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The traditional approach in algebraic theory of automata is to represent
finite-state machines as finite monoids. Several recent results have been
obtained by considering categories instead of monoids. In this article, we will
argue that this generalization is very natural, that it preserves many import-
ant classical results, and that it allows new methods for solving old
problems.

Introduction

Traditionally (e.g. [2]), one looks at a finite-state machine as processing
sequences of inputs drawn from a finite set A, the input alphabet: one then
considers the free monoid A*, i.e., the set of all sequences of finite length over
A, as the input universe to the machine. To the automaton can be associated
a congruence y of a finite index on A*. A*/y being a finite monoid, one is
then led to investigate relationships between the structure of this algebraic
system and the combinatorial processing of input sequences.

Recent research has established the possibility and the necessity of
generalizing this model. For example, we are often interested in decomposi-
tions of automata. In such situations a component may receive its input from
the output of some other component. This “preprocessing” imposes restric-
tions on the possible input sequences that need to be considered. A simple
way to take into account these restrictions is to view a machine as processing
input sequences that are paths in a finite directed multigraph. The input
universe is then the free category induced by the graph and we can associate
to the machine a congruence of finite index on this free category. The
machine thus becomes a finite category rather than a monoid. Note that a
free monoid is simply a free category induced by a one-vertex graph.
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- Thus the categorical model allows us to better formahze the description
of a .machine when we are, dealing with decomposmon problems. In tHis
paper we will show that it is quite possible to reformulate classical notions in
the new setting. In particular, we will discuss regular and star-free languages,

_ varieties of categories and wreath product operation, and we will generalize
the monoid-version théoregns about ‘these concepts. Hence it.is possible to
recover virtually ail of the original theory in the new frame-work. Finally, we
will indicate how the extension has provided new methods for solving old
problems.

_1. Notation

Let (N, A) be a finite directed mudtigraph where N is the sef of vertices and
A the set of edges. For i, je N we denote by A% the set of all paths of finite
length from i to j, including il i =j a path of length 0 denoted I,. Let A*

= |J A¥Y represent the set of all paths of finite length in the multlgraph:
i,jeN

concatenation of consecutive paths is associative, 1.e, tor all i, j, ke N, se AY,
re A}, ue A%, (st)yu = s(tu) and the O-length paths act as identities, i.e., for all
seA;;, te Ay, slj=s and 1;t =1. A* is the free category induced by the
_multigraph (N, A). A language is any subset of A*.

A congruence y on A* is an equivalence relation satisfying

(1) [x], = 45

ij

2) [x), [y}, =[xy,
For example, the coarsest congruence on A* is defined by x ~ y iff x, ye'A:-"j.

We say that L < A* is a y-language if L is a union of classes of the
congruence . For any language L, the syntactic congruence of L is defined
by x y.y iff x ~y anl for all u, ve A* such that uxy, uyv are defined, we
have uxve L iff uyve L. It is clear that L is a y,-Janguage and that for any
congruence y on A* L is a y-language iff y < y,. Observe that a free monoid
is simply a free category induced by a one-object graph and that in this case
all notions introduced above reduce to their usual version.

The index of a congruence is the number of classes. A congruence 7 is i
aperiodic if for all ie N, for all xe A% there exists t > 0 such that x' y x'"'.

Languages being subsets of A*, one can consider boolean operations on
languages in the usual way. Given L, L,, L,€ A*, u, ve A* we also consider
the following operations: the quotient u~! Lv™! is defined as {x| uxve L}, the
concatenation L, L, is defined as {xy| xelL,, yelL, and xy is a defined
path), the nth power of L (n > 0) is defined as L' = L, L"=L""' L, and the
positive iteration L' is defined as () L"

n>0

Any category C can be represented as the quotient of a free category by
a congruence. If C is on the set of objects N and has a set of arrows
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generated by A, then C = 4*/y, where A* is the free category induced by
(N, A) and xyy iff the sequences of arrows x and y multiply to the same
value in C. This representation is in general not unique, since the set of
generators can be chosen in different ways.

Let C and D be categories on objects N and M respectively. A relational
morphism ¢: C — D is given by a mapping ¢: N =M and a relation ¢
between arrows of C and arrows ol D such that s¢ # @ for any arrow s of
C, Cijo =D,,;, where C; is the set of arrows of C from object i to j,
l.,,€1; ¢ and (s@) (1) = (st) 9. We say that C divides D, noted C < D, if there
exists a relational morphism ¢: C— D such that for any s,1eCy,
s Nitp # @ implies s = r. If C and D are monoids (i.c. one-object categories)
it can be shown that C < D ifl C is a morphic image of a submonoid of D. A
Sfunctional morphism is a relational morphism in which the arrow relation is a
function. The direct product C x D is the category with objects N x M and set

of arrows !s, t!| s is an arrow of C, t is an arrow of D!.
{ ] ]

2. Three theorems

In this section we will prove three fundamental theorems of the classical
theory of automata in the extended categorical setting. These are Kleene’s
theorem on regular languages (4], Schiitzenberger’s theorem on star-free
languages [6] and Eilenberg's theorem on varieties [1].

Let A* be the free category induced by the graph (N, A). The class of
star-free languages over A* is the smallest family of subsets of A* that
contains @, |I;} for each ieN, la] for each a€A, and that is closed under
boolean operations and concatenation. The class of regular languages (over
A*) is the smallest family of subsets of A* containing the star-free languages
and that is closed under positive iteration.

Kleene’s theorem asserts that for one-object free categories (i.e. [ree
monoids) a language L is regular ifl there exists a finite-index congruence
such that L is a y-language. Schiitzenberger’s theorem says that, for the one-
object case, .a language L is star-free iff there exists a finite-index aperiodic
congruence y such that L is a y-language. In both these theorems, if the
empty word is not in L the congruence can be taken over A™.

The extended versions of these results can be moved by reducing the
general case to the one-object situation. The technicality is to handle
correctly the paths of length 0. To the [ree category A* we will associate the
free semigroup A, generated by A, disregarding the fact that elements of A
are edges in a graph: thus any non-empty finite sequence of elements of 4
belongs to A, regardless of whether it is a valid path or not. If y, is a
congruence on A, we denote by y the congruence on A* defined by xyy ill
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x=y=1I;0r x>0 |y >0, x~y and xy,y as elements of A. For any
L = A*, we define L, = |x| xelL, |x] >0!; L, is viewed as a subset of A4, .

LeMMA 2.1. If L = A* is regular (star-free), then L, is reqular (star-free).

The result is clear for @, !I;] and !a). To carry the induction step,
simply observe that (LU L), =(L, U L), (LL),=L,L, and (L"), =(L)". =

LemMa 2.2. If v, is a finite-index (aperiodic) congruence on A], then so is.
y over A*.

We have |4*/y] < |N|+|{N xN||A/y). Also if x = I, then xyx? and if
xe A%, |x| >0 then X'y, x'*! implies ¥ yx'*!. =

THEOREM 2.3. L = A* is regular iff there exists a finite-index congruence v
on A* such thar L is a y-language.

If L is regular as a subset of A* then L, is also regular as a subset of
A} . By Kleene’s theorem there exists a finite-index congruence y, on A, such
that L, is a y,-language. Then L is a y-language and by Lemma 2.2 y has
finite-index. Conversely if L is a y-language, then we may define g, on A by
xB,y iff x,yeA™ and xyy or x, y¢ A™: B, has finite-index, L, is a f,-
language, hence L, is regular. Clearly L is also regular. m

THEOREM 2.4. L = A* is star-free iff there exists a finite-index aperiodic
congruence y on A* such that L is a y-language.

The proof is similar to that of Theorem 2.3, with the observation that if
y is aperiodic then the constructed f; is also aperiodic. =

In the monoid case, a most powerful tool to relate combinatorial
descriptions of languages to the algebraic properties of their syntactic
recognizers is the notion of a variety. A collection } of finite monoids is a M-
variety iff it is closed under direct product (M,, M, e Vimplies M, x M, e V),
under submonoids (M, e Vand M, = M, implies M, e V) and under morphic
images (M, eV and M, = M, ¢ for some morphism ¢ implies M, e V). Next,
let A* V be a collection of regular languages over the free monoid A* and let
V =) A* V, where the union is over all finite sets 1: V is a =-variety iff A* V
is a boolean algebra closed under left and right quotients (Le A* V, u, ve A*
implies u~' Lv™'e A* V) and V is closed under inverse functional morphisms
(Le A*V, ¢: B* — A* a functional morphism implies Lo~ 'e B* V). Eilen-
berg's theorem states that there exists a natural 1-1 correspondence between
M-varieties and =-varieties.

These notions have natural generalizations. A C-variety is a collection of
finite categories closed under division and direct product. The correct notion
of x-variety is obtained from the definition above by replacing free monoids
by free categories. Let V be any collection of finite categories: we write V= V
if A*V = |L| there exists y such that L is a y-language and A*/yeV ). If V is
any collection of reguiar languages, then we write V = Vif ¥V = | 4*/y| every
v-language belongs to A* V'!. The argument for the generalized version of
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Eilenberg’s theorem will use the following lemmas, whose proofs are left to
the reader.

Lemma 25. Let C=B*/f, D= A*/y. Then C <D iff there exists a
Sfunctional morphism ¢: B* — A* such that f§ 2 ¢y.

Lemma 2.6. (a) A*/y, 0y, < A%y x A*/y,,
(b) for any functional morphism ¢@: B* — A*, L = A*, we have
B*/y,,-1 < A%y -

Lemma 27. If V is a C-variety, then A*/yeV iff A*/y,eV for all y-
languages L.

Lemma 28. Let V be a C-variety. Then CeV iff any congruence represen-
tation of C belongs to V.

THEOREM 2.9. (@) If Vis a C-variety and V =V, then V is a =-variety and
V=1V

(b) If V is a »-variety and V =V, then V is a C-variety and V=V,

(a) Let L, Ly, L, = A*V and let y, y, and y, be their respective syntactic
congruences. Then L, u L, is a (y, N y,)-language and it belongs to A* V' by
Lemma 2.6(a); also L is a y-language so that A* V is a boolean algebra. For
any u,ve A* u 'Ly~ ! is a y-language; hence A* V is closed under quo-
tients. Let ¢: B* — A* be a functional morphism: Lo~ ! is ¢y-language and
we get that V is closed under inverse morphisms by Lemma 2.6(b). Thus V is
a *-variety. Suppose now that V=V’ and let C = A*/y. If Ce V' then all y
languages belong to A* V, which implies that all syntactic congruences 7y,
where L is any y-language, are such that 4%¥/y, € V- thus Ce V by Lemma 2.7
and V' < V. If CeV then all y-languages are in A*V and CeV’': this
proves V< V' and V=V"

(b) Suppose D = A*/ye V and C = B*/f < D. Each B-language is a ¢y-
language by Lemma 2.5 for some functional morphism ¢: B* — 4*. Since
any ¢y-class is the inverse image by ¢ of a y-language, we deduce that Ce ¥,
te, V is closed under division. Let now C,;, C,eV and consider any
congruence representation B*/f of C, xC,. By Lemma 28, it suffices to
argue that B*/f is in V. We can construct B}, B%, B, and f, such that C,
= B¥/B,, C, = B%/f,. Let ¢,, ¢, be the natural projections: for any xe B*
we can then find L, = Bf, L, = B} such that [x], =L, ¢, ' "L, 7", where
L; is a fi;-language for i = 1, 2. This established that any f-class, and hence
any fB-language belongs to V, so that V is closed under direct product.
Finally suppose that V= V'. Il Le 4* V' then A*/y, eV and all y,-languages
belong to A* V: this proves V' < V. If Le 4* V then A*/y, eV since for any
xeA* we have [x],, = N u 'Lv™'n () u”'Lv™" (note that the number

. . uxvelL lf,tvéL' ) . ]
of different terms in the boolean function is finite since L is regular). It

follows that V =< V' and the proof is complete. m
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3. Wreath product of C-varieties

A natural operation to consider on automata is the series (or cascade)
connection, where the output line of a first machine is hooked up to the
input line of a second machine. This physical connection has an exact
algebraic description: the wreath product SoT of two monoids S and T is
the monoid defined as the set ST x T, where S7 is the set of all functions from
T to S, with the operation (f;, t,)(f3, ;) =(f, 1, t3), where f is the function
defined by 1f = tf, (r1,) f5. Given two M-varieties ¥ and W, we denote by
VW the M-variety (M| M <SoT for some SeV and TeW}. Many
interesting decomposition results on varieties are based on this construction.

To define a similar operation for C-varieties it is convenient once more
to use the congruence point of view. Let A*/y be a finite category; we form a
new directed multigraph (N,, 4,), where N, = A*/y and A4, = {([x],, a)|
acA, x,xacA*): the edge ([x],,a) goes from the vertex [x],
the vertex [xa],. Note that all paths in [x], being coterminal, A, is well
defined. For any x, ye A* such that xye A*, there exists a path denoted .y in
the free category A¥ which is defined as follows: if |y| = O then ,y = 1[,] , the
identity path on the vertex [x],: if y = za then .y = z([xz],, a).

The following facts are obvious:

(1) There is a 1-1 correspondence between AY and |,j| xyeA*},

(i) o ~ .y iff uyx and uvyxy,

(i) |,y = |y,

(IV) xy_f = xy xyE'

Let B be a finite-index congruence on Ay. We can now define an
equivalence relation Sy on A* by xfBxyy iff xyy and for all ueA* such
that uxeA* xf,y.

LEmMA 3.1. B=*y is a finite-index congruence on A*.

If xf*yy then xyy so that we must have x ~ y: also note that we then
have ,X ~ ,y and the definition makes sense. Suppose now that xf+yy and
vfxyw. Then xvyyw since y is a congruence. Moreover, X0 = X, U and
JW = ,¥,,W. Since xyy we know that uxyuy: we also have ,Xf.,y and
uxl B u,W so that xv 8 ,yw, and Sy is indeed a congruence. Finally the index
of By is bounded by {4*/y|?|42/B. =

If B is a congruence on A} we will say that § is basic if , X §,y (where x,
y are assumed to start at vertex i} implies ,x f,¥ for all u such that uxeA4*.
Thus, when B is basic, xf«yy iff xyy and X8,

LEMMA 3.2. Let V be a C-variety such that A}/BeV. Then there exists p'
such that AY/f'eV, B' is basic and B’ = B.

Define on A% xp .y iff ,,xB ..y for all w such that wueA4*. It is clear
that f’ is a basic congruence and that ' = B. For any we A* define ¥,: A}
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— A¥ by
(] ¥, = {[wu]y if wue A*,
SO0 [ul, otherwise,
p Z{wuf tf wue A*,
R I otherwise.

It can be verified that ¥, is a well-defined morphism. Since ¥, is
identical to ¥, wherever wyn, there are only finitely many such morphisms:
denote them by ¥,,..., ¥,. We then get 2 ¥,8n...n¥, B and this
implies that A¥/feV. =

Let now V and W be C-varieties. Define V« W = [ A*/d| 6 = 7y where
A*/ve W and A¥/fe W}.

THeorReMm 3.3. Vx W is a C-variety.

If A*/6, eV W and 6, 28, then by definition 4*/3, €V x W Let now
6, 2B, +y, and 8, 2f,*y,: it is direct to check that &, né, 2
(01 By N3 Ba) %{y; Ny,) where o1 A4, ., 2> AT I8 defined by (vl , @
= [u],, and ,X¢; = ,X (note that the occurrence of ,x on the left-hand side is over
AY, .y, whereas the one on the right-hand side is over A}). Hence A*/6, &, €V.

Finally let 6 2 f*y and ¢: B* - A*. We claim that ¢é 2 Y8 ¢y where
¥: B}, > A} is defined by [u],, ¥ = [uep], and X¥ = ,,x¢. Indeed let x
WP * @yy: then x@yy so x@yye. Also X Wf,y implies , x q‘,ﬁlqu—,_ We can
assume that f is basic by Lemma 3.2: hence ,X¢f,y¢ for any veA* such

that v(x) ¢ € A*. This shows that x¢f *yye so that x@dye and xe@dy. Hence
B*/pdeVxW n

We close this section by emphasizing the fact that this definition of
wreath product of varieties reduces to the traditional one when only one-
object categories are used. Also it enjoys all the properties that one would
expect from his (her) one-object experience, e.g. it is more powerful than the
join, ie, Vv W Vs WAWsV, where Vv W= IC| C<C,xC,, C,eV,
C,e W)}, it is associative, i.c., (Ux V)« W = Ux(Vx* W), etc.

4. Conclusion

We have shown that the theory of regular languages could be naturally
extended to categories. This generalization allows one to recover many
important results. In this conclusion, we would like to argue that this
extension is not only possible, but also necessary.

The motivation for going to categories came from the right understand-
ing of the wreath product. In Section 3, we have indicated how to construct
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the wreath product of two categories by introducing a free category A%
which is obtained from C = A*/y. One should note that even when C is a
monoid, this intermediate free system A¥ will have more than one object.
Indeed, given monoids S and T, the “best” possible solution to the equation
S < XoT is a category ([7]. [8]). Several new results on series decomposi-
tions of automata are based on this observation; for example, an effective
characterization of dot-depth one languages was obtained by Knast [3] by
making crucial use of categorical notions.

It can also be shown that the classification of categories in terms of
varieties is finer than the corresponding one for monoids. There are C-
varieties with no corresponding M-varieties. We thus have more building
blocks to express decomposition theorems. For example, [5] studies [amilies
of languages that are defined by unambiguous concatenation: it is shown
that this language operation can be algebraically understood in terms of the
C-variety of so-called locally trivial categories. In monoid land this result is
impossible to express since this C-variety has no one-object interpretation.
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