6.07
9 17 0 1314 .35 41 14E-3 6.90

10 14 0 1220 43 52 1.9E-3 7.58

TABLE 10. Example 5. TOL = 1078

p NS NRS NFE'  HMIN HMAX ERR TIME
7 3092 6 117110 .15E-2  24E-2 3.1E-8 460.16
8 2301 6 99928 20E—2  33E—2 9.3E-8 411.78
9 1714 6 83916 25E—-2  44E-2 98E-9 375.35

10 1274 5 77840  37E-2  S9E-2  24E-7 405.60

It can be seen from the tables that, in most cases, the number of steps and
the number of function evaluations decrease as the order of the method
increases. However, due to the increase in overhead related to the solution of
linear systems of equations of higher dimension, as well as the fact that for all
examples considered here the function evaluations are relatively inexpensive,
this does not, in general, result in a decrease in computational time.

We were unable to integrate Examples 1, 3, and 5 for TOL = 10~8 by
lower order methods (p <4 for Example 1, p < 6 for Examples 3 and 5)
because of storage limitations. This illustrates the advantage of high order
methods over low order methods for high tolerances.

In the future we would like to apply the numerical methods discussed in
this paper to more complicated test problems. Unfortunately, it is difficult to
find such examples with known solutions in the literature on the subject.

All computations were carried out in double precision on the Amdahl
370/V-II computer at the University of Arkansas at Fayetteville.
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