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0. Introduction. An optimal stopping problem is considered. Let X,
X_z, ey Xy, Yy, Yy, ..., ¥y be independent copies of a known continuous
distributed random variable (r.v.). Suppose we observe the realization of the
Sequence ¢, = max(X,, ..., X,) only. We want to stop the observation at the
Moment when & exceeds the maximum of the unobservable sequence with
Maximal probability. A related problem has been studied by Szajowski [3].
MOreover, he considered some cases where the length of the observation is
nfinite,
~In this paper we allow the number of observations N to be an r.v.
independent of observations with a known distribution. We can look at this
generalization of the above problem as taking into consideration various
CXterior factors having an influence on the length of the observation.

Some continuous time version of this problem, where X,, Y, appear
according to the Poisson process and the decision about stopping must be
Made before a random moment, has been considered by Porosinski [1].

The organization of the present paper is as follows. In Section 1 the precise
formulation of the problem is given. It can be stated as the classical optimal
Stopping problem for some Markov chain (see, e.g., {2]). In Section 1 this
Teduction is also presented. Sections 2 and 3 contain the solutions (under
additional assumptions) of this problem when N is bounded or unbounded,
Tespectively. The optimal gain is found and the optimal stopping time is
Obtained. In Section 4 we discuss the assumptions of the theorems obtained. In
S‘:’Ction 5 the cases where N has the geometric distribution, the one-point
distribution and the uniform distribution are considered in detail.

1. Model and its reduction. Assume that

0 x > X4, ..., Y}, Y,, ... are independent identically distributed r.v.’s with
a continuous distribution function F, defined on the probability space
@, #,p).
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Let
¢, =max(X,,..., X)), n,=max(Y;,...,Y).

We observe the sequence £, only and our object is to stop the observation at
the moment n when the value of £, exceeds the unobservable value of 7. It is
assumed that the horizon N of the observation is an r.v. independent of X,
Y (n=1,2,..) with a known distribution

(2) PIN=n=p, n=01,..., Y p,=1.
n=0

At the moment n, if we observe the value of £,, we also know that N > n,
1.e., we know events from a o-field

Fo=0(&, ..., & Ig(N), ..o, I (N)),

where I, denotes the indicator function of the event A. Let J be the set of all
Markov moments with respect to the family (#,)% . Consider the following
problem:

(P) Find a stopping time 7*e€Z such that
P(t* < N,&s>ns)=supP(t < N, ¢, > n,).

€
Let
3) Z, =P <N, &>n,|F,), n=1,2,...
Thus

E(Z)=P(x <N, & >n).

Since F is a continuous function, F(X,) is uniformly distributed on [0, 1]
and the inequalities X, > Y, and F(X,) > F(Y,) are equivalent almost surely
(as.). Therefore, without loss of generality we may additionally assume that

4 X,Y (n=1,2,..) are uniformly distributed on [0, 1].
Using (4) we can write (3) in the form
Z 2{6: for n <N,
" |0 for n>N.
For B being a Borel subset of [0, 1] we have
(& +BAE, 1) if &eB,

P(n+lSN,«f,,+1EB|-g'—n)={n IBn(,, 11| if £,¢B

where
n=P(N2n+1|N2n=g,,./9, ¢, =PN=2n=7Y p,
i=n

and |-| stands for the Lebesgue measure. Therefore, the sequence § = (8,)i% 0>
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where
P 2{‘"’ £) if n<N,
" G, if n>N,
and 9 is a label for the final state, is a homogeneous Markov chain with respect to
{(F )= with the state space {0, 1,...} x[0,1] {0} and the transition function
n(x+|Bn(x,1]) if xeB,
7 |B ~(x, 1] if x¢B,
p(n,x;0)=P(N=n|N2n=p,/g,=1-m,,
and 9 is an absorbing state (we assume that ¢, =0 as. and #, = {@, Q}).

Thus we reduce Problem (P) to optimal stopping of the Markov chain
B with the reward function f, where

(% p(n,x;n+1,B)={

f©,0 =0,
fin,x)=x" forn=1,2,..., xe[0, 1],
f(@) =0.

The problem of optimal stopping of the Markov chain f§ with the reward
function f consists in calculating

U(X) = Sup EO,xf (T’ ét)

ted

(E9,,¢ denotes the expectation with respect to the distribution P, , given by (5),
X is the initial state of &) and in finding a stopping time t*€.J such that

EO,xf(T*’ ét*) = U(JC)
(see [2]).
2. Bounded N. Let £, = x. Put
Tf(n,x) = En,xf(n+ 19§n+ 1)9

©) 0f (n, x) = max{f (n, x), Tf (n, )},
UK(n’ x) = Sup En,xf(t1 ét)a
T K

Where 77X = {treJ: n< 1< K}.
In this section we assume that

(7)  there exists K such that P(N < K) =1, pg > 0.

To solve Problem (P) in this case, we use the following lemma (see [2],
Theorem 15, p. 108):

Lemma 1. Let ((n,&,))5-0 be a Markov chain with state space E and let
£{0,1,..., K} <xE->R

be a bounded non-negative function. Then the function vg(n, x) satisfies the
€quations

vg(n, x) = max{f (n, x), Tog(n, )} = Q5~"fln, »)
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and the moment

t} .= min{n <k < K: vglk, &)} =f(k, &)
is optimal in T X. The optimal gain is v(x) = vg(0, x) and the optimal stopping

time is 1§ = Txo-

For the solution of (P), first of all we show the following lemma:
Lemma 2. If n, > O, then the equation Tf (n, x) = f(n, x) has in the interval
(0, 1) the unique solution x; and
_ffm,x) for x = x3,
Qfn. %) = {Tf(n, x) for x < x?
(if m, =0, then Qf(n, x) =f(n, x) for each xe[0, 1]).
Proof. Let xe[0, 1] and let n be fixed. Taking into account (5) we have

Tf(n, x) =E,  f(n+1, f.,+1)=X"“7!x+I)’"” m,dy

n+‘l n+2 1
B 7t"(n+——2_x +n+2)'

The function g(n, x) = Tf (n, x)—f(n, x) is continuous on [0, 1], has at most
one extremum and g(n, 0)>0, gn,1)<0 if O0<xn,<1; if n,=1, then
g(n, 1) < 0 and the unique extremum of g(n, x) is the minimum; if 7, = 0, then
g(n, x) = 0 for x = 0 only. These properties imply that the unique root x? of
the equation g(n, x) = 0 exists on [0, 1). For x > x? the function g(n,x) is
non-positive. The lemma is proved.

Now, Lemmas 1 and 2 give us

THEOREM 1. Under the assumptions (1), (2), (4) and (7), if there exists
M < K such that

XL, ExY, bz .o.2xi=0
(x2 defined in Lemma 2), then a solution of Problem (P) eXists and is of the form
(8) = inf{n < K: &, = x,},

where xy _, = x%_,forn=0,1,..., K—M,and x,;_,forn=1,2, ..., M—1is
the unique root of the equation

9 l,l/,.M_n(M—-n, x)=xM"",
where

g i M+l n i n i
UM =, x) = S e 2

gM—n+1 M""n+1 -n 1 - . .
. (M_n+2xh"’4""ﬁ M- n-'?_i) 1= henis
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Iu+: MH+i nt 2 ot 2
(10) WM —n, x) = M (MR 2 M a2y
Gap-n M An+2i
gMJ‘L"M‘"*‘ M+lM‘ﬂ+1 M+n+t2iM-n+1 M+n+2i:w"+1)
+— M+ipg -n+1 —XM-pt1

Gr—n M+n+2iM—n+1

'« Iur; MH] j i
+ MTJ x;"\/lf!-r‘t+2]__‘xl\lﬂ‘r_lf'2./
_i=iMA"4A1+lgM—nM+n+2{i( M M l)
/
Iag—nsy (M—n+1 M-n+2 ______]_______ i,
T IM-n (M—n+2xM_"H+M—n+2 Ii>iynss

Where i), = 1 and
(1) iy, = min {iM—n+1 SIS K—M: y(M—n, xp ) 2 ’Cﬁlf}

If &, =0 as., then the optimal gain is

1 . :
(12)  Pa*< N, &.>n)= 9. (xi+ 1) 4 g aq, (M T2 — x3M* 20y

K-M
+ Y Ga XM X 2]
j=i +1
_ Proof. Lemmas 1 and 2 together with (5) and (7) give x, = x% = 0, and
Omitting simple transformations we obtain

xk~1 for x = xg_,,
gk K xe1_ k+ry, 9k K x+1 1 )
ve(K—1, x) = —— (XK = xf )+ —— Bty

for x <xg_,,
Where Xgx_; = X%_1. Assume by induction that we have obtained

Xe =X X =X X = x¢ or m< K—
K ?(S K—1 %—IS...S K-—m+1 K-m+1 fI' S M
and

o for xe[x,_,,1].
13y K— _ )X 0 .
x(K—n,x) ¢, (K—n,x) for xe[xyg—; Xg-i—1)» i=0,...,n—1,
Where

gg-.K+n—-2i

+gK—n+1(K—n+1 K-n+2 1 )

xKom e
ge_n, \K—n+2"%""1TK _pi2

P S Sl BN SIS
j:igK—-nK+n_2j\ !

K+n—2j
—XKk—-j-1 )
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forn=1,2,...,m—1 (here and in the sequel we adopt the convention that
b

Y, =0if b <a).

j=a

Now we calculate Tv (K—m, x) and then we obtain the form of
ve(K—m, x). If x> xg_, ,,, then using Lemma 2 we have

1
(15) TUK(K'—m, x)::xK‘m+1&_m_+lx+ij—m+ng—m+ldy
gK—m X gK_m

= gK—m+1K—m+l(xK—m+2
Ix-m K—m+2

—xEmtyy xkm= g, (K—m, x).

If xe[xg_;, xg_;—,) for i=0,1,...,m—2, then

XK-i-1

(16) Tog(K—m,x)=@(K—m+1,yng_,x+ | o@(K—m+1,y)ny_,dy

m—2 xXg-1-1 1
+ 2 | eK—m+t,yme_dy+ | YETing_,dy = o (K—m, x).
1=i+1 xg-; XK-m+1

We obtain the above equality calculating the integrals and making tedious but
simple transformations.

The function A(K—m, x) = Tox(K—m, x)—f(K—m, x) is continuous on
[0, 1] and has the following properties:

@ if x> xg_,.,, then h(K—m, x) = g(K—m, x) defined in Lemma 2;
thus

— )
vg(K—m, x) = f(K—m,x) for x = xg_p = Xk-m>
qom'—l(K—my x) for XEEXK_m+1,xK_m);

(b) if x <xg_,4; <Xxg_,. then A(K—m, x) > g(K—m, x) > 0; thus
UK(K—m, x) = %K(K—'m’ x)

because Toi(K—m, x) > Tf (K —m, x).
These properties imply that conditions (13) and (14) hold also for m. In this
way we prove (13) for n=1,..., K—-M.

Since Tog(M —1, x) = By 0p(M,&,,), Tog(M —1, x) takes the form (15)
and (16) for K—m = M —1. The function |

h(M—1, x) = Top(M—1, x)—f (M —1, x)

is continuous on [0, 1] and

(@) if x > x,,, then h(M —1, x) = g(M —1, x) < 0 because x%_, < Xy = X3

(b) if x < xp, then (M —1, x) > g(M —1,x) because vg(M,x) > f (M, x);

(©) h(M—1, x) has for x < x,, at most one extremum.

The properties (a), (b) and (c) yield that the equality A(M —1, x) = 0 has
on (0, 1) the unique solution x,,_, and x,,_, e(x}_,, x,,). Thus we can write
vg(M—1, x) in the form
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ve(M—1,x) =xM"1  for x = x,,_,,

D (M—1, x) = Im+i MHi (M*+1+2i_ M+1420) L (M1

. X M+i—1
Iu- 1 M+142i
+gM+iM__1 M+i, | ML+ 2inr o1 M+ 1 2ing -1y
gM 1 M+1—2iM_l M-t
g M+
'y O]l

jmime -1 IM - 1M+1+2

for xe[xM+1M pXy-0) L i=iy ;. and  xelxpip Xpai-g) A
i=i, ,+1,..., K—M, where x,,_, and i,,_, fulfil (9) and (11) for n =1,
Iespectively.

Now, suppose we have obtained

XM>Xpog > e > Xppomi1 > Xppomrts, 1 =iy Sy S -l Slpyopmey
for m < M, which fulfil (9) and (11), and for n=1, ..., m—1
(17) veM—n,x)=xM" for x2=xy_,

Gu+i MHi XM*n+2i_ yM+ns2i
M""" Y n ! x +x "
vg(M—n, x) = G ,,M+n+21( i)+ xm-

IMting, Mtiy_, (M4 2ingn_

xM¥ v xM+n+21M ,.)
Gv-n M+n+2iy_, M

+

+ i_zl Iu+; MHj (Y20 M nt2))
jmim-nIM-aM+n+2j
for xe[xir Xpgeioy) if i=ipg_p+1,..., K—M and for x€[Xy 10> Xpg—n)
i= lM n*
If we calculate Tb (M —n, x) analogously to (15) and (16), then making
indispensable simplifications we obtain
(18) Tog(M —m, x) = (M —m, x)

for X€[Xppais Xpgaizg) f i=ipymsr+lsecc, K—M and xe€[xppi ...
XM -msq) if i =iy 4+, Where , is given by (10).
The function h(M —m, x) = To (M —m, x)—f (M —m, x) is continuous on

0, 1] and
(@) if x> xy_,,4,, then

hM—m,x)=gM—m,x) <0

because x_, < XY —miy < Xp_pmay; thus o (M—m, x) =f(M—m,x) for
N ’>’ xM—m+l; ’
(b) if x < xp;_,+4, then

h(M—m, x) > g(M—m, x)
because vg(M—m+1,x)>f(M—m+1, x) for these x’s;
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(c) the function h(M —m, x) for x§_,, <X < X,,_,,., has at most one
extremum (if x <x§_,, then ovg(M—m,x)= To,(M—m,x) because
h(M —m, x) > g(M —m, x) = 0).

From (a), (b) and (c) it follows that the equation A(M —m, x) = 0 has in
(0, 1) exactly one solution X, .. Xps— € (XY —ms Xag—ms1)e 1T iy, Tulfils (11),
then x,,_,, is the root of the equation (9). Taking into account that x,, _,, fulfils
the appropriate equation we can transform v,(M —m, x) to the form (17).

In this manner we prove (17)forn =1, ..., M —1, so to complete proof of
Theorem 1 it suffices to show (12). Since we assume that &, = 0 a.s., the optimal
gain is

vk(0, 0) = Eq ovk(1, &,)

1 _ K-M
= E[Ql(x%‘f‘ 1)+9M+i1(x%4¥rflzu xiM*2in 4 Z gw,j(x%,“ﬁzf 2M+211)]
j=ii+1 ‘

because v.(0, 0) = TvK(O x)|x o and T, (0, x) has the same form as (18) in
view of the form of vg(1, x) given by (17). The theorem is proved.

3. Unbounded N. Now we assume that (7) is not fulfilled, i.e.. the number
of observations N is an unbounded r.v. In this case we use the following lemma
corresponding to Lemma 1 (cf. [2], p. 108):

LeMMA 3. Let ((n, ¢,))* ¢ be a homogeneous Markov chain with state space
E and let f: {0, 1, 2, ...} x E — R be a non-negative bounded function. Then the
Sfunction

v(n, x) = supE, flz.&) if &, =x,
w€dn
where 7, = {1 : 1 > n}, satisfies the equations
v(n, xy =max{f (n, x), To (n, x)},
v(n, x) = lim Q"f(n, x)

(the operators T and Q are given by (6)) and the stopping time
e = Inf{i > n: o(i, &) <fG, &)+e}, ¢>0,

is e-optimal in T, i.e.,

U(n, x) s (Tn &9 ét’}‘.,c)_*_g'
If 1§00 < © as., then 1§ is the optimal stopping time and v(x) = v(0, x).

Here we can also assume the additional condition as stated in Theorem

1 but for some class of distributions (2) (see Section 5) the solution of Problem
(P) can be formulated in a more simple form.

THEOREM 2. Under the assumptions (1), (2) and (4), if N is an unbounded r.v.
(ie. m,#0 for each n) and the sequence (x%)%, given by Lemma 2 is
non- decreasmg, then there exists a solution of Problem (P) which takes the form

(19) =inf{n: £, > y,},
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Where the sequence (Y )n=1 is non-decreasing,

lim y, = lim (m)'",

n—x n— €

and it satisfies the recurrence relation
n+1 1
(20) Ya= n,,(* '''' vari+ )

Moreover, y, can be obtained as the limit of the sequence of unique solutions z, .
k>1, of the equation

(1) : T, x) = x"
in (0, Zn+14-1)s Where z, o =1 for n=1 and

Guex BHK - i - (n+1 1
(22) T, x) = g—jkn—-l-'ﬂ(x +2k—2n1%{‘k—1)+75,.(n_+22ni%,k_1.+;1__*—_“2“

as k tends to infinity.
If £, =0 a.s., then the optimal gain is

(23) P(t* <N, &> ) = g,(1+)})/2.
Proof By Lemma 2 we have
x" for x > z, 4,
n, x) = 1 1
Qf( ) nn E_i—___xn+2+___m for x<Z"1,
n+2 n+2 ’

Where Z,1 = x2, s0 z, , satisfies (21) for k = 1. Since the sequence x;; does not
dGCrease, Znt S Zpty,n
Assume by induction that there exist unique solutions z, , of the equation
) for k=1,2,..., m—1, Tyt <Znz <o <Zym—1> Znk S Zysqx  fOI
=1,2,...,m—1 and each n, and

(24) k- _ x" for x > z,,,
Q' /(. x) {yk(n,, x) for x <z,

for k= 1,2, .. m—1, where 7.(n, x) is given by (22).
We calculate Q" f (n, x) taking into account the relation
23) 0" f(n. x) = max{Q"""fin, x), TQ" " f(n, x)}

=max ! f(n, x), TQ" ' f(n, x)}.

For x < Zn+1.m-y WE obtain

Zn+t,m-1

TO™ 'fin, x)=7,_(n+1, ) x+ | 7a-i(n+1, y)m,dy

X

1
+ j yn+1nndy

Zn+1,m-1

and calculating these integrals, taking into consideration that
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— nt1
Pm-1(M+1, Zyttm—1) = ZniLam—15

for x <z,,, ,-; We can write TQ™ 1f(n, x) = y,(n, x). The function
huin, ) = TQ™ " £ (n, x)~f(n, x)

is continuous on [0, 1] and has the following properties:
@if x>z, moy>2,m_, then

hu(n, x) = Tf(n, x)—f(n, x) = g(n, x) <0

(cf. Lemma 2);

(b) if x<z,,_,, then

h,(n, x) > h,_,(n,x)=0

because of (25) and Q" f(n, x) = Q" L f(n,x) > f(n,x) for x < Zym—15

(¢ for x<z,,y,-, the function h,(n, x) has at most one extremum.

From these properties the equation h,,(n, x) = 0 has the unique solution
Zymand z,,,  <2,,<Z,,.,. Hence z,, <z, , and the statement (24)

holds for each k.
The sequence (z, ,)x-, is increasing and bounded, so the limit

lim Zym = Vn
m-= o0

exists. Hence

x" for x> y,,
v(n, x) = lim Q™ f (n, x) = n+1 ., 1
m— oo n, n_.+_2y;:+1+m for x < Va-

Since the function v(n, x) is continuous at the point y,, (20) is fulfilled. The

relation (20) gives us
o8 1/n
. <y, < (@)'"
(n +2) Yo < ()

and, consequently,
lim y, = lim (z,)'/".
n—ao n— oo
From Lemma 3 we infer that the optimal Markov moment is of the form
(19). It is a stopping time because the chain ¢ attains the state 0 a.s. The
optimal gain is

o2, 1 ! T, »
v=10v(0,0) = jnl §y2 + = Jmody + _f yrody = —5(1 +y1).
o

3 "
The proof is completed.

4. Discussion of the assumption about (x2)2,. The examination of the
monotonicity of the sequence (x2)%, is difficult in the general case on account
of the form of the function g(n, x) (see Lemma 2). Even if we consider
a distribution as simple as the uniform one (ie., p, = 1/Kfori=1, ..., K), we
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fail to obtain analytic argumentation. For this distribution the numerical
solution x¢ of the equation g(n, x) = 0 gives '

x)<x9<..<xSy, x>y >...>x2=0

for a certain M < K. Thus this distribution fulfils the assumption of Theorem 1.
Nevertheless, for some distributions we may use the following lemma:

Lemma 4. For fixed n, if n,,, = n,, then x2 < x2,,.
Proof. Notice that we can write the function g(n+1, x) in the form
gn+1, x) = xg(n, x}+p(n, x),

where

n+2 J’zn+1 3o 1 . 1
Thed "ne2 "n+2 "lpe3

Since p’(n, x) is monotone and p'(n, 0) <0, p'(n, 1) > 0, the function p(n, x)
has a minimum on [0, 1] at the point a, when p'(n, a,) = 0. Since

p(n, x) = (TC,,

p@, a,) = (n,,,—a,n,)/(n+3)>0,
we have p(n, x}) > 0 for each xe[0, 1]. Thus
gin+1, x7) = x3g(n, x3)+ p(n, x) = p(n, x) > 0.

This inequality and the properties of g(n+ 1, x) yield x2, , > x. The lemma is
proved. _

The condition =, ,, > =, is not necessary for x2,, < x? to hoid. Let n be
fixed and x be calculated. Let x,,, = =, ,(a) be the value of =, , for which
Xg+y = x0 if @, = a. Fig. 1 shows for n = 1, 2, 3, 5, 10, 20 how =, ,(a) depends
on n, = a. For =, , exceeding this diagram we have x2,, > x2, so it is easy to
choose =,,, < =, such that x2,, > x? for small n.

LApY
1
9956, n=20
.9833, n=10
9420, n =5
8674, n=3
.7657, n=2
5085, n=1
0 (-

Fig. 1
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Note that if 7, is a fixed constant, then

. Taaq(m) . [n+1 1 n+2 O
n 1 Oy +3 0 Oyr+3 1,
lim - = 1m[1 2(xn) +n 5% |~ 3(x) +n 3

n—>o n n—w

SO nn+ l(ﬂn)Tnn'

Unfortunately, the problem of analytic investigation of (x, )%, when
(m, e, decreases (this case contains distributions considered more often, e.g.,
the uniform distribution and the Poisson one) is still open. Nevertheless,
Lemma 4 allows us to solve Problem (P) when the distribution given by (2) is
a geometric one (cf. Example 1 below).

5. Examples.

EXAMPLE 1. The geometric distribution.

Let the distribution (2) be a geometric one with the parameter p, i.e.,
P.=pq",p+q=1,p>0,n=0,1,... Since g, = ¢q", we have n, = g = const
and the assumption of Lemma 4 is fulfilled for each n. We can write Theorem
2 for this important case in the following form:

THEOREM 3. If the length of observation N has the geometric distribution
with parameter p, then the solution of Problem (P) exists and takes the form

™ =inf{n: £, = y,},
where the sequence (y,),;-, is increasing, y,11 and it satisfies the relation
N n+1 ., 1
Yn = q(n+2y"+1+n+2)'
The value of y, can be calculated as the limit

yo = limz,,,

k- x
where z,, is the unique root of the equation
n+k n n n+1 n . 1 n
q"m(x +2k—2nﬁf‘k—1)+¢1(m2n1§,k—1+;1‘2‘)~X =0
(zno =1, n=1). The optimal gain is equal to q(1+y3)/2.
EXAMPLE 2. The one-point distribution.
If PIN=K)=1, then n,=1 for n <K and n, =0 for n > K. From

Lemma 4 we have x} < x§ <... < x%_,, and naturally x% = 0. Thus in this
case we can use Theorem 1. The solution has already been known (cf. [3]).

EXAMPLE 3. The uniform distribution.
Let p,=P(N=n)=1/K for n=1,2,..., K. We have
n,=(K-mfK—n+1), n=1,2,....K.
In this case we present the numerical solution only. Table 1 gives x;,
Xy, ---> Xk (Written row-wise) and the optimal gain v, for some values of K.
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TABLE 1. Solution of Problem (P) for the uniform distribution with parameter K (')

K Xys Xgy evey Xg_g Vg
2 .1683 5140
3 2411 3626 .5290
4 2899 4349 4793 .5420
5 3260 4828 5395 5561 5531
6 3546 .5181 .5837 6120 6108 5629
7 3774 .5440 6132 6464 6619 6519 5712
8 3962 5643 6352 6709 6886 6989 6841 5785
9 4124 5811 6530 6905 7110 7208 7276

7101 5850

10 4263 .5951 6673 7058 7278 7395 7457

7506 7316 5909
11 4387 6074 6798 7191 424 7564 7653

7714 7694 7498 5962
12 4496 6179 6901 7297 7536 .7685 7783

7843 7890 7853 7653 6011
13 4594 6271 6991 7388 7632 7788 7893

.7960 8002 8037 7987 7787 6055
14 4683 6355 7072 7469 7716 71879 7985

8059 8104 8132 8162 8104 7905 6097
15 4764 6430 7143 7541 7790 7957 8070

8150 8205 8242 8274 8270 - .8206 8009 6135
16 4838 6497 7206 7602 7852 8021 8137

8222 .8280 8320 8349 8377 8364 8296

8102 6170
17 4906 6557 7263 7657 7908 8077 8196

8283 8346 8389 8419 8441 8466 8446

8376 8186 6203
18 4970 6614 71316 7709 7959 8130 8251

8338 8403 8450 8484 8507 8525 8544

8520 8448 8261 ' 6235
19 5029 6667 7365 7756  .8005  .8177  .8300

8390 8459, 8509 8546 8574 8595 8614

8614 8386 8512 8330 6265
20 .5084 6714 7408 7797 8046 8218 8342

8433 8503 8556 8595 8624 8646 8663

8681 8676 8645 8571 8393 6292

. (') The optimal strategy; accept ¢, if £, > x,, otherwise reject £, and await &, , , (in all cases
& = 0).
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