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1. Motivation

The classification problem 1s always fundamental in every branch of
mathematics. For singularities, one would like to classify germs ol real and
complex analytic functions in n variables.

Let .«/, denote the set of all real analytic germs g: (R", 0) — (R, 0). Each
g €an be represented by its Taylor expansion, which has no constant term.

When should two eclements of .o/, be declared equivalent? Each
equivalence class should be as large as possible, making the classification
simpler; each class should also be as small as possible, so that equivalent
germs are “very much similar”. Therefore the task is to search for a nice and
natural, God-given, equivalence relation in ./, an ideal compromise between
these contradictory demands. This is called the Equisingularity Problem.

Consider, as an illustrative example, the Whitney family

W(x, y) = xy(x—y)(x—ty), (x,y.0eR.

- Let us restrict the parameter ¢ to the interval (1, o), so that W, i1s a non-

degenerate form for each t; in particular, W, = 0 consists of four distinct
lines.

Intuitively, W, and W,.,.t # t’, are very much simlar; yet, there does not
exist a local C'-diffeomorphism £ such that W.oh = W,. (This can be proved
using a simple Linear Algebra argument on dh)

This phenomenon had cast serious doubt on the existence of an ideal
equivalence relation on .¢/,.

Let us not be discouraged. There 1s, at least, a God-given way to
construct a vector field, ¢, which generates a one-parameter family of
“homeomorphisms trivializing the Whitney family. Consider any point
P(x, v, 1) off the t-axis. Let %p denote the level surface of W, through P, and
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d : . o o
— denote the unit vector in the t-direction. Take the orthogonal projection

~

ot

¢
of a to the tangent plane of ¥ at P, and then adjust its length so that the

t-component equals 1. The resulting vector is ©(P). An easy calculation leads
to
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where W stands for W,(x, v). Along the t-axis, define

-

- 0
5(0,0. 1) = 2.

The flow of ¢ trivializes W,(x, y) topologically (cf. [K;], [K,], [K;]), but, of
course, not diffeomorphically.

However, one should not be satisfied with a more topological
trivialization. Since v is God-given, it must offer something stronger.

A closer examination of the components of v reveals their resemblance
to the familiar example in Calculus:

Po(x, v _
Jn =" r0.0-0. 0p)>7,
which is continuous but not C'.

Now, let B: (.#, C)— (R?, 0) be the blowing-up of R? at 0, where .# is
the Mobius hand, C its centre circle. Two charts are needed to cover .#. In
one chart, f 1s expressed as B(X, ¥V)= (XY, Y).

Hence

YO(X,Y)
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is analytic. The situation is similar in the other chart. We have thus made an
important observation: fof is analytic on .#!

Returning to the Whitney family, one finds that d(8 xid)~'(#) is an
analytic vector fleld on .# xR, tangent to C xR. Hence the topological
trivialization generated by v lifts to an analytic isomorphism, leaving C x R
invariant. A detailed calculation is carried out in [K,]. This result leads
naturally to the notion of blow-analytic equivalence of singularities defined
in the following section.

2. Blow-analytic equisingularities

The notion of blowing-up can be slightly generalized. For instance, one
ought to consider a succession of them. A proper, surjective holomorphic
map o*: X* —» X* of complex spaces is called a modification if o* is a
biholomorphism outside o*~'(N), N a thin subset of X* ([W]). By a
modification of real spaécs we shall mean a (proper surjective) real analytic
map o: X — X whose complexification ¢* is a modification.

Given g,, g, € &,, we say they are blow-analytically equivalent if

(1) there is a local homeomorphism ¢, g, 0¢ =g,;

(i) there exist two (real) modifications pu,, p,, and an analytic
isomorphism & such that the following diagram is commutative:

(’1'#;‘(0))L..(R".0) g]

"1"" 8| (R,0)
%

(#0310 —E2—n (R 0)

(Thus, ¢ is a “collapsed” isomorphism.)

A succession of blowing-ups is of course a modification. The converse is
almost true: Chow's lemma asserts that if u: .# — X is a modification, then
there exists a modification y': .#' — .# such that pyoy' is equivalent to a
succession of blowing-ups ([H]).

We are now ready to generalize what we have proved for the Whitney
family. Consider a parametrized family of functions

F(x,1): R"xR*—~ R

16 — Banach Center 1. 20



242 T-C. KUO

where F is analytic in (x, t), F(0, t) =0. For fixed t, write F,(x) = F(x, 1):
(R", 0) —~ (R, 0).

THEOREM. Suppose for each t, F, admits Oe R" as an isolated singularity.
Then there exists a finite filtration of the parameter space R

R = PO s PV 5 5 phs pith _ g

by subanalytic subsets P® with the following properties:

(i) dim PY > dim Pt D, PO Pt gre smooth;

(ii) for t, t' in a same connected component of P — PtV F and F, are
blow-analytically equivalent.

The proof i1s given 1n [K,].

Coniecture. The hypothesis that 0 be an isolated singularity is
superfluous.

3. Algebraic geometry

Consider a real variety ¥V, = f~'(0) defined by an analytic function f: R"

— R. Given a point acV;, let T,(f) denote the Taylor expansion of f
centered at a. Thus T,(f)e «,.

The blow-analytic equivalence relation in &/, induces an equivalence

relation ~, on ¥, as follows. Define a ~ ;4 if and only if T,(f) and T, (f)
are blow-analytically equivalent.

WEeAK coNJECTURE. ¥, admits a (locally finite) stratification, of which
each stratum is subanalytic and is contained in a single equivalence class of

~

j‘-
This conjecture is closely related to the conjecture in Section 2.

STRONG CONJECTURE. Each equivalence class of ~, is an analytic
manifold; these manifolds form a stratification of V, which satisfies the (W)-
regularity condition ([V]).

More details can be found in [K,].

In an attempt to prove the conjecture of the last section, we have come
across a problem on desingularization of a holomorphic map, which is
formulated as the following conjecture.

Let o: .#,— .#, be a given proper surjective holomorphic map of
complex manifolds.

Conecture. There exists blowing-ups B .# — .4, i=1,2, with
possibly singular centers, whose exceptional divisors are smooth and forming
normal crossing families, and a holomorphic map &: .#, — .#, such that
B,0% =oof,, and & maps each canonical stratum of .#, submersively
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onto a canonical stratum of .#,. (The canonical stratification of .4, is
provided by the normal crossing family of exceptional divisors.)

Notice that when .#, = C, this reduces to Hironaka’s desingularization
theorem.

4. Complex singularities

We may call two complex germs g,, g.<€ 00, blow-analytically equivalent if
(1) there 1s a local homeomorphism ¢ of (C", 0) such that g,0¢ =g, ;
(it) there exist real modifications pu,, p, of C" (as real spaces), and a
real analytic isomorphism @ such that ¢ou, = u,od.
Using this definition, the theorem of Section 2 remains true for complex
singularities. The proof is the same.

However, if one requires ¢ to be a biholomorphism, then the problem of

moduli can not be avoided, there would be no locally finite classification in
G,
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