MATHEMATICAL PROBLEMS IN COMPUTATION THEORY
BANACH CENTER PUBLICATIONS, VOLUME 21
PWN - POLISH SCIENTIFIC PUBLISHERS
WARSAW 1988

FAIRNESS FOR SYNCHRONOUS
FORK-JOIN NETS

M. CHADILI
I. GUESSARIAN

Université Paris VII, France

Synchronous fork-join flow-diagrams are defined and their operational sem-
antics is given using finite automata. Three notions of fairness are relevant:
fairness regarding path-behavior, fairness regarding input-output behavior,
‘and a combination of these two notions. Properties of nets and their fair
computations are studied.

1. Introduction

In the present paper we address fairness problems for synchronous fork-join
parallelism. Fork-join parallelism is the most basic and lowlevel form of
parallelism, where a process can fork, 1.e. split, into two subprocesses which
then proceed independantly; two processes can also join into a single one at
some point, namely the final process waits for the results of the two
processes racing to the join, and proceeds with the results of either one, non-
deterministically (cf. fork and wair statements in C, PLI1, etc.). There is a
major difference between our synchronous join and the asynchronous merge
mostly studied in the literature (see e.g. [3]): data which do not find their
way through the merge can wait for an arbitrary long time in infinite buffers,
whereas data which do not pass through a join are irremediably lost, because
we assume:

(1) that all processes are ruled by a global clock and take some action at
every time unit:

(2) that buffers are finite (or length 1 to simplify). These assumptions, to
our sense, correspond more closely to “real life”, but make fairness more
difficult to study. '

D. Benson gave an algebraic semantics for fork-join parallelism [2]:

fairness, however, being an intrinsically operational phenomenon, does not
seem to be easily expressible in that formalism. So, we first introduce’ an

10 — Banach Center 21

146 M. CHADILI and 1. GUESSARIAN

operational semantics for fork-join parallelism, using the notion of oracle [3],
which then enables us to study fairness.

Also, we allow explicitly for iteration in our formalism, whereas finite
nets only are considered in [2], who leaves implicit the case of iterative nets,
even though they might be studied by the same methods. We could also deal
with recursive nets, but at the cost of heavier machinery, e.g. finite automata
and transducers would not any more be sufficient, so we leave that case out
of the present study.

Various notions of fairness naturally occur in the present formalism: but
they all pertain to the following intuitive notion: an event infinitely often
possible does occur infinitely often, cf. the strong fairness of [4}-[6].

We will study two main notions of fairness and the resulting properties
for nets of processes.

(1) Fairness with respect to path behavior: every finite path in the net
must be executed infinitely often. This is a syntactic and global notion of
fairness, well-suited to modelling e.g. fairness of hardware circuits, ensuring
that no process will ever starve or get blocked. However, composing fair nets
does not result in a fair net. '

(2) Fairness with respect to input-output behavior: every data item
requesting infinitely often access through a join shall go through that join
infinitely often. This is a semantic and local notion of fairness, which could
model e.g. fairness in a message passing protocol. This second notion is
stable by composition, but there exist no behavior globally fair with respect
to all inputs.

Now, for the asynchronous case with infinite buffers, the first notion of
fairness implies the second one. This is not true any more in the synchronous
case, where the two notions are incomparable. Hence, we define a “strong”
fairness by combining the two previous notions.

The paper is organized as follows: we first describe the semantics of
fork-join nets and show it can be characterized by finite state transducers,
which give a semantics in terms of infinitary languages. We then study
various notions of fairness, their properties and relationships. Finally, we give
in an appendix a few useful properties of infinitary languages. This paper has
been written with a bias in favor of intuition in order to improve readability.
Consequently, some formal definitions and proofs are skipped and replaced
by examples. Proofs and technical details will be given in an extended
version of the paper.

2. Fork-join nets and their semantics

Our nets will consist of three basic components, processes, forks and joins
connected together in a finite flowdiagram organization.

FAIRNESS FOR SYNCHRONOUS FORK-JOIN NETS 147

A process is a one state transducer which transforms an infinite stream
of data into an infinite stream of results: processes will be considered as
unary functions in the sequel.

ExampLE 2.1.

with input alphabet {a, b} and output alphabet {c, d) corresponds to the
function

if x=a,

C
f(x)={d i x=b,

and will transform the input (ab)® into the output (cd)”. =

A fork is an operator with one input channel and two output channels,
which instantaneously duplicates the contents of its input channel into its
output channels. A fork will be represented by the diagram:

and will transform the input (ab)® into the outputs ((ab)”, (ab)”). However,
since we will assume in the sequel that channels are length one buffers, both
input and outputs can only appear at the rate of one per time unit.

A join is an operator with two input channels and one output channel,
which, at each time unit, nondeterministically chooses one of its inputs and
outputs it, while dropping out the input which was not chosen; this whole
process takes one time unit, contrary to the fork which was supposed to be
instantaneous. A join will be depicted as follows:

i,' '——T: .

2

If we feed the previous join with inputs i, = ab, i, = cd, the possible
output will be one among {ab, cd, ad, cb}. In order to make deterministic the
behavior of the join, we add a third, fictive, input, the oracle 5, which tells
which input is picked, so that, e.g.

with i, = (ab)®, i, = (cd)”, 6 = (01)* will output o = (ad)®.

148 M. CHADILI and 1. GUESSARIAN

DeriniTION 2.2. A net N is a finite flowdiagram built up from prcesses,
forks and joins, which we represent as a quintuple:

N=dU, 0, n m,L),

where [= (i, ..., ii) is the vector of input channels, O = (o,, ..., 0)) is the
vector of output channels, n is the number of joins, m is the number of forks,
L is the set of all labels in the net. u

ExaMpPLE 2.3.

0,
: f F
Iy 1 (_12'1)
(5. 1) , %
i \ 2T T T)
L] f >
(4, 2)
(J1,2)

I =(il, iz), 0 =(Ol’ 02), n=m= 2,
L= {fa (Jl’ 1)’ (le 2)’ (JZ, l)a (JZa 2)1 F]a FZ! ilv ‘.27 Ol» 02}- L

Nets can thus be considered as finite state transducers with several input
channels and several output channels, or as transition nets. An equivalent
algebraic definition could be given, saying that nets are the least structure
containing processes, fork, join, projections and closed under tupling, compo-
sition and iteration. The advantage of that second definition is that it can be
more readily generalized to allow for recursion. However, the definition with
transition nets presents the advantages of being more intuitive and more
handy for describing the operational semantics of nets. Since our main
interest is fairness, which is intrinsically operational, we will use Definition
2.2 only.

The operational semantics is based on Arnold’s work [1] and the
following assumptions:

(1) nets are synchronous and there is a global clock: ie. at each time
unit, all operations advance by one step;

(i) a letter takes one unit of time to go through a join, or to be
transformed by a process;

(iii) a letter takes no time to go through a fork.

Modulo the above assumptions, a net can be considered as a transducer
based on a finite automaton: it performs a transduction, transforming each
vector I of infinite input words into a vector O of infinite output words; this
transformation is by definition the semantics of the net.

More precisely, each oracle J in ({0, 1!")* determines a computation of

FAIRNESS FOR SYNCHRONOUS FORK-JOIN NETS 149

the net for every input i in (4%): the result of this computation is an output
o in (TY*, where A4 is the input alphabet and T the output alphabet. The
semantics of the net is the set of all pairs (i, o), for all possible inputs i and
oracles é.

ProrosiTion 24. If the inputs and the oracle of a join are regular -
lunguages, the output of the join is a regular w-language.

Proof. A suitable product of the automata recognizing the inputs and
the oracle gives an extended Biichi automaton recognizing the output. =

For the next proposition, we need to assume that the input and output
alphabets of all processes in a net are finite, so that the net has only a finite
number of possible behaviors for arbitrary inputs of bounded length; then

Prorosition 2.5. If all inputs and oracles of a net with finite alphabets are
regular w-languages, then the outputs of the net are regular w-languages too.

The proof proceeds on the same ideas as the previous proposition,
except that one has to add one more component in the product automaton:
this new component simulates the behavior of the net. =

3. Fairness

3.1. Fairness with respect to path behavior. The first notion of fairness
which we will study is a global notion, ensuring that a computation will go
through every channel infinitely often. In order to express it easily, we
introduce the notion of path in a net. To this end, we label the input
channels with pairwise different names; all other channels are implicitly
distinguished by the labelling of the forks and joins (we could almost forget
about the processes and keep only the [ork-join structure of the net).

Equivalently, the first notion of fairness that we study is relative to
streams of data of the form x{ on input channel i, for every p.

DerINITION 3.1. A path in a net N is a word w=w,...w, in L* such
that w, = i;, w, = o;, for some input channel i; and output channel o; and for
each p=1,...,n—1, there is a channel linking directly w, to w,.,. Py
denotes the set of finite paths in the net N. =

ExampLE 3.2. Let N be the net of Example 2.3; then i, f F, 0, i,(J,, 1)
f(J3,2) F3(Jy1,2) f(J3, 2) F,0, are two paths in Py. =

ProprosiTiON 3.3. The set Py is a regular language. »

We now state intuitively the goal we wish to achieve with fairness with
respect to path behavior. A computation is fair if condition (i) is satisfied.

(i) Every input letter x,, which could, after transformations in a path,

arrive infinitely often to an output channel o;, does arrive infinitely often to
that output channel.

150 M. CHADIL! and 1. GUESSARIAN

We will in the sequel give sufficient conditions for (1) to become true.

A path is active in a computation iff it is taken infinitely often during
that computation. More formally, define for each net N the alphabetic
morphism @y: L— P((}0, 1}"*) by VxeL

{:bla---’bi—l9a’ bi+1,---’bn}9 bie{Ov 1}} lr x=("iaa)s
on(x) =< 10,1}" if x=f, where fis a process,
@ otherwise,

oy is alphabetically extended to L*.

DerINITION 3.4. (i) Let N be a net and an oracle in ({0, 1}")*: § is path-
Jair iff for every path p in Py, |d],, (p) = @, where |65 is the number of times
words of B occur in 4.

(i) a computation is path-fair iff the corresponding oracle is, or iff,
equivalently, every path is active in that computation. =

ProrosiTiON 3.5. Path-fairness implies condition (1). =

When the output alphabets of all processes in the net are finite, we can
replace the previous notion of fairness by a weaker one, which nevertheless
implies condition (i). Namely, instead of demanding that every finite path be
active, it is enough to require that all paths in a finite set of finite paths
be active.

DEerINITION 3.6. A path p = w;...w, with w; =i; and w, = o; is useful iff
wy...w,_; = wwiw” for some ¢ and w = w,...w, such that

(i) for all x in L, if x is not a process sup {|w|,, |W,, W)} < 1;

(it) if £y, ..., f, are the processes occurring in w, and n, is the cardinal of
the output alphabet of f;, then g <inf{m:i=1,...,r}. =

Intuitively, a useful path can go through a given loop at most g times,
where ¢ is the minimum of the cardinals of the output alphabets of the
processes in that loop. Useful paths are sufficient to ensure that inputs will
undergo all possible transformations before being output. Notice first that
the set of useful paths is finite, hence this will lead to an effective notion of
fairness.

DeriniTioN 3.7. A computation of a net N is weakly pdth-fair iff all
usefull paths are active. =

ProrosiTiON 3.8. If the output alphabets of all the processes in a net are
finite, then weak path-fairness implies condition (i). w
ExampLes 3.9. Let N be the following net

. e
! ! [~}

= o

FAIRNESS FOR SYNCHRONOUS FORK-JOIN NETS 151

where f has input and output alphabets A = {a, b} and is defined by f(a)
= b, f(b) = a. Then, the set of useful paths in N is

P,=li(J, 1)fFw'o, where | =0,1,2 and w=(J, 2)fF].

ProposiTiON 3.10. Path-fairness (weak or not) is not closed under composi-
tion.

This is shown by the following example: let N be

6, = (01)” and 8, = (10)® are path-fair when we consider each join separate-
ly. But § =((0, 1)(1, 0))* is not path-fair for the net N, because the path
(Jy, 2) (J2, 1) will never be taken. =

In the rest of this section we will assume that all input and output
alphabets are finite.

3.2. Fairness with respect to input-output behavior. Because of the syn-
chronous behaviors of our nets, and of the lack of infinite buffers, path-
fairness does not imply fairness with respect to input-output behavior, as it
does for the case of the asynchronous merge (cf. [3]). This is shown by the
following:

ExampLE 3.11. N consists of a single join

h -

)

Then & = (01)” is path-fair; however, if x, = (ab)”, x, = (cd)®, then the
output is (ad)”, and b and ¢ will never go through the join. =

To remedy this drawback, we define a local notion of fairness with
respect to input-output behavior, which ensures that, whenever a letter
“knocks” infinitely often at the door of a join, coming from either channel, it
will go through infinitely often.

DEerFINITION 3.12. A computation of a net N is 10-fair for input [ifl, for
each join in the net, every letter which comes infinitely often on either one of
the input channels of the join goes also infinitely often through the output
channel of that join. =

Remarks. (1) In an IO-fair computation, for every channel ¢ of the net

and every letter x, if x could go infinitely often through ¢, then x must go
infinitely often through c.

152 M. CHADILI and 1. GUESSARIAN

(i) 10-fairness is always relative to some input 1.

ProposiTioN 3.13. Path-fairness and 10-fairness are incomparable.

Proof. Example 3.11 shows that path fairness does not imply IO-fairness:
the converse imphcation is also false as shown by the following example: let
N be as in Example 3.11 and i, =i, = a®, 6 =0, Then § defines an 10-fair
computation which is not path-fair, since the path i,(J,, 2)o is never
taken. m

DeriniTiON 3.14. Let Fy(I) be the set of oracles which define /0-fair
computations for input [. =

ProrosiTioN 3.15. For all 1, Fy(I) # Q, i.e., for each input there exists at
least one 10-fair computation.

Proof. We only have to ensure fairness at each join: this is done locally
by endowing each join with an algorithm which defines the oracle at that
join so that 1O-fairness is guaranteed. The idea of the algorithm is as follows:
if (x4, ..., x,) are all the letters which could arrive at the join, we define a list
(ny, ..., ny) of integers, where n; gives the “priority” rank of letter x; for going
through the join; n; simply counts the number of times letter x; tried
unsuccessfully access to the join. The oracle is then defined in order to let
through the letter with the higher priority, while resetting the priority of that
letter to 0. =

PropoSITION 3.16. For every net N and inputs 1, I', Fy(I) nFy(I') # Q.

Proof. Let N be represented as follows:

and let I =(x(, ..., %), I' =(x}, ..., X).
Define N’ by

L PR
Ty A,

where the dotted square contains a copy of N.

Then, every computation of N’ which is JO-fair for the input
(xy, X1, ..., X4, X;) defines, by restriction to the subnet N, a computation of
N which is fair with respect to both inputs I and I'. =

FAIRNESS FOR SYNCHRONOUS FORK-JOIN NETS 153

CoroLLArY 3.17. For every finite set K of inputs, K c AY x ... x AP,
where A; is the input alphabet for channel i;, "\ Fy()# @. =

Tek
The next proposition expresses there is no oracle which is globally 10-
fair with respect to all inputs. .
ProrosiTioN 3.18. If at least one of the joins in a net N has an output

alphabet containing at least two elements, then (\ Fy(I)=Q, where
IcA

A =AY x...x A, where A; is the input alphabet for channel j.
Proof. We can then extract from N a join, possibly linked to input
channels via processes but no loops, whose output, and hence input, alpha-

bets contain at least two letters, say !a, b!. Let 6 =0"1"1021'2.. be an
arbitrary oracle for that join J and consider the net N’ consisting of the
single join J. Then, letting I = (x,, x,) with x, =a'b’'4'2b’%... and
%a“’ if |x,, =0,

Xy = . iy, J ip, J . . , . .

PTab? if x,=a'b’l..a?bPa® with i +j + ... +i 4, < g,
'6 is not [O-fair for I since b will never be output. Hence, for subnet N’, and
alsc thus for net N, every oracle is /O-unfair for some input. m

ProposiTioN 3.19. 10-fair computations are closed under composition.
Proof.

Yy

Let N, N' be two nets, and N” be the net obtained by feeding
the outputs of N as inputs to N’. Then, if 6 is in Fy(I) and ¢’ is in Fy.(I'),
where I’ is the output of the computation of N defined by 4, §" =48 x &
is in Fy.(I), where, if 6 =a,a,...€({0, 1} and & =a}a,...€({0, 1}7),
3" = (a,ay)(a,a)...€(f0, 1}"*")°. u

Now, even though Proposition 3.18 showed us that there is no oracle
globally I10-fair for all inputs, we can show that there are oracles JO-fair with
respect to classes of inputs. One such class is the class of ultimately periodic
inputs.

LemMa 3.20. Let N be a net, w=(w,, ..., w,) a vector of finite input
words such that |w,|=...=|w/| =1 and let w® be the infinite input
(we, ..., wy); let (oy,...,0) in XZ* be arbitrary circular permutations of

1, ..., I} and let a(w)* be the vector of inputs (o, (wy)®, ..., 0,(W)”). Then
N Fy(a(w)®) is nonempty and contains an oracle & of the form & = n®.
ge sk

Proof. As in Proposition 3.16, we first construct a net N’ with an input
combining all the a(w)®, for ¢ in X*; this is possible since there are at most

154 M. CHADILI and I. GUESSARIAN

such vectors a(w). We then use the algorithm in Proposition 3.16 to compute
a fair oracle; everything being periodic, the oracle will also be periodic. m

This lemma asserts that there exists a single periodic oracle [O-fair for
all inputs of the form a(w)”. The restriction that all the w; have the same

length is inessential; if the periods are different, it suffices to take as common
period their least common multiple.

LemMma 3.21. Let I =(x, w?, ..., x, W), where w=(w,, ..., w,), ¢ and ¢
are as in Lemma 3.20; then d¢ Fy(I).

Proof. Let g =max {x|: i=1, ..., k} and let m be the first multiple of
inl greater than gq.

There exist u = (4y,...,u) and o in Z* such that for i=1,...,k,

il =m, I= (“1 g (w))?, ..., uy Ut(Wt)w) = uo (w)”.

Notice now that #* = 3 Fy(o(w)”); moreover, fairness being concerned
with infinitary behavior, we can forget about the first m components of / and
4, hence all oracles &' in 4 =(}0, 1!"™é are in Fy(I); in particular, J itself
being in 4, is in Fy(I). The following Fig. 1 representing the lengths of w, n
and / might help. =

e ——

|
!
[
3}

Fig. 1

THEOREM 3.22. Let L be the set of inputs of the form I = uw®, where

u=(uy, .., w is an arbitrary k-tuple of finite words, and w = (wy, ..., wy)
is a k-tuple of words such that |w,| =...=|wy =1; then (\ Fy(I) # Q.
ITeL
Proof. Lemma 3.21 shows that é is in Fy(l) for each I in L. =
Note that

(1) we can relax the hypothesis that all w;, have the same length /,

(i) we can, more generally, assume that w is an element of a finite set W
of finite k-tuples (w,, ..., w,), instead of w being always the same k-tuple.

The proof of Lemma 3.20, and hence of the theorem, is the same under
those weaker hypotheses.

FAIRNESS FOR SYNCHRONOUS FORK-JOIN NETS 155

Note finally that the oracles are perfectly effective, and might be called
schedulers.

3.3. Strong fairness. We noticed in Proposition 3.13 that both /O-fairness
and path-fairness allow for some injustice (respectively for path-fairness and
10-fairness). In the present subsection, we will henceforth combine these two
notions of fairness into a notion of strong fairness. Recall that all input and
output alphabets are finite, so that path-fairness amounts to all useful paths
being active. In order to define strong fairness we will keep track of the path
a letter has gone through before arriving in a channel, as long as that path is
a useful path or a prefix thereof.

ExampLE 3.23. Let N be as in Example 3.9, with input (ab)®, oracle 001.
Then, the pairs (p, x) of the letter x which is in the channel [F, (J, 2)]
together with the prefix p of useful path x has already gone through, are as
follows for the successive time units: at time 1, the channel is empty, so
(P, x) = Q)

at time unit 2: (i(J, 1) fF, b),

at time unit 3: (i(J, 1) fF, a),

at time unit 4: (i(J, 1) fFw, a),

at time unit 5: (i(J, 1) fFw, b),

at time unit 6: (i(J, 1) fFw?, b),

at time unit 7: (i(J. 1) fFw?, a),
where w = (J, 2) fF.

At the subsequent time units, we no longer keep track of the path,
because it is no more a useful path, hence the history of that channel starting
from time unit 8 and on will be {(*, a)(x, b)(x, b)(*, a))*. =

DEerFiNiTION 3.24. Let N be a net, P,(N) the set of prefixes of useful paths
in N, I an input. A computation is strongly fair with respect to I iff: for every
channel ¢, and every history h = (p, x), where pe P,(N)u {»} describes the
portion of useful path already taken by letter x, if h could go infinitely often
through channel ¢, then h must go infinitely often through channel c. Let
SFy(I) be the set of oracles defining strongly fair computations for /. =

ExaMpLE 3.23 (continued). 001 is IO-fair for the input (ab)®, but it is
neither path-fair, nor strongly fair. The corresponding output is b(a®b?)".
Now the oracle & = (0?1%)* is strongly fair, path-fair and IO-fair; the
sequence of histories corresponding to channel [F, (J, 2)] is [(p, b), (p, a),
(pw, a), (pw, b), (pw?, b), (pw?, a)]®, where p=i(J, 1) fF and w = (J, 2) fF as
above; the corresponding output is (baabba)”. =

Basically all the propositions and theorems we proved for IO-fairness
also hold for strong fairness with similar proofs. We state some of them.

ProrosiTiON 3.25. For every net N and input I, SFy(I) # Q.
The proof is similar to the one for Proposition 3.15; the algorithm for

156 M. CHADILI and . GUESSARIAN

finding fair oracles now has to keep track not only of the number of times a
letter tried to go through a join, but also of the previous history of that
letter. Hence, instead of having n different algorithms, one for each join in
the net, we have a single global algorithm, which chooses all the oracles in
the net, while keeping track of all useful histories in its priority list. This list
stays bounded because once a useful path is completed, the corresponding
history becomes (*, a) and = acts as zero for path composition, i.e., extending
» by any path again results in * =

ProrosiTioN 3.26. For every finite set K of inputs [\ SFy()# Q. w

ek

ProrosITION 3.27. A strongly fair computation is both 10-fair and weakly
path-fair.

Proof. Since there are only a finite number of pairs h = (p, x), including
the pairs (=, x), then:

(i) if a letter x comes infinitely often to a join, then some h = (p, x) (with
possibly p = *), will also come infinitely often to that join, hence h will go
through infinitely often because of strong fairness; whence IO-fairness;

(i1) assume now ¢ is strongly fair but not weakly path-fair. Let p be a
shortest useful path which is taken only finitely many times; p cannot be of
length one, since inputs are infinite streams. Hence p is of the form p = p’ ¢,
where p’ is taken infinitely often; p’ can only output a finite number of
different letters, hence for some letter x, (p'e, x) is possible infinitely often,
hence is taken infinitely often by the strong fairness assumption; p is thus
also taken infinitely often, a contradiction. =

CoroLLARY 3.28. (i) () SFx(]) = O,

IeA
(i) strongly fair computations are not closed under composition.

Proof. (i) Holds for I0O-fair computations.
(i1) See the counter example in Remark 3.29 (i). =

Remark 3.29. (1) The converse of Proposition 3.27 is false. Let N be the
following net, with the indicated inputs and pracles

iy = (ab)”
(0011)¢ —-----

= be) (00107° e >———

iy e d¥ e —

Then the output is (abcd)” but the computation is not strongly fair,
because the history {(J,, 2)(/,, 1), b) is never taken. Moreover, the oracles
define strongly fair computations if each join is considered as a separate net,
but the composition is not strongly fair.

(ii) It 1s essential, in the definition of strong fairness, to demand that, if

FAIRNESS FOR SYNCHRONOUS FORK-JOIN NETS 157

(*, x) could go infinitely often through a channel ¢, then it must go infinitely
often in that channel. If we relax that requirement, the [ollowing counter-
example shows that strong fairness does not any more imply /O-fairness. Let
N be

A

where f is the identity (and just introduces a delay of one time unit), and the
input and output alphabets are {a, b}. Let us assume that I, = ab” and I,
= b, then, if we only require that histories (p, x), with p a prefix of a useful
‘path, be taken infinitely often, the oracle:

6 =(0, 9 [(0, D, O, 1)1, 9°

defines a “strongly fair” computation which is not IO-fair. The oracle
corresponding to the join J, is 0(01%)®, corresponding to the output &2 (ab)®
on channel [F, (J,, 2)]. The oracle corresponding to join J, is (01), corre-
sponding to output b“ on channel o, hence a will never pass join J,; this is
due to the fact that a arrives to that join with increasingly long histories of
the form (pw", a), with p=1,(J,, 1) fF, w=(J,,2)fF and n=0,1, 2, ...

(i) A last remark is to note the essentiality of the synchronous
behaviors of all operators: namely no process or join is ever blocked, and all
operators take a step together at every time unit. Of course this presupposes
the inputs are also infinite nonempty streams.

Appendix. Infinitary languages

We recall some definitions about regular w-languages. Let A be a finite
nonempty alphabet, we consider an infinite word w over A as map

w: N---X

such that w(i) is the ith letter of w:
A*: the set of finite words on A,
A®: the set of infinite words on A,
A = A* U A°, AT = AA*.
We denote |w|,: the number of occurrences of a in w.

158 M. CHADILI und 1. GUESSARIAN

DeriniTiION A.l1. A Biichi automaton is a structure

A= (Q, A, 4o, 5: Qinl')'

Q: the set of states (finite),
A: finite alphabet,
do€ Q: initial state,
o: transition function,
3. Q0 xA--»29,

Q... the set of infinitary states.

inf*

DEeFiniTiON A.2. For weA®, we call computation of A over w ¢ map
¢: N---Q such that

(i) ¢(0) = qo,

(ii) ci+1)ed(c(i), w(d),
and a computation is successful iff inf(c) N Q,, # @, where inf(c) is the set of
states such that: g einf(c) iff there exists an infinity of i € N such that c(i) = q.

For a Blichi automaton A, the set of all w-words in A such that there
exists a successful computation of A over w, is denoted by ||4}|, and called
the w-language accepted by A. An w-language is said to be w-regular if it is
accepted by some Biichi automaton.

DerinirioN A3, An extended Biichi automaton is a structure A
=(Q, A, q¢, 8, @, ..., Q) such that Q, A, q, and 6 are as in Definition
A.l and Q,,..., Q, are sets of infinitary states.

Derinimion A4, A computation of A is successful iff Vi=1,. .., n
inf(c) nQ; # @.

ProOPERTY A.l. Biichi automata and extended Biichi automara accept the
same class of languages.

References

(1] A. Arnold, Sémantique des processus communicants, RAIRO Informatique Théorique 15
(1981), 103-139.

[2] D. Benson, Studies in Fork-join parallelism, report CS-82, 101, WSU (1982).

[3] F. Boussinot, Réseaux de processus avec mélange équitable: une approche du temps réel,
Thése d’Etat Paris (1981).

[4] G. Costa, C. Stirling, Weak and strong fairness in CCS, MFCS 84, LNCS 176, Springer
Verlag, Berlin (1984), 245-254.

[51 P. Darondeau, About fair Asynchrony, TCS 37 (1985), 305-336.

[6] M. Hennessy, Modelling finite deluy operators, rep. CSR-153-83 (1983).

Presented to the semester
Mathematical Probiems in Computation Theory
September 16— December 14, 1985

