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The well-known problem of Cook [2] and Karp [5] as to whether P = NP
is usually formulated in terms of relations (predicates). P usually denotes the
set of relations decidable in deterministic polynomial time and NP denotes
the set of relations decidable in nondeterministic polynomial time. In this
paper we consider the analogous problem for functions. Suppose PF denotes
the set of all functions computable in deterministic polynomial time and
NPF denotes the set of all functions computable in nondeterministic poly-
nomial time. One might expect that the PF = NPF problem is just a restate-
ment of the P = NP problem, i.e, that the two problems are equivalent. This
may in fact actually be the case. However, that would imply that the P = NP
and P = NPncoNP problems are equivalent. This is because in this paper
we prove that the PF = NPF problem is equivalent to the P = NP ncoNP
problem.
THeorem 1. PF = NPF if and only if P= NP ncoNP.

The classes PF and NPF have very natural, computationally reasonable
definitions, invariant under different computational models, Turing machines,
random access machines, etc. An vague definition of NPF can be found in
paper [12]. However, there the distinction between function and relation is
not clearly made. It seems to us important to distinguish these two concepts.
As an example of the difficulties which could arise, by blurning this distinc-

2x )
tion, consider the functions y =2, y=x!l and y = |- } If we could obtain
X

values f(x) for these three functions, y = f(x), in polynomial time, then a
constant ¢, would exist such that |f(x)| <|x|° holds for all x, where |x|
denotes the (binary) length of x. Of course this is not the case. So these
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functions should not belong to PF. However, considered as relations, their
graphs belong to P. One can decide in polynomial time, given x and y
whether y = f(x) because when both x and y are input, the time is a
polynomial function of |x| and |y (or {xj+|¥).

To give exact definitions for the classes PF and NPF it is convenient to
use the notion of register machine. One has to be somewhat careful because
the ordinary (Minsky [10]) definition of Register Machine (Program Ma-
chine) is not polynomial time equivalent to the Turing Machine. However
(see paper [4]), one can obtain polynomial time equivalence by adding two
new command, (41) and (42) to the usual (Minsky [10]) list. This same
approach Jones—Matijasevi¢ [4] can also be used to give an exact register
machine definition of NPF. We need only append the nondeterministic
branch command ((51)) on page 827). Of course, the value of a nonde-
terministic computation is often ambiguous. For computability of functions it
is therefore necessary to append some type of requirement on uniqueness of
output. There are several ways to do this. One simple and computationally
very natural way to do it is to limit the class of register machines to those
which have at most one (and hence exactly one) accepting computation on
each input. The important thing is that all inputs x are accepted and
produce the same unique value y.(!)

Thus PF is the class of (total, single valued) functions computable in
polynomial time and NPF is the class of (total, single valued) functions
computable in nondeterministic polynomial time. From the definitions given
here it should be possible to prove that PF is the same as the class & of
Cobham [1] and the same as the class IT of Frumkin [3]. One can show
that the class NPF is equal to the class NII r NI, where NIT and NIIC are
the (nondeterministic) function classes of Frumkin [3].

To further clarify the definitions we will give examples of functions in
PF and NPF. It will be seen that many natural, well-known number
theoretic functions are examples.

Functions known to be in PF

x+y,  xy, x=y, Layl, [,

ged(x, y), lem(x,y), rem(x,y), rem(x’,z), rem (‘[i], 2),

(f), d(yl i)’ lxl! 2|x" 2|xl|y|7 x&y'
y

-

(') It is also possible to define the class NPF using Turing machines with oracles. NPF is
exactly the class of functions computed in polynomial time by Turing machines with sets from
NP Nnco NP in the oracle.
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Here x| and | x | denote the floor and celling of x. rem(x, y) denotes
the remainder after x is divided by y. The function d(y, i) = rem(l_y/Z‘J, 2)
denotes the ith binary digit of y. The function |x| = [_log2 (x+ l)—| ts the length of

N\

x. The symbol & denotes logical and. (f) denotes the Jacoby symbol.

Functions known to be in NPF

& (x) = The number of integers < x and relatively prime to x .

7(x}) = The number of positive divisors of x.

a(x) = The sum of the divisors of x.

o(x) = The smallest prime divisor of x.

xp(x) = The characteristic function of the set of primes.

A(d) =1 or 0 according as x?—dy? = —1 has a solution or not.

The first three examples are the classical number theoretic functions. For
example, the first function mentioned above is Euler’s ¢-function. A proof
that these six functions belong to NPF would use the theorem of Pratt [11]
that the set of primes belongs to NP nco NP. The last example requires also
work of Lagarias [6] who proved that the set {d: x?—dy?= —1 has a
solution} belongs to NP ncoNP. In this last example, one can of course also
use the ordinary Pell equation, x> —dy? = 1. However, if this is done then the
function A(d) would be in PF. As it stands, at present it is not known
whether any of the given six functions lies in PF. These are open problems.
A positive solution to any one of the first five would have the interesting
consequence that the set of primes belongs to P (also an open question).

Examples of relations in P

XS,V, c=XY, {x;32x=22},

x|y, z=x%  |x:3y,z x=y},

;= [)’J’ 7z = x! The set of Mersenne primes.
X

Some other known results which help to clarify the relationship between
P and NP are the following. First one can mention the result of Karp [5]: 4
predicate A belongs to NP if and only if there exists a predicate B in P such
that for all natural numbers x

(1) xe A< y)[lyl < |xI° and B(x, y)].

Another, newer characterization of sets in NP is the following: Let A be
any number theoretic predicate (relation). Then Ae NP if and only if there
exist functions F and G, constructible from + (addition), - (multiplication) and
& (logical and), and such that for all natural numbers x

(2) JCEA‘::’(H}"I, RS ] yn)[lyxl slxlc and F(x1 ,V1, ey yn)=G(xs yl’ cery yn)]
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For a proof of this see paper [4]. A similar theorem is proved in [8].
(An important remaining open problem in this subject is whether the logical
and operation, &, can be deleted from (2))

As might be expected, the relationships between P, PF, NP and NPF
are closely connected with the relationship between a function and its graph.
So we consider next the graph. In this paper we shall denote the graph of the
function f by G(f). Note that the graph, G(f) = {(x, »): y=f(x)} is a
relation. We shall also consider the relation H(f) = {(x, y);: ¥y < f(x)! and
the relation D(f) = {(x, i): rem(l_f(x)/2‘_|, 2) = 1}. Note that for the rela-
tion D(f) we have (x, i)e D(f) if and only if the ith binary digit of f(x) is 1.

First we take up the case where the function fis a characteristic function
(0-1 valued function). In this paper the characteristic function of a set A4 is
denoted by x,. The definition is that x,(x) =1 or 0 according as xe 4 or
not. (3 ¢)[1f(x) < |x|] is shorthand for @ ¢, d)(Vx)[|f (x)| < d|x].

Lemma 1. y,e PF A€ P.

LemMMma 2. y,e NPF < Ae NP ncoNP.

Lemma 3. fe PF=G(f)e P& ) (x) < Ix].

LeMMA 4. fe NPF < G(f)eNP&E )[If (%) < Ixf].

Proof of 4. The direction = is trivial. For < suppose G(f)e NP and
| f (%)} <|x|. Let M be a nondeterministic machine which in nondeterministic
polynomial time decides whether (x, y)e G(f). Let M’ be a machine which,
on input x, chooses y, with |y| <|[x|° and uses M to check whether
(x, e G(f) and, if so, gives output y. Then M’ nondeterministically compu-
tes f. Hence fe NPF.

LEMMA 5. For |f(x) <IxI, G(f)e NP<=<D(f)e NP ncoNP.

Proof. In the direction =, we may suppose that we have been given a
nondeterministic machine M, which accepts (x, y) when y = f(x). From M,
it is easy to construct a nondeterministic machine M accepting (x, i) when
d(y, i) =1 and a nondeterministic machine M’ accepting (x, i) when d(y, i)
= 0. Conversely, for the <= direction, given such machines M and M’ one
can construct M.

LemMMA 6. fe PF<D(f)e P&Qc)[|Sf (x) < [xI].

Proof. The direction = is trivial. For the <= direction, suppose D(f)e P.
Then the characteristic function of D(f) is in PF, i.e., the function d’(x, i)
= the ith binary digit of f(x). If i is sufficiently large, say, i = |x|° > | f (x)],
then d'(x, i) = 0. So, for any x, the value of f(x) can be obtained [rom d'(x, i)
by

[x|€

fl=3 d(x, 2.
i=0

Hence the function f = PF.
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Lemma 7. feNPF < D(f)eNP ncoNP& Qo) [|f (¥ < IxI].

Proof. By Lemma 4 and Lemma 5.
THEOREM 1. PF = NPF <P = NPncoNP.

Proof. In the direction =, use Lemmas 1 and 2. In the direction <, use
Lemmas 6 and 7.

Remark. In Lemma 5 we can replace D(f) by H(f). (The proofl then
becomes easier. The = direction is trivial. The direction < uses only
(x, VeG(f)=(x, y)eH(f) & (x, y+1)¢ H(f).) In Lemma 6 one can also
replace D(f) by H(f). However then the proof becomes more difficult.

(Proof. <= Fix x and put h(y) = x(x, y), where y here denotes the
characteristic function of H(f). Let n=|x|. Then |f(x) < n, so f(x) <2"
Define a function g, by bounded recursion: Put g(1) =0 and put g(i+1)
=g +h{g()+2""%)2""". Then f(x) =g(n+1). This proves <. (The direc-
tion = is again trivial.)

From the above remark it follows also that we can replace D(f) by
H(f) in Lemma 7. Hence the entire proof of Theorem 1 can be carried out
-using only H(f) and not mentioning D(f) at all. H(f) is very useful when
considering the relation between NPF and M. A. Frumkin’s classes NIT and
NIIc. One can prove that when f is a polynomially bounded function, i.e.,
|f(x)| <d|x|° then feNII<H(f)e NP and also feNII‘<H(f)ecoNP.
Hence Lemma 7 implies NPF = NII n NII",

We next define a function f which possesses a certain type of complete-
ness property.

DEFINITION.
minz[z? = a(modm)] if a is a quadratic residue modm,
fla, m) = e : .
m if @ is a quadratic nonresidue mod m.

LEmMMA 8. For the above function f we have H(f)ecoNP.
Proof. Note that f can be defined by bounded minimalization:

f(a, m) = minz[(m—z)rem(z?—a, m) = 0].
Hence
f(a,m <y<e@z<y)l(m—z)rem(z*—a, m) = 0].
Also
fla,m)<ys=[m<y]lv@z)[z <y Az?=a(modm)].

THEOREM 2. For the above function f, we have fe PF <P = NP.

Proof. This follows from the theorem of Adleman and Manders (8], [9]
to the effect that the problem (3z)[z < ¢ A z? = a(mod m)] is NP-complete.
For m# 0, ¢ <m, this probiem is equivalent to f(a, m) <c¢ and hence
reducible to the problem of evaluating f.



282 J. P. JONES

The function f is complete in the sense that if f € PF, then P = NP.
Conversely, if P = NP, then f€ePF by Lemma 8 and Lemma 6 (with D(f)
replaced by H (f)).

THEOREM 3. For the above function f, if f e NPF, then
P=NP<P=NPncoNP.

Proof. By Theorems 1 and 2.

Remark. It is an open problem whether the function f belongs to NPF.
Evidently f belongs to M. A. Frumkin’s class NII°. However, it is not known
whether the function f belongs to Frumkin’s class NII. The closely related
function h(a, m) = m—=f(a, m) apparently belongs NIT for it is easily
obtained by bounded maximilization, h(a, m) = maxu [u-rem((m—u)*—a, m)
= 0]. This function h can also replace f in Theorems 2 and 3. Hence it would
be interesting to know if Frumkin’s classes NII and NII° are closed under
composition.
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