MATHEMATICAL PROBLEMS IN COMPUTATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 21|
PWN - POLISH SCIENTIFIC PUBLISHERS
WARSAW 1988

FINITE AND INFINITE COMPUTATIONS
OF LOGIC PROGRAMS

M. A. NAIT ABDALLAH

Department of Computer Science, University of Western Oniario,
London, Ontario, Canada

In this paper. a tutorial introduction to the theory of finite and infinite
computations of logic programs is given. The basic known results on finite
computations and least fixpoint semantics are first outlined. The infinite
computations are then introduced. We end up with some results on infinitary
tree semantics of logic programs.

0. Introduction

In this paper we give a tutorial introduction to finite and infinite computa-
tions of logic programs. No prerequisite in logic programming is assumed.
We are here more interested in the articulations of the ideas involved in logic
programming computations, than in the strictly linear exposition of the
theory. We shall introduce the concepts and definitions as we go, and as they
happen to be needed for our exposition.

This paper is organized as follows. Section I gives an example of finite
derivation of a logic program, with some of the intuition behind logic
programming. Section Il contains formal definitions of some fundamental
notions: logic programs, Herbrand universe and Herbrand base, the subset
transformation T. Section III describes the least fixpoint semantics of a logic
program and its computational characterization through successful deriva-
tions. A canonical partition of the Herbrand base in the finitary case is given
in Section 1V. In Section V we give two examples of infinite logic program
computations. This leads to the metric topology introduced on the Herbrand
base and universe in Section VI. Section VII is devoted to the infinitary-tree
semantics of logic programs described by the least fixpoint, the least closed
fixpoint, and the greatest fixpoint of the transformation T. A canonical
partition of the complete Herbrand base is given in Section VIIL

300 M. A. NAIT ABDALLAH
I. An example of finite derivation

Before going into the technical details, we first give an informal example of a
finite derivation of a logic program and how it works. To make things
simpler, we shall start in medias res in order to justify the formal definitions
given later on. We consider the following logic program:

ExampLE 1. 1. sum (0, x, x) «.
2. sum(s(x), y, s(2)) <sum(x, y, 2).
This program defines the sum of natural numbers. The first line says

that, for every x, the sum of 0 and x is equal to x. The second line is the
induction step of this definition. It says that if the sum of x and y is z, then

the sum of the successor of x and y is equal to the successor of z. The
general format of each one of these lines is that of a definite clause. A definite
clause is a quantifier-free first-order formula of the form

A—B &..&B,, m>0,

where A, B,, ..., B, are all atomic formulae. This will be made more precise
in the sequel. The general meaning of a definite clause such as the above is
the following: If B, and B, and ... and B,, are all true, then A is also true.
Notice that the right-hand side (i.e. the B-part) of the clause may be empty,
ie, may be an empty conjunction. Since an empty conjuction amounts to
rrue, the clause in that case means that the A-part (i.e. the left-hand side) is
true without any condition. This is the case in the first line of our sum
program. Note finally that each definite clause is implicitly universally
quantified. Now let us consider the following query asked from our sum
program:

3. «sum(s?(0), u, v).

Here again we use the clausal format. In this case the left-hand side of
the clause is empty. Since for general clauses the left-hand side is a
disjunction, this amounts to saying that here the left-hand side amounts to
false, i.e., using the implicit universal quantification, we are saying that For
any u, for any v, the fact that v is equal to the sum of s*(0) and u implies false,
or, equivalently, there &xist no u and no v such that v is the sum of s*(0) and
u. A derivation or refutation of this query is going to combine this statement
with the information contained in the logic program defining sum in order to
obtain a contradiction; this is the basic computation mechanism of logic
programs. This is done step by step by using the logical rule of Modus
Tollens. Modus Tollens works as follows: If ~ A, and B implies A, then ~ B.
In clausal form this may be said as follows: from « A, and A < B, derive
+«~ B. Of course since here we are using object variables (for example
variables ¥ and v in line number 3), an important preliminary step, before
applying Modus Tollens, will be to make the A-part of « A, and the A-part
of A « B coincide exactly, if this is not already the case. This is done by

COMPUTATIONS OF LOGIC PROGRAMS 301

renaming variables and/or binding them in some suitable way. This
important intermediary step is called unification [13]. More precisely, we
have in the present case:

1. sum (0, x, x) «,

2. sum (s(x), y, s(2)) < sum(x, y, 2),

3. «sum(s?(0), u, v),

4. «sum(s(0), u, v,), v=s(,) 2, 3, MT,
5. «sum(0, u, vy), vy =s(vy) 3,4 MT,
6. O, u=v,=x 1,5MT.

The last line of this derivation has the form “«", ie. according to our
conventions, states that “true implies false”, which is a contradiction. Such a
clause is called the empty clause and is denoted by []. Now the result of this
computation is obtained by “gluing” together the bindings used in the
derivation, and by restricting them to the sole variables occurring in the
initial query. We obtain here the substitution 3 = (v, s?(u)). This substitu-
tion is called the answer substitution. Indeed, the u’s and v’s which are
‘solutions of the equation s2(0)+u = v are exactly those for which v is the
second successor of u. Thus we have solved the original query.

Notice that the above answer substitution makes sense only because our
derivation ended in the empty clause [J. In particular, our derivation must
be finite. .

In this section we have given a general idea of how logic programs work.
In the next section we shall give formal definitions for such programs, and
study their theory.

I1. Basic definitions

We now give formal definitions for some of the concepts used informally in
the previous section.

. A logic program is a finite set of definite clauses. A definite clause is an
expression of the form

A—B,&...&B,, m>=0,

where A4, B, ..., B, are atoms. An arom is an expression of the form

p(ty, ..., t,), where p is a k-ary relation symbol, and t¢,, ..., f, are terms. A
term is either a variable, a constant, or an expression of the form f(t,, ..., t,),
where f is an n-ary function symbol, and ¢,, ..., t, are terms.

An example of a logic program was given in the previous section; the
clauses of that program were numbered.

1. sum(0, x, x) «,
2. sum(s(x), y, s(z)) < sum(x, y, z).
A goal clause, or query, is an expression of- the form

B&.. &B,, m>=0,

302 M. A. NAIT ABDALLAH

where B, ..., B,, are atoms. An example of goal clause was line number 3
of the previous example:

3. «sum(s?(0), u, v).

Let P be a logic program. Let V be an infinite set of variables
containing the variables of P. Let F = Fou F{ u... be the set of function
symbols occurring in P, where f € F belongs to F; if and only if f is of arity i.
Let R = Ry U R, u... be the set of relation symbols occurring in P. We may
notice that both F and R are finite, because P is finite. In the previous
example F = FyuU F,, with Fy = {0} and F, = {s], and R = R; = {sum].

We define the Herbrand universe H, of the logic program P as being the
set of all variable-free terms that can be constructed from the symbols of P.
Thus H, is the free F-algebra on the generating set (. In the sum example,
the Herbrand base H, is given by the set of all codings of natural numbers:

H,=[s(0): ie N} = {0, 5(0), s%(0), ...}.

We also define the Herbrand base H, of the logic program P as being
the set of all atoms with relation symbols from R and entries from H,. Thus
H, is exactly the set of all variable-free atoms that can be constructed with
symbols from P. In the sum example, the Herbrand base consists of all the
correct and incorrect “sums” of natural numbers:

H, = {sum(a, b, ¢): a,b,ceH,)}.

Finally, following van Emden and Kowalski [4], we define the following
one-step modus ponens transformation T defined on the power set of the
Herbrand base:

T. P(H,) = P(H,),
S—149: A9+~ B, 3&...&B,, 3 is a variable-free
instance of a clause of P, and B, 3, ..., B, 9€S}.

Thus intuitively, what T does is apply, to all the (correct and incorrect)
claims contained in the set of atoms S, a one-step modus ponens using the
definite clauses of the program. The set T(S) is exactly what can be deduced

from S in one step, by using the rules which are in P. Notice that this
definition uses substitutions. A substitution § is a mapping:

8: V—H,(V)

which is equal almost everywhere to the identity. Thus a substitution 9§ may
be represented by a finite list of pairs:

9 = {(xl, f1>, LRRE] <xm tn>}

such that 9(x;) =t; corresponding to the points where 3 is not the identity.
We define the result t3 of applying the substitution 9 to the term ¢ as
follows.

COMPUTATIONS OF LOGIC PROGRAMS 303

(1) x3 =3(x) if xeV is a varnable.

(i) ¢c3 =c if ceF, is a constant.

m) f(ry,..,t09=/f(,9,...,,9 if feF, is a [unction symbol and
ty,...,t, are terms.

This is generalized to atoms by taking:

rty, ..., t)3=r(t;9, ..., 1,9

if reR, is a relation symbol and ¢,, ..., t, are terms.

II1. The least fixpoint semantics of a logic program
and its computational characterization

We have the following result [4]:

THeorReM 3.1 (van Emden, Kowalski). The transformation T is Scott-
continuous, i.e., for any ascending sequence of subsets (S;), we have T(U)S;)

— U TS). '

Proof. The transformation T is clearly monotone increasing, thus
U T(S) = T(US;). The inclusion in the other direction is obtained by remark-

ing that each definite clause has only finitely many atoms as premisses.
(Thus what we really have here is a compactness theorem.)

Since T is continuous, by the Knaster-Tarski least fixpoint theorem, it
has a least fixpoint given by

ifp(T) = U(T"(D)).

We shall take this least fixpoint as the mathematical definition of the meaning
of the logic program P. This corresponds to the usual least fixpoint semantics
approach advocated by Scott and Strachey [14]. In the sum example, we
have

T"(@) = !sum(s*(0), u, s*(w)): k<n, ueH,},
Ilp(T) = ‘sum(s"(0), u, s"(u)): ueH,, neN!.

We now link this definition of the meaning of a logic program P first to
Herbrand models, and then to computations. More precisely, we are going to
show that fp(T) i1s the smallest Herbrand model of P, and also give a
computational characterization of this set.

We define Herbrand interpretations as being subsets of the Herbrand
base. (Intuitively speaking, the atoms of a given subset are exactly those
which are made true under the corresponding interpretation.) A Herbrand
model of a logic program P is a interpretation I = H, of P such that the
following condition holds: for any clause A « B, &...& B,, of the program
P, for any variable-free instance 49 « B, 3&...& B,, 9 of that clause, where

304 M. A. NAIT ABDALLAH

3 is some substitution, whenever B, 3, ..., B, 9 are all true under the
interpretation I, then A3 is also true under the interpretation I.
THeoREM 3.2 (van Emden, Kowalski). lfp(T) is the smallest Herbrand

model of P. .

Thus by Gd6del’'s completeness theorem for first-order predicate calculus,
the meaning Ifp(T) of a logic program P is exactly the set of all variable-free
atoms which are logic consequences of P.

The next question to handle is whether there is a computational
characterization of this least Herbrand model. This is done through the use
of SLD-derivations (called here derivations).

We shall say that a substitution 9 is a unifier for terms (resp. atoms) ¢,
and ¢, if and only if t; 3 =, 3. A substitution 3 is a most general unifier
(mgu) for t, and ¢, if and only if 9 is a unifier for t, and ¢t,, and Vo t,0
=t,0=3y o= 9y. Robinson [13] gives a terminating algorithm which
computes a most general unifier for any pair of unifiable terms.

We define a derivation step from a goal g as a triple § = (4, r, $) such
that:

(i) A is an occurrence of an atom in g,

(i) r is a rule variant of some clause of a logic program P, with no
variables in common with g, A <« B, &...& B,

(iii) 9 is a most general unifier of the atom (g | 1) of occurrence A in g,
and the left-hand side A of rule variant r.

The yield g’ = 4(g) of performing the derivation step é on the goal g is
obtained from g by replacing the atom of occurrence 4 in g by
B,9&...& B, 3, and applying the substitution 3 to the rest of the goal g.

A finite derivation from g is defined as a finite sequence

4 =go, 01, d1s s Ons Gn
such that:
() go =g,
(i1) &; is a derivation step (A, r;, &> from t,_; for every i=1,...,n.
(iii) t; = 6;(t;—,) for every i=1, ..., n.
The goal g = g, will be called the root of the derivation.
A finite derivation is successful iff it reaches the empty clause.

We now have the following characterization theorem for the least
Herbrand model lfp(7) [1].

THEOREM 3.3 (Apt, van Emden).
fp(T) = {ac H,: a is the root of some successful derivation}.

At this stage the mathematical meaning of a logic program P has been
characterized computationally, i.e., in terms of successful derivations. The
question now is to make this characterization effective (i.e. constructive): how
do we get these successful derivations? This question is answered by the

COMPUTATIONS OF LOGIC PROGRAMS 305

following results, due to Apt and van Emden [1]. It basically says that every
SLD-tree is OK. In other words, if we have a variable-free successful atom,
then by picking up any SLD-tree rooted at a, if we are patient enough, by
searching this SLD-tree we shall find a path in that tree which is a successful
derivation from a. But first we need to define SLD-trees.

An SLD search procedure [1] is a procedure that constructs derivations
and finds a successful derivation whenever one exists. To each SLD search
procedure, given a goal g, we associate an SLD-tree rooted at g defined as
follows: this tree is obtained by coalescing all initial segments of all deriva-
tions rooted at g that can be generated by using the search procedure.

THeOREM 3.4 (Apt, van Emden). If aelfp(T), then every SLD-tree rooted
at a contains a successful derivation.

The above results characterize the elements of the least fixpoint of T in
terms of finite successful derivations. There are also in the Herbrand base a
class of elements which are not successful, but which can be characterized in
a finitary manner; these are the finitely failed elements. An element ae H, is
finitely failed iff it is the root of some finite SLD-tree which contains no
successful derivation. We have the following result [1]:

THeOREM 3.5 (Apt, van Emden). FF(P) = lae H,: a¢ (\T"(H,)}, where
FF (P) designates the set of finitely failed elements of H,.

IV. Canonical partition of the Herbrand base

The results given in the previous section yield the following canonical
partition of the Herbrand base.

finitely failed atoms
H,~N{T'(H,): g N}

“infinite” atoms

results of successful derivations
p(T) = U T*(OQ): neN)

Table 1. Canonical partition of the Herbrand base H,

Notice that (}{T9(H,): qe N} is generally not the greatest fixpoint of T.
For example for the program P = {M(0) — N(x); N(s(x)) — N(x)} we have
N{T!(Hy): ge N} = {M(0)} and gfp(T) = @.

V. Some examples of infinite computations

We have given above an outline of the properties of ﬁm‘telz computations
of logic programs. The only “missing link” left was the “looping” part

20 - Banach Center 21

306 M. A. NAIT ABDALLAH

H,—Ilfp(T) u FF(P) of the Herbrand base, and some uncertainty concerning
the greatest fixpoint of the transformation T)

What we are going to see now is that there are some logic program
computations which are meaningful, at least intuitively, but -which are
ignored by the least fixpoint theory described above. The practical import-
ance of these infinite computations will lead us into a revision of our semantic
framework. The new tools we shall introduce will be another topology and a
greatest fixpoint theorem (on the model-theoretic side), and the notion of fair
derivation (on the computational side). The essential part of the least fixpoint
semantics will be preserved by this revision, however.

Before going into the details of this revision, we shall first give two
examples of such infinite computations. The first example will concern the
Fibonacci numbers, and the second example the running square of an infinite
stream of numbers.

V.1. Fibonacci numbers. Let us consider the infinite sequence F = (F,)
of Fibonacci numbers: Fo,=F, =1, and F,,, = F,,,+F,. The infinite se-
quence F may be coded as an infinite list:

F = FO.FI 'Fz'F}'...
which, by definition, satisfies the fixpoint equation
0-0-F+1-F=F

if addition of infinite lists is defined componentwise, and if 0-0- F (resp. 1- F)
designates the infinite list F where the two atoms O and O (resp. the single
atom 1) have been inserted in front of the list F.

Now the solution to the above fixpoint equation may be computed by
using the f[ollowing data-flow program:

- prefix 0.0

- prefix 0

This data-flow program may be coded into the following logic program:
ExaMPLE 2.
1. sum{0, x, x) «,
2. sum(s(x), y, $(z)) «sum(x, y, z),
3. lIsum(a-x, b-y, c-z) «sum(a, b, ¢) & lsum(x, y, 2),
together with tie goal clause:
4. «lsum(0-0-f, 1-f, 1)

COMPUTATIONS OF LOGIC PROGRAMS 307

Lines 1 and 2 of this program have already occurred above, they define
the sum operation over natural numbers. Line 3 extends this sum operation,
componentwise, to infinite lists. (To get the extension to finite lists, the clause
Isum (nil, nil, nil) - must be added.) Finally, the query in line 4 simply
negates the existence of a solution to the fixpoint equation satisfied by the
infinite list of Fibonacci numbers.

Now Il this logic program is executed, the rcader may check that
although the empty clause is never reached, it produces successive approxi-
mations to the hst of all Fibonacci numbers: mil, 1-ml, 1-1-ml, 1-1-2-n1l,
etc. This may be visualized on the data-flow program as follows. Once the
data circulating along this middle wire has been initialized to nil, and the
data flow program started executing, an observer placed on the middle
“wire” of this data-flow program may see these successive approximations
flow by as time goes.

Thus we have here an example of an infinite logic program computation
which intuitively makes sense, and computes a significant object (the Fibo-
nacci numbers). It is, however, completely ignored by the least fixpoint
semantics of the logic program 1-4 above. Indeed, for the program in
Example 2, Ifp(7T) contains only the *“graph” of the sum operation, and
completely ignores infinite lists. Therefore, as far as the lcast fixpoint
semantics 1s concerned, the programs in Examples 1 and 2 have exactly the
same meaning.

V.2. Running square root of an infinite stream of numbers. This example
is borrowed from [17]. Let (x;) be an infinite input sequence of numbers, and
suppose that we want to compute the infinite output sequence (y;) defined as
follows: y; is the square root of the average ol the squares of the input
numbers xq, X,, ..., X; seen so far. This problem may be solved by using a
data-flow program as follows. We first defined the three elementary boxes:

x; —»—— isquare ——sx?

y; lsqrt —»(y,)”2
fﬁ——*
i
g lavg » (171} Eaj
=
Y
~7
(1/:)j§a,-

delayed by one unit of time

308 M. A. NAIT ABDALLAH

These elementary boxes may be wired together in a sequential manner
in order to get the circuit coding the data-flow program we are after.

The associated logic program is as follows:

ExampLE 3.

1. Isquare(u-x, v-y) « square(u, v)& Isquare(x, y),

2. Isqrt(u-x, v-y) « sqrt(u, v)& Isqrt(x, y),

3. lavg (i, w'y, u-v-x) « newavg (i, u, v, w& lavg (s(i), y, v-x) where
newavg (i, u, v, w)<=>v =u+(w—u)/(i+1),

4. result (x, y) « Isquare (x, zo-z) & lavg (1, z4-z, 2, u) & Isqrt (z4 - u,).

We do not give details here as how squares (square) and square roots
(sgrt) are computed. As the reader may check, the attempt to solve the goal
clause < result (x, y), where x is a given infinite input sequence, will result in
computing the “running” square root y of its input x, i.c., the nth number of
the output will be the square root of the average of the squares of the first n
input numbers x, ..., x,.

Again, this infinite computations is completely invisible from the least
fixpoint semantics point of view. Indeed, the least fixpoint in this case is
equal to the least fixpoint of the subset of the program consisting only of the
definitions of the predicates “sqrt”, “square” and “newavg”.

As a conclusion to this section, we see that there is an inadequacy
between the mathematical definition of the meaning of a logic program,
given by the least fixpoint of T, and the existence of these infinite logic
program computations which, although useful, are completely ignored by this
mathematical definition. Thus in order to get a better description of this
computational reality, the theoretical definition of the meaning of a logic
program has to be changed. This will be done in the next sections.

V1. Basic definitions: metric completion of H, and H,

A close examination of the situation described in the last two examples
shows that in both cases we are computing with infinite objects (namely
infinite lists), which by definition do not belong to the respective Herbrand
universes. Thus it seems that we do not have enough elements in our
Herbrand universes, and these infinite objects just “slip” through the “gaps”
“present in the universes. This situation is similar to the one we have with
rational numbers: we cannot solve in Q the equation x? = 2 because there is
a “gap” where the square root of 2 “should have been”. This explains what
we are going to do now: “fill in” these “gaps” by using some “glue”. This is
done by using the metric completion technique which allows us to go from
the rational numbers to the real numbers, and allows us to solve equations
like x2 = 2. We recall that the metric completion of a given metric space X is

COMPUTATIONS OF LOGIC PROGRAMS 309

just the set of all equivalence classes of Cauchy sequences of elements of X,
where two Cauchy sequences are said to be equivalenr iff the sequence
obtained by merging them is also Cauchy [3].

To this end we define the following distance between trees:

0 if t =1,
d(t,r’)={ _ l

277, where p=infl{n: a,(t) # a,(t")}, otherwise,

where each element of H, (H,) is identified with the (expression) tree it
defines. It can be shown that this distance is an ultrametric [8]. We now
define H, (resp. H,) as being the metric completion of H, (resp. H,). It turns
out that, because the logic program P is finite, both H, and H, are compact.
This is due to the fact that there are only finitely many open balls of any
given radius, because of the definition of the distance in terms of tree depth,
and of the finiteness of the sets F and R.

The subset transformation T defined in Section 3 of this paper may be
canonically extended to a mapping T defined on the complete Herbrand
base:

T. P(H,) = P(H,),

S ~>43: A3 <B;38&...&B, 3 is a variable-free instance
of clause of P and B, 9, ..., B, 9€S}.

This extended mapping T is also Scott-continuous, i.e, for any ascend-
ing sequence of subsets (S;), we have T(US)= U T(S); thls is because the

reasons for Scott-continuity have not changed under the metric completion
process. Thus T has a least fixpoint Ifp(T) = | T"(D).

Another property of T is that it maps closed subsets onto closed subsets.
Also, if we take C(H,) = S € H,: S # @ closed}, supplied with the Haus-
dorff distance, then as far as T is concerned, C(H,) is a metric space with a
“hole”, ie, T(C(H,) = C(H,)u |®}. An illustration of this situation is
given by the following example. Let S, = {p(s"(0),s"*'(0))!, and let
P = |p(s(x), s(x)) = p(x, x)}. Then, for every n, T(S,)=0, but T(limS$,)

= T(ip(s®, s°)}) = 1p(s”, 5*)].

Thus here we have a drastic departure from the properties of recursive
program schemes [2], even though the theory may look the same. The deep
reason for this situation is given by the fact that rewriting, used in recursive
program schemes, is a continuous operation, whereas unification, used in
logic programming, is not a continuous operation [11]. This is due to the
fact that the wunifiability function which takes two terms as arguments and
answers true if they are unifiable, and false otherwise, is discontinuous if {true,
false} is supplied with the discrete topology. The unifiability function, how-

310 M. A. NAIT ABDALLAH

ever, is continuous if \true, false! is considered as a Sierpiniski space equipped -
with the lower Scott topology [11]. The Sierpinski space is defined as the
two-element ordered set |true, false} with false < true. Its lower Scott topolo-
gy is the topology whose open sets are @, {false], and {true, false}. As a side-
remark, the Sierpinski space 1s the simplest (nontrivial) continuous lattice, and
every co:.:nuous lattice can be obtained from it by retractions and cartesian
products [15].

VIL. Infinitary-tree semantics of logic programs,
and their computational characterization

In the infinitary case, three fixpoints of T may be canonically ‘associated with
a logic program P: the least fixpoint, the least closed fixpoint, and the
greatest fixpoint. Each one of them defined a possible meaning of the
program. We shall link each such definition of the meaning of a logic
program P first to Herbrand models, and then to computations. More
precisely, we are going to show that in each case the fixpoint of T is some
specific Herbrand model, which can be characterized computationally.

VII.1. Least fixpoint semantics. As we have noted earlier, the transforma-
tion T is Scott-continuous, thus by the Knaster-Tarski fixpoint theorem, it
has (JT"(®) as a least fixpoint. In the sum example we have Up(T)

n
= lfp(T) v sum(0, s*, s)}.

Derivations may be generalized to the infinitary case in a straightfor-
ward manner. The only difficulty comes frora the existence and construction
of most general unifiers. Indeed, Robinson’s algorithm applies only to finitary
terms. A terminating unification algorithm for rational terms (ie., terms with
only finitely many distinct subterms) is given in [6], [7]. The determination
of the largest class (or maximal classes) of infinitary terms for which there
exists a terminating unification algorithm is still an open problem.

Tueorem 7.1. fp(T) = laeH,: a is the root of some successful deriva-
tion)
‘ -

VIL.2. Least closed fixpoint semantics. When restricted to closed subsets
of H,, the transformation T is generally not Scott-continuous, because the
union of an increasing chain of closed sets may or may not be closed.
However, T is monotone, and the Tarski theorem implies it has a least closed
fixpoint we denote by Icfp(T). Let us define continuous Herbrand interpreta-
tions as being closed subsets of H,; then we have the following result {11]:

THeoREM 7.2 (Nait Abdallah). Icfp(T) is the smailest continuous Herbrand
mode! of P.

COMPUTATIONS OF LOGIC PROGRAMS 311

A computational characterization of the least closed fixpoint of T is
given by means of infinitary proofs using the following inference rule we call

the Cauchy rule [11]:

VnPF a,, (a, Cauchy sequence
P+ lima, '

where a, stands for any Cauchy sequence and lima, 1s its metric limit. We

designate by P the set of definite clause of a logic program P augmented by
the Cauchy rule.

Tueorem 7.3 (Nait Abdallah). Icfp(T) = \aeH,: a is P-provable].

In the sum example, we have Icfp(T) = lfp(T)u \sum(s®, u, s“),
sum(u, s“, s°): ueH,!.

VIL.3. Greatest fixpoint semantics. We may remark that each of the two
infinitary-term semantics above has failed to give us the meaning of the
infinite computations we examined in Section V of this paper. Thus the
model-theoretic approach has not, at this point of our exposition, given us
the meaning of these computations. We are now going back to the computa-
tional approach. In fact, we are going to see that each one of the infinite
computations shown above is adequately described by the greatest fixpoint
semantics.

An infinite derivation 4 is an infinite sequence

t;)’ 51: tl’ 625 tZ’ --wam tm

where each , is a goal, 9, = {r;, 4, 9, 1s a derivation step, and ¢,
= 0;,,(1;) for every ie N. To each infinite derivation 4 from an atom t, we
associate a computed subset (included in the complete Herbrand base H,):

(4] = O {[4,00: jeN} = N ({19, 95...9,]: je N},

where 4|; designates the finite derivation obtained from 4 by taking only the
first j steps, and the notation [t"], where t’ is a tree, stands for the set of all
variable-free instance of ¢'. Since H, is compact, this set is never empty.

Finally, we say that a derivation 4 from ¢ is k-fair, for ke N, if and only
if intuitively each atom occurring in the root of the derivation is eventually
replaced by some step of the derivation, and for each atom v introduced by
d, the subderivation of 4 starting from v is (k — 1)-fair. Every derivation is 0-
fair. Successful derivations are trivially fair.

THeoreMm 7.4 (van Emden, Nait Abdallah [5]). For every atom t and for
every ke N, we have

[(J~T*(H,) = [[4()): 4 k-fair derivation from t).

312 M. A. NAIT ABDALLAH

This theorem implies the following two results. These two results
basically characterize the greatest fixpoint of T in terms of fair derivations.

Tueorem 7.5 [10). N\ {T"(H,): neN) = laeH,: a is the root of a fair
derivation) .

TueorREM 7.6 (Greatest fixpoint theorem; Tiuryn, Nait Abdallah [9],
[16). N\!T"(H,): neN! is the greatest fixpoint of T.

This last statement looks very much like the least fixpoint theorem we
had in the finitary case, where (J {T"(H,): ne N} was the least fixpoint of T.
This seems to indicate that there is a hidden Scott-continuity property.
Indeed, this is the case [9], [16]:

Tueorem 7.7 (Tiuryn, Nait Abdallah). For any sequence (S,) of closed
subsets, we have T(NS,) = NT(S,.

IX. Canonical partition of the complete Herbrand base

The above results may be summarized by the following diagram [10], [12]:

finitely failed atoms
H,— (N \T'(Hy): geN;

results of fair derivations
gip(T) = NI T(H,): qeN)

atoms having an (infinitary) P-proof
least closed fixpoint of T Icfp(T)

results of successful derivations
p(N =y (T"(@): neN}

Table 2. Canonical partition of the complete Herbrand base H,

References

[17 K. R. Apt and M. H. van Emden, Contributions to the theory of logic programming, J.
Assoc. Comput. Mach. 29 (3) (1982), 811--862.

[2] A. Arnold and M. Nivat, The metric space of infinite trees. Algebraic and topological
properties, Fund. Inform. 3 (4} (1980), 445-476.

[3] N. Bourbaki, General Topology, Addison-Wesley, 1966.

[4] M. H. van Emden and R. Kowalski, The semantics of predicate logic as a programming
language, J. Assoc. Comput. Mach. 23 (4} (1976), 733-743.

[5] M. H. van Emden and M. A. Nait Abdallah, Top-down semantics of fair derivations in
logic programs, J. Logic Programming 1 (1985), 67-75.

[6] Hopcroft and Karp, An algorithm for testing the equivalence of finite automata, TR 71-
114, CS Department, Cornell University (1971).

COMPUTATIONS OF LOGIC PROGRAMS 313

[7]1 G. Huet, Résolution d'équations dans des languages dordre 1,2, ..., w, Thése d’Etat,
Université de Paris VII, 1976.

[8] J. Mycielski and W. Taylor, A compactification of the algebra of terms, Algebra
Universalis 6 (1976), 159-163.

[] M. A. Nait Abdallah, Metric interpretation and greatest fixpoint semantics of logic
programs, University ol Waterloo Report CS-82-19 (September 1983, revised November
1983); shorter version published in C. R. Acad. Sci. Paris, Ser. 1, 300, 145-147.

[10] —, On the interpretation of infinite computations in logic programming, Lecture Notes in
Comput. Sci. 172, Springer, 1984, 358-370.

[11] —, On some topological properties of logic programs, Lecture Notes in Comput Sci. 199,
Springer, 1985, 310-319.

[12) —, Fair derivations in logic programming: operational and greatest fixpoint semantics
Fund. Inform. 10 (1987), 247-308.

{13] J. A. Robinson, A machine-oriented logic based on the resolution principle, J. Assoc.
Comput. Mach. 12 (1) (1965), 23-41.

[14] D. S. Scott, Outline of a mathematical theory of computation, 4th Annual Princeton
Conlerence on Information Sciences and Systems, 1970, 169-176.

[15] —, Continuous lattices, Lecture Notes in Math. 274, Springer, 1972, 97-136.

(16] J. Tiuryn, Unpublished letter to M. H. van Emden, 1979.

[17] W. Wadge and E. Ashcroft, LUCID, the dataflow programming language, Academic
Press, 1985.

Presented to the semester
Mathematical Problems in Computation Theory
September 16-December 14, 1985

