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1. Introduction

Management of uncertainty and incompleteness of information is the import-
ant issue in a number of fields of computer science such as expert
systems, knowledge representation, pattern recognition, natural language
processing. Techniques and theories about incomplete information have
undergone rapid development in the last years, and several models has been
proposed for representation of incomplete knowledge. In the present paper
we deal with those application domains in which information about objects
under consideration is provided by means of some of their properties, for
example functions may be characterized by their values for arguments from
some intervals, human beings by age and profession, programs by some
preconditions and postconditions, relational structures by formulas which are
true in these structures.

The natural consequence of the fact that we are given a restricted
information about properties of objects is that in general we are not able to
distinguish objects as individual entities, but rather we grasp them as classes.
In each class there are objects which cannot be distinguished from some of
the others by means of the given properties. As a consequence we are also
not able to characterize precisely sets of objects, since membership of an
object in a set is defined modulo the admitted properties of objects. It
follows that we cannot define a sharp boundary between a set dand its
complement, and hence the set is determined with some tolerance. There are
several formal approaches to incompleteness of this kind, for example
Narin’yani [3], Pawlak [9], Dubois and Prade [1], Rasiowa and Skowron
[11], Orlowska [5].

Our claim is that to reason about incompletely defined sets of objects
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we need a special logic in which approximations of the sets with respect to
different sets of properties could be expressed. In the present paper we
introduce a modification of the ordinary Kripke structures (Kripke [2]). We
consider structures in which a universe consists of objects, and accessibility
relations are determined by sets of parameters interpreted as properties of
objects. Next, we introduce a logic with modal operators defined with respect
to relative accessibility relations. The logic is intended to provide a means to
reason about objects which are defined modulo some properties.

The classical Kripke structures are systems of the form K = (S, R),
where S 1s a nonempty set whose elements are called states, and R is a
binary relation in set S. Kripke structures serve as semantical structures for
propositional modal languages with operations ¢ > and [ ] interpreted as
possibility and necessity, respectively. Given a structure K, we define mean-
ing function m which assigns sets of states to propositional variables used in
the language. Set m(p) = S is interpreted as the set of those states in which
variable p represents a true sentence. Any system of the form M = (S, R, m)
is called a model. Next, we define satisfiability of the formulas in a model.
Satisfiability of atomic formulas, that is propositional variables, and satisfia-
bility of formulas with modal operators of possibility and necessity is defined
as follows. We say that a formula F is satisfied by state s in a model M
(M, ssat F) whenever the following conditions are satisfied:

M, s satp iff sem(p),
M, s sat { YF ifl there is teS such that (s, t)e R and M, t satF,
M, s sat[ JF iff for all teS if (s, t)eR then M, satF.

This means that according to information provided by the model
formula F is possible in such a state for which there is a successor state (with
respect to accessibility given in M) in which F is satisfied. Similarly, formula
F is necessary in such a state whose all the successor states satisfy F. We say
that a formula F is true in a model M whenever for all s€S we have M, s
sat F. A formula F is valid whenever F is true in all models.

In the next section we show that to reason about incomplete knowledge
it is reasonable to consider accessibility relations to be relative, or in other
words, to be dependent on a set of parameters. These parameters are a
formal counterpart of some properties of states which are associated by
means of the accessibility relation.

2. Relative accessibility relations

In many recent aplications of modal logics states and accessibility relations
from a semantical structure and modal operators of the language receive
special interpretation. In logic S5 accessibility is assumed to be an equivalen-
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ce relation. It provides a classification of states into a family of pairwise
disjoint subsets (equivalence classes) of set ST such that in one class there are
those states which cannot be distinguished one from the others. In this
connection the natural question is with respect to what properties or what
characteristic features some states are considered to be equivalent and some
other not equivalent. They are not absolutely equivalent, but rather relatively
equivalent, that is equivalent according to some criteria. Thus it seems to be
reasonable to consider an accessibility relation to be determined by a set of
parameters which are a formal counterpart of properties with respect to
which equivalence was established.

In logic B accessibility is a similarity relation. An intuitive interpretation of
a similarity class is that it consists of those states which are similar.
However, in this case the clasification of states is not necessarily a partition,
the classes may not be disjoint. And again in this case, if we say that some
states are similar, we have in mind similarity with respect to some f[eatures.
Thus we should consider accessibility to be relative, to be determined by some
parameters corresponding to properties with respect to which similarity was
defined.

In logic S4 accessibility is an ordering relation. In this case it is natural
to ask what are criteria of ordering or with respect to what properties states
are ordered. Thus the concept of relative accessibility seems to be natural
also for this logic.

In epistemic logic modal operator of necessity is interpreted as knowledge
operator. It seems to be reasonable to consider knowledge to be restricted
to some aspects of reality and to define a family of relative accessibility
relations reflecting these various aspects. Parameters used to define relative
accessibility will be a formal counterpart of some background information.

In deontic logic modal operator of possibility is interpreted as permis-
sion operator. It seems natural to ask what is permitted with respect to some
laws or rules, not just absolutely permitted. Thus we should introduce some
parameters reflecting dependence of the act of permission on a set of laws.
These parameters will enable us to discuss relationships between what is
permitted with respect to different sets of laws.

In logics of information systems (Orlowska and Pawlak [6], [7], Orlow-
ska [4]) states are interpreted as objects about which we would like to store
information and accessibility relations are interpreted as indiscernibility
relations determined by attributes admitted in the information system. Let
OB be a set of objects and let AT be a set of attributes. For a subset A < AT
we define a binary relation ind(A4) in set OB as follows:

(s, t)eind (A) iff s and ¢ are the same with respect to attributes from A.

Relations ind(A) are equivalences or similarity relations. Given set
X < OB, the lower (upper) aproximation ind (A4) X (ind(A4) X) of set X with
respect to indiscernibility relation ind(4) is defined as follows:



332 E. ORLOWSKA

ind (A) X is the union of those equivalence (similarity) classes of ind(A)
which are included in X,

ind(4) X is the union of those equivalence (similarity) classes of ind(A)
which have an element in common with X.

Modal operators in logics of information systems are intended to
correspond to operations of lower and upper approximation, respectively:

(ind(A)) F is satisfied by an object s iff s belongs to the upper approxima-
tion (with respect to ind(A)) of the set of objects satisfying formula F,

[ind (A4)] F is satisfied by an object s iff s belongs to the lower approxi-
mation (with respect to ind(A)) of the set of objects satisfying formula F.

In these logics accessibility relations are determined by sets of attributes,
which play the role of parameters reflecting relativity of these relations.

Our proposal is to consider logics with semantics defined by means of
Kripke structures with relative accessibility relations, that is relations which
- depend on sets of parameters. Let OB be a nonempty set of objects, PAR be
a nonempty set whose elements are called parameters, and REL be a
nonempty set whose elements are called types of relations (e.g. equivalence,
similarity). We consider structures of the form:

K = (0B, PAR, REL, {R(P)}gaeL.P=par):

Each ReREL is a function R: P(PAR)— P(OB xOB). For P = PAR
relation R(P) is a binary relation in set OB. We assume that these relations
satisfy the following conditions:

(R1) R(®) = 0B x0B,
(R2) R(PuU Q) = R(P)nR(Q).

The first condition says that empty set of parameters does not enable us
to distinguish any objects. In other words, if we have no criteria for
distinguishing objects, then every object is associated with all the others. The
second axiom says that if we have more parameters, then less objects will be
associated with respect to these parameters, the relation will be smaller. If
R(P) is an equivalence (similarity) relation, then if we take into account more
parameters, then in general less objects will be equivalent (similar). If R(P) is
an ordering relation, then if an object is comparable with some other’ object
with respect to some parameters, then they will be not necessarily comparab-
le if we take into account more parameters.

The straightforward consequences of these axioms are the following.

ProrosiTiON 2.1. (a) P = Q implies R(Q) = R(P),

(b) R(P)UR(Q) < R(PNQ).

ExaMpLE 2.1. Let PAR be a tamily of subsets of a nonempty set OB, and
for any set P < PAR let R(P) be defined as follows:

(s, e R(P) iff for all pe P we have sep iff tep.
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ExampLE 2.2. Let OB and PAR be nonempty families of subsets of a
nonempty set and let R(P) for P = PAR be defined as follows:

(s, )eR(P) iff for all pe P we have s =p iff 1 = p.

The relations from these examples are relativised versions of extensional
identities considered in Weingartner [12]. Objects associated by means of
these relations can be considered to be identical with respect to properties
from set P.

ExaMpLE 2.3. Let OB be a set of objects for which attributes length and
weigth are meaningful, and assume that for an object s its length is in an
interval ! and its weight is in an interval w. This means that we do not
known exactly the values of length and weigth for the objects, we know them
with some tolerance determined by the boundaries of the given intervals. Let

= {length, weigth]. We define relation R(P) as follows:

(s, ) eR(P) Ml Inl' #@ and wnw # Q.

Relation R(P) is a similarity relation. The objects associated by means
of this relation can be considered to be similar with respect to length and
weight.

ExaMPLE 24. Let OB be a set of human beings, let P consists of an
attribute age, and let R(age) be the following ordering relation

(s, e R(age) iff s is younger than 1.

It results from the given axioms that the following holds.

ProrosiTioN 2.2. For each Re REL the algebra ({R(P)}pepar, M) with the
operation of intersection is a lower semilattice where R(PAR) is the zero
element.

In the next section we discuss how properties of sets of parameters
influence properties of accessibility relations.

3. Properties of sets of parameters

Given a structure K = (ST, PAR, REL, {R(P)) g.reLp- par) WE say that a set
P = PAR is R-reducible iff there is its ‘proper subset Q & P such that R(P)
= R(Q). This means that we can drop some parameters from an R-reducible
set of parameters without violating the structure of associations provided by
relation R(P) in set ST. A set P < PAR is R-irreducible if it is not R-
reducible. By 2.1(a) we easily obtain the following characterization of irredu-
cible sets.

ProposiTioN 3.1. The following conditions are equivalent:
(a) A set P is R-irreducible,
(b) For any Q € P we have R(P) € R(Q).

The following fact is the immediate consequence of the above defini-
tions.
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ProrosiTioN 3.2. (a) If a set P is R-reducible, then every its superset is R-
reducible,

(b) If a set P is R-irreducible, then every its subset is R-irreducible.

ProrosiTioN 3.3. If PAR is R-reducible, then for any P, Q = PAR we
have R(P) = R(Q) implies Q < P.

Proof. Let R(P) = R(Q). Then R(PuQ)=R(P)nR{Q)=R(P). If we
have Pu Q # P, then Pu Q would be R-reducible. But PAR is R-irreducible
and so is every its subset, a contradiction. Thus we have PuQ = P, and
hence Q = P.

ProrosiTioN 3.4. If PAR is R-irreducible, then R(Pn Q) is the least
relation of type R including R(P) and R(Q).

Proof. By 2.1(a) we have R(P) = R(Pn@Q) and R(Q) = R(Pn Q). Let
S = PAR be a set of parameters such that R(P) = R(S) and R(Q) = R(S). By
3.3 we have S =P and S =Q. Hence S < PnQ and“R(P Q) = R(S).

ProposiTION 3.5. The following conditions are equivalent:

(a) A set P is R-reducible,

(b) There is Q &€ P such that R(P—Q) = R(P).

We say that a set P is reducible whenever there is Q ¢ P such that for
all Re REL we have R(P) = R(Q). A set P is irreducible if it is not reducible.

ProrosiTioN 3.6. If a set P is reducible, then P is R-reducible for all
ReREL.

ProrosiTioN 3.7. If PAR is irreducible, then for all R eREL the algebra
({R(P)}ppar» U, M), where R(P)UR(Q) = R(PnQ), R(P)rR{Q) = R(PL Q),
is a lattice.

4. RAL-relative accessibility logic

In the present section we define a logic with modal operators which are
determined by relative accessibility relations. For indiscernibility relations the
operators are intended to correspond to operations of lower and upper
approximation. However, they will be defined in a more general way, namely
we will use the notion of neighbourhood instead of the notions of equival-
ence or similarity class. Let R be a binary relation in a set ST. We define the
set preg(s) of predecessors of an entity s and the set sucg(s) of its successors
with respect to relation R:

preg(s) = 1teST: {t, s)e R}, sucg(s) = {reST: (s, NeR}.
The union of these sets is referred to as a neighbourhood of s:

ng(s) = preg(s) w sucg(s).
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Let R and S be binary relations in set ST. In the following we show how
the sets of predecessors and successors with respect to complement —R,
converse R™!, union Ru S, intersection R NS, and composition RS depend
on the sets of predecessors and successors with respect to R and S.

PropPosITION 4.1 (a) pre_g(s) = — preg(s), (b) preg,s(s) = preg(s) w pres(s),
(c) preg..s(s) = preg(s) N pres(s), (d) pre, (s} = sucg(s).

Similarly, sets of successors of Boolean compositions of relations and the
converse relation can be defined by means of sets of successors of their
components according to the laws obtained [rom the above equalities by
switching successors and predecessors.

ProrosimioNn 4.2 (a) pregs(s) = U ipreg(¢): tepres(s)}, (b) sucgs(s)
= ] isucg(?): t esucg(s)).

ProposiTioN 4.3. If R is an equivalence (similarity) relation, then for all

s€ ST we have preg(s) = sucg(s) and ng(s) is an equivalence (similarity) class of
R.

In the case of ordering relations set ng(s) may be interpreted as the set
of those elements which are Close to s with respect to relation R.

The language of logic RAL will be defined in two steps. First, we define
an auxiliary set of parameter expressions, and second, the set of formulas.
The modal operators in the language will be defined in terms of neighbour-
hoods. Parameter expressions are built f[rom the symbols taken from the
following disjoint sets:

VARPAR a set of variables representing sets of parameters,

\—, u, N} the set of set-theoretical operations.

Set EPAR of expressions representing sets of parameters is the least set
satisfying the following conditions:

VARPAR = EPAR,

If P, QcEPAR, then — P, PUuQ, PnQeEPAR.

Formulas of logic RAL are built from the symbols taken from the
following pairwise disjoint sets:

VARPROP a set of propositional variables,

VARREL a set of variables representing relational types,

7, v, A, —] the set of classical propositional operations,

t< >, [ ]} the set of modal operations.

Set FOR of [ormulas is the least set satisfying the following conditions:

VARPROP = FOR,

If F, GeFOR, then "F,Fv G, F AG, F—-GeFOR.

If Re VARREL, PcEPAR, FeFOR, then (R(P))F, [R(P)Y]FeFOR.

By a relational type we mean a characteristics of a binary relation, e.g.
equivalence, similarity, ordering are relational types.

Semantics of the language is defined by means of notions of model and
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satisfiability of the formulas in a model. By model we mean any structure
M = (ST, PAR, REL, {R(P)}|s_parrerer» M) where ST is a nonempty set
whose elements are called states; PAR is a nonempty set whose elements,
called parameters, are interpreted as characteristics of states; REL is a
nonempty set of relational types; For each P = PAR relation R(P) is a
binary relation in set ST determining associations between states; m is a
meaning function assigning values to variables such that m(p) = ST for
peVARPROP, m(R) eREL for ReVARREL, m(P) =< PAR for PeVARPAR,
and moreover, m(—P)= —m(P), m(PuQ)=mP)um(Q), m(PnQ)
= m(P) nm(Q).

Given a model M, we define inductively satisfiability of the formulas by
states. We say that a state s satisifies a formula F in a model M (M, s sat F)
whenever the following conditions are satisfied:

M, s satp iff sem(p),
M, s sat 1 F ifl not M, s satF,
M,ssatF v G iff M,s satF or M, s satG,
M,ssatF AG iff M,s satF and M, s satG,

M,ssatF—- G iff M,s sat1F v G,

M, s sat (R(P)) F iff there is s'e ST such that se& n,gymey(s) and there
is +eST such that ren,gymey(s) and M, t satF,

M, s sat [R(P)] F iff there is s"e ST such that se ngmey(s) and for all
teST if ten,rymen(s), then M, t satF.

A formula F is said to be true in a model M if for all se OB we have
M, s sat F. A formula is valid if it is true in all models. By an extension of a
formula F in model M we mean the set of those objects which satisfy F in
M:

exty F = {seOB: M, s satF).

The definition of semantics of modal operators results in the following fact.

ProrosiTion 4.3. (a) exty, (R(P))F is the union of those neighbourhoods
with respect to relation m(R) (m(P)) which have an element in common with
CXtM F.

(b) exty [R(P)] F is the union of those neighbourhoods with respect to the
relation m(R) (m(P)) which are included in ext,, F. .

As a consequence, if R is the indiscernibility type, that is either equival-
ence or similarity, then the operators correspond to upper and lower
approximation, respectively. Moreover, we have the following facts.

ProposiTioN 4.4. If R and S are equivalence relations, then the following
conditions are satisfied:

(@) n_g(s) = —ng(s)

{b) ng_s(s) = ng(s) v ns(s),

(€) np.s(s) = ng(s) N ngls),

(d) nps(s) = \ng(2): zens(s)) U ins(z): zeng(s)}.
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ProposiTION 4.5. If R is the equivalence type, then the following conditions
are satisfied:

(a) M, s sat (R(P))F iff there is tST such that (s, t)e m(R)(m(P)) and
M, salF,

(b) M, s sat [R(P)] iff for all t€ST if (s, )e m(R)(m(P)), then M, t satF.
This means that for the equivalence accessibility relations the modal
operators ol logic RAL coincide with the ordinary modal operators.

ExamrLE  4.1. Assume  that we are given  set X
= 1Al, A2, A3, A4, AS, A6, A7} of animals which are characterized by
means of attributes size and animality according to the following table:

size animality
Al  small bear
A2 medium horse
A3 large dog

A4  small bear

A5 medium  horse
A6 large horse
A7  large horse

Indiscernibility relation ind(size, animality) determined by parameters

size and animality provides the partition of set X into the following
equivalence classes:

(A1, A4} {A2, AS) (A3 A6, AT).

Let us consider the structure K ={(X, PAR, {ind(P))p_pax) Where PAR
= \size, animality}. Let us consider model M based on the structure K and
the formula F such that ext, F = |Al, A2, A3]. We have ext,, (ind((size,
animality) > F = |Al, A2, A3, A4, AS}, that is it coincides with the upper
approximation of exty, F. We also have ext,, [ind (size, animality)] F = {A3},
that is it coincides with the lower approximation of ext, F.

ExampLE 4.2. Assume that we are given the set Y
= 'P1, P2, P3, P4, P5' consisting of five persons who are characterized by

the attribute age, and assume that their age is given up to five years
according to the following table:

age
Pl 2024
P2 23-27
P3 27-31
P4 30-34

P5 31-35
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We define the relation R(age) as follows:
(s, )e R(age) iff the age interval of s and the age interval of r have an
element in common.

The relation generates the following similarity classes:
‘P1, P2} |P1, P2, P3] |P2, P3, P4, P5] [P3, P4, P5}.

Let us consider the structure K = (Y, {age}, |R(age)}), a model M based on
this structure and the formula G such that ext, G = |P4, P5]. We have
exty (R(age)>G = (P2, P3, P4, P5} and ext, [R(age)]G = Q.

5. Extensions of logic RAL

Some natural extensions of RAL might be of interest. Following the ideas of
dynamic logic (Pratt [10]) consider RAL with operations on rclations. That
is assume that a family of accessibility relations forms an algebra with the
usual relational operations: set-theoretical operations, composition, converse,
reflexive and transitive closure etc. In this case the semantical structure for
the logic is of the form:

K =(ST, PAR, REL, ('IR(P)}PQPAR,ReREU —-,u, 0, 1o, *))

In this case the problem arises of dependence of these operations on
operations performed on sets of parameters and operations performed on
relational types.

The other extension of RAL might be RAL with singleton constants,
that is constants representing one-clement sets of parameters and one-
clement sets of states. It was shown in Passy and Tinchev [8] that the
operation of intersection of relations can be axiomatized in the language with
state constants. And also in such a language it is possible to express several
properties of a single model (Orlowska [4]). Thus we may add to the
symbols of RAL sets CONPAR of parameter constants which are interpreted
as one-element sets of parameters, and set CONPROP of propositional
constants which are interpreted as one-element sets of states.

Our third proposal i1s to consider RAL for restricted classes of models,
for example for the models in which set PAR is R-irreducible for all Re REL.

Due to Proposition 3.4 it might be possible in this case to find a suitable
axioms characterizing modal operators.

6. Concluding remarks
We have presented an approach to modal logics via relative accessibility

relations. Relative accessibility has been considered to provide information of
two kinds. First, it tells us what states are associated, and second, with
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respect to which of their characteristics they are associated. This additional
information about states in a semantical structure is useful for those applica-
tions of modal logics which deal with inferences from partial information. In
such cases parameters determining accessibility relations retlect those charac-
teristics of states to which our considerations are confined. And consequent-
ly, accessibility determined by these characteristics provides only a partial
information about the structure of associations between states.

The modal logic RAL has been presented with operators defined by
means of relative accessibility relations. Some extensions of the logic have
been suggested.

It might be of interest to consider a relative accessibility formulation of
the dynamic logic. However, in this case the standard deflinition of modal

operators with respect to successors of accessibility relations would be
sufficient.
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