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We are interested in the intrinsic difficulty (or complexity) of computing an
approximate solution of the linear operator equation Lu = f. Practical
examples of such problems include the cases where L is a known partial
differential or integral operator. Problems of the form Lu = f are typically
solved under the constraint that only partial information about fis available,
such as the values of a finite number of inner products, or the values of f at a
finite number of points. It is of interest to determine when algorithms which
are in wide use are optimal algorithms, i.e, algorithms which produce an
approximation with minimal cost. We are especially interested in determining
conditions which are necessary and sufficient for the finite element method
(FEM) to be optimal. For the cases of elliptic partial differential equations
and of Fredholm integral equations of the second kind, we describe such a
condition, in the form of an inequality involving the order of the problem
and the degree of the finite element subspace. Suppose this inequality is
violated; is the non-optimality of the FEM inherent in the information used
by the FEM, or is it because the FEM uses this information in a non-
optimal manner? The latter s the case; there always exists an algorithm
using this information which is optimal. We also discuss the situation in
which the information used by the finite element method (which consists of
inner products) is not available. Suppose that the only admissible informa-
tion about f consists of evaluations of f. In the case of the Fredholm problem
of the second kind, this information is optimal; moreover, a finite element
method in which the inner products are approximated by quadrature rules is
an optimal algorithm. However, there exist elliptic problems of positive order
for which this new information is non-optimal. In addition, we consider the
solution of ill-posed problems, such as the Fredholm integral equation of the
first kind. We show that in the worst-case setting, there is no algorithm
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whose error is finite. In the average-case setting, we show that finite-error
algorithms exist if and only if the solution operator is “bounded on the
average.” When this happens, we find optimal algorithms and optimal
information, and show that the minimal error goes to zero as the amount of
information goes to infinity,

1. An overview

Information-based complexity (as described in Traub et al. [27]-[29]) is a
new approach to the synthesis and analysis of algorithms. This approach has
been designed especially for problems which cannot be solved exactly with
finite cost. This includes many of the important problems of applied mathe-
matics, such as ordinary differential equations, partial differential equations,
and integral equations.

A rich source of such problems is the approximate solution of linear
operator equations. We are given a known linear transformation L of
function spaces; we wish to find, for some f, an e-approximation to the
solution u of the problem Lu = f. Here, by an e-approximation, we mean an
element u, such that |ju—u,|] <& Furthermore, this e-approximation is to be
found with minimal cost. In order to precisely define cost, we will need a
model of computation; this will be specified later. Hence our goal is to find

(1) the e-complexity COMP (g), which is defined to be the minimal cost
of finding an e-approximation, and

(2) an optimal algorithm ¢,, that is, an algorithm which procedures an ¢-
approximation and whose cost is COMP (e).

In order to do this, we must know something about /. The knowledge
that we have about f is called the information Nf. Most often, this informa-
tion Nf consists of a finite number of linear functionals of f. For example, if f
belongs to a Hilbert space, then Nf might consist of a finite number of inner
products of f, while if f belongs to a space of continuous functions, then Nf
might consist of a finite number of evaluations of f.

As a rule, f will belong to an infinite-dimensional space, since f will
typically be defined on a region containing an uncountable number of points.
But the information which is known about each f is finite. Hence, the
information Nf does not uniquely determine the right-hand side f. (For instance,
if the information consists of the values of f at a finite set {x,, ..., x,} of
points, then for each f there will be an infinite class of functions f such that
f(x,-) = f(x;) for 1 <£i < n) Since there are many f which yield the same
information, we say that the information N is partial. The lack of injectivity
in N allows one to find a (sharp) lower bound r(N) on the error of
algorithms using N. (For reasons of geometry, r(N) is called the radius of
information; see Traub and Wozniakowski [28]), Chapter 1. This implies that
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one can find an e-approximation iff

r(N) <e.

It is desirable to find an algorithm ¢, using N whose error equals r(N).
This means that ¢, has minimal error among all algorithms using N.
Moreover, one can often determine optimal information for each n, 1e,
information N¥ involving n linear functionals such that r(N¥) equals the nth
minimal radius of information r(n) (i.e., the minimal value of r(N) over all N
consisting of n linear functionals). Since N}¥ is nth optimal information, we
see that the algorithm o (which has minimal error among all algorithms

using the information N¥) has minimal error among all algorithms using
information involving N linear functionals.

As promised above, we now define an abstract model of computation.
We proceed in two steps. Our first step is to assume that we are given a class
of linear functionals such that any functional in that class is computable.
(This is sometimes called an oracle model of computation.) For example, if
the function space to which f belongs is a Hilbert space, we might choose the
class of linear functionals to be inner products. If the function space is a
space of continuous functions over some fixed domain, we might choose
function evaluations as our class of linear functionals.

Furthermore, we assume that the cost of evaluating a linear functional is
fixed. This assumption is made only for the sake of simplicity. It can also be
justified by the following example. Suppose we have a procedure for comput-
ing the value of a function at a point; then the assumption of fixed cost
essentially means that we charge for the number of times the procedure is
invoked. The cost of evaluating a linear functional will be denoted by ¢
throughout this paper.

Note that we can now determine the minimal number of linear function-
als needed to find an e-approximation. Since r(n) measures the nth minimal
radius of information, the answer is given by

m(e) =inf {n: r(n) <e}.

Note that this gives a lower bound on the e-complexity of the problem,
namely that

(1.1 COMP(e) = cm(e).

This lower bound is an intrinsic property of the problem. For example, if we
find that m(e) is unacceptably large, then we cannot find an e-approximation
with a cost that we are willing to pay.

Our second step in defining the model of computation deals with the
cost of combining information. Suppose we have found information N,,
consisting of m(e) linear functionals, which is strong enough to compute an ¢-
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approximation. Let ¢, be an algorithm whose error equals r(N,), ie., the
error of ¢, is less than &. How hard is it to implement this algorithm? The
answer clearly depends on the form of ¢,. In many cases, we can (lortunate-
ly) prove that ¢, is linear, i.e., a linear combination of the functionals making
up the information. More precisely, suppose that the optimal information is
of the form

ERn N
N, f= : for »n=m(e).
S
Then there exists functions ¢, ..., g, such that

(Pz(N&;f) = Z j*j(f)g_l
j=1

Since the functions g,, ..., g, are independent of f, they may be precomputed
in advance. If we agree to do this precomputation, then the evaluation of
¢.(N, f) at a point requires at most n scalar multiplications and n—1 scalar
additions. Hence, the total cost of using ¢, to find an e-approximation is at
most

(1.2) (c+2)ym{e)—1.

Comparing this result with (1.1), we see that ¢, is optimal to within a
constant additive factor. Furthermore, since ¢ » 1 in all practical situations
(i.e., evaluation of a linear functional is much harder than an arithmetic
operation), the e<complexity COMP(¢) is essentially equal to cm(e) and is
achieved by the algorithm ¢,.

Although this information-based approach is appealing, there are at
least two reasons why it may be less popular than one might expect. First of
all, it can be difficult to determine optimal algorithms and information for
specific problems. Furthermore, even in situations where optimal algorithms
and information can be determined, they must compete with other techni-
ques which have been used for a long time. This is despite the fact that the
criteria by which these methods were selected may have been ad hoc, having
nothing to do with the (perhaps) more basic goal of finding an algorithm
which solves the problem to within the desired error and which has minimal
cost.

For this reason, it is especially gratifying to find that a “standard”
algorithm is optimal. When this happens, we are not faced with the problem
of trying to apply a general technique for constructing an optimal algorithm
to a situation in which the calculations involved in constructing this algo-
rithm may be expensive. In addition, since a standard technique is now
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shown to be nearly optimal, we do not have to overcome a user’s natural
resistance to abandoning a tried and true method for a novel one.

However, we should point out that classical algorithms are not always
optimal. For example, it has been shown that Gauss quadrature is not an
optimal algorithm for integrating certain families of analytic functions.
Moreover, the penalty for using Gauss quadrature instead of the optimal
algorithm for e-approximation is unbounded as ¢ — 0. (See Kowalski et al.
[18] for details.)

In this paper, we will restrict our attention to regularly elliptic partial
differential equations and to Fredholm integral equations. We shall distin-
guish between well-posed and ill-posed problems. A well-posed problem is
one in which a small change in the input data yield at most a small change
in the output, whereas an ill-posed problem is one in which this is not the
case. (This terminology dates back to Hadamard [16].), We will initially be
concerned with well-posed problems, so that we shall first consider the cases
of elliptic partial differential equations and of the Fredhoim problem of the
second kind. Later on, we shall turn to the Fredholm problem of the first
kind, which is an ill-posed problem.

The finite element method (FEM) is a very popular algorithm for such
well-posed problems in differential and integral equations (see Babuska and
Aziz [4], Ciarlet [7], and Oden and Reddy [20]). The finite element informa-
tion (FEI) used by the FEM consists of inner products (f, s,), ..., (f, si),
where {s,, ..., s,} is a basis for a piecewise polynomial space of degree k. For
each of the problems Lu = f discussed in this paper, we give a simple
condition which is necessary and sufficient for the FEM to be an almost-
optimal algorithm. This condition depends on the degree k of the finite
element subspaces being used and the smoothness r of the right-hand side f.
(More precisely, we assume that an a priori bound is known for the Sobolev
r-norm of f)

We find that the ¢-complexity of an elliptic problem of 2mth order is

O Nrrm)y a5 g0,
and the FEM 1s optimal for this problem iff
k=22m—1+r.
The ecomplexity of a Fredholm integral equation of the second kind is
O ') as -0,
and the FEM is optimal iff
k=zr—1.

For the elliptic PDE, we see that the e-complexity goes to infinity very
quickly (as ¢ goes to zero) if r is close to —m; for the Fredholm integral
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equation, this happens if r is close to zero. This behavior is intrinsic to the
problem, and there is nothing that can be done about it.

Next, suppose the condition [or optimality is violated. Is the non-
optimality of the FEM inherent in the finite element information (FEI) it uses,
or is it because the FEM uses FEI in a non-optimal manner? We show that
the latter is the case; there always cxisﬁs an algorithm using FEI (called the
spline algorithm) which is optimal.

Of course, in order for the finite element method described above to be
defined, one must be able to exactly calculate the inner products comprising
the finite element information. This means that for any f, the exact values of
inner products of f with certain piecewise polynomials must be available.
This is often an unrealistic assumption. It is usually more reasonable to
assume that any f can be evaluated at any point in its domain. If this is the
case, one can define a finite element method with quadrature (FEMQ) using
roughly as many function evaluations as the FEM uses inner products,
where the integrals appearing in the FEM are approximated by a quadrature
rule. It is then reasonable to ask when the FEMQ is optimal. It turns out
that the FEMQ is optimal for the Fredholm problem of the second kind iff

k=r—1;

that is, the FEMQ is optimal for the Fredholm problem precisely when the
FEM is optimal [or this problem. However, the FEMQ is not optimal for all
elliptic problems of positive order. For instance, in the case of a second-order
elliptic problem in one dimension, one can show that the s-complexity
increases from @ (¢~ '"*Y) to @( ') if the only information allowed
consists of evaluation of functions at a point. Hence, the FEMQ is non-
optimal for such problems precisely because it uses non-optimal information.
The preceding paragraphs describe the situation for well-posed problems
in differential and integral equations. However, many important problems
arising in the physical sciences and in engineering are ill-posed. Examples of
such ill-posed problems include
(1) inversion of the Laplace transform, whether the *“usual” transform
defined- over [0, o0) or the finite transform (whose inversion is discussed in
Dunn [11]),
(i) Fujita’s equation relating molecular weight distribution to the
steady-state concentration or optical density in a centrifuged sample (see

Gehatia and Wiff [14]),
(i1i) solving the heat equation backwards in time (see Seidman [25]), and
(iv) remote sensing (see Twomey [30]).

Since a small change in the problem element may cause a large change
in the solution, we see that the reason for the ill-posedness of the problem is
that we are trying to approximate an unbounded solution operator. Perhaps
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the most important source of such problems is the Fredholm problem of the
first kind, which is the case of a solution operator S which is the inverse of a
compact operator L. Note that all of the problems mentioned above are
Fredholm problems of the first kind.

QOur main result regarding ill-posed problems is that they cannot be
solved in the worst-case setting described above. However, they can be solved
in an average-case setting. More precisely, there is no algorithm for solving
an ifl-posed problem whose (worst-case) error is finite. (This result should be
compared to the result of Pour-El and Richards {21].)

“We now outline the structure of this paper. In Section 2, we consider the
case of a two-point boundary-value problem. Although this is a very simple
example it does allow us to illustrate the key points mentioned above. In
Section 3, we describe the results f[or the case of an elliptic partial differential
equation. In Section 4, we discuss the situation of a Fredholm problem of the
second kind. In Section 5, we discuss ill-posed problems. Finally, in Section 6,

we briefly describe some open problems and discuss directions for [uture
research.

2. A two-point boundary value problem

To give the reader the flavor of our results, it will be helpful to look at a
model problem. On the one hand, the description of this problem does not
require a great deal of technical background; on the other hand, the results
that have been obtained for this problem are typical of those for more
general elliptic problems. To this end, we consider the weak solution u of the
two-point boundary value problem

—u'(x)tu(x)=f(x) for O0<x<l,
W 0)y=u(1)=0.

2.1

In order to explain what is meant by a weak solution, we have to use
some standard terminology about Sobolev spaces. Let I =[0, 1]. For any
non-negative integer [, we define the Sobolev l-inner product (-, '), and the
Sobolev l-norm ||-||; by

(2.2) (v, W =Y (o9 () w?(x)dx
i=01
and
i
(23) loll, = (o, v), = {2 J(v" (x))*dx,
=07

respectively. (When [ =0, it is customary to omit the zero subscript.) Then
the Sobolev space H'(I) is defined to be the closure in L,(I) of the set of all

¥ - Banach Center 21
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C*(I) functions whose Sobolev [-norm is finite. (Note that H°(I) = L, (1))
When [ is a negative integer, the Sobolev l-norm is defined by duality, ie,

(24) llell: = sup I(v, wl/lIwll-,

weCpy (D
(with 0/0 = 0). When [ is not an integer, there is a technique known as
“Hilbert space interpolation” which may be used to define the Sobolev I-
norm; see Butzer and Berens [6].
We are now ready to describe the weak form of problem (2.1). Define a
bilinear form B on H'(I) by

(2.5) B(v, w) = [(t' ()W (x)+o(x}w(x)dx Vo, weH (I).
I

Then we seek an element ue H'(I) such that
(2.6) Bu,v)=(f,v) VveH'(D.

Since B(v, v) = ||v||?>, one can use the Lax-Milgram Lemma of functional
analysis (see e.g., Schechter [23]) to see that for any f'e H ™' (I), there exists a
unique ut H'(I) such that (2.6) holds; we write u = Sf to indicate this fact.
Using an integration by parts, it is easy to see that any solution « of (2.1) is
also the solution of (2.6); moreover, if the solution of (2.6) is sufficiently
smooth, it is also a solution of (2.1).

As indicated in Section 1, we only know (for each f) information
consisting of the values of a finite number of linear functionals at f. It is often
assumed that this information is of the form

(f, sl)‘
(2.7) N, f=| :
(f, sn)

Here, |s,, ..., s,) is a basis for a finite element subspace ¥, of H'(I) having
dimension n and degree k. That is, we subdivide the interval I into equal
subintervals. Then &, consists of the space of continuous functions which,
when restricted to each of these subintervals, are polynomials of degree k.
Such functions are called splines, and %, is sometimes called a spline space.
(See e.g., Schultz [24])

Assuming this information N, is available, we can now define an
algorithm for approximating the weak solution Sf of the boundary-value
problem with right-hand side . For each n, this approximation u, has the
form

28) u() = ¥ a5,
j=1
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the coefficients a,, ..., a, being chosen so that
(2.9) B(u,, s)=(f,s) (A <i<n).

Note that u, depends on f only through the information N,. We indicate this
fact by writing u, = ¢,(N, f). The algorithm ¢, is referred to as the finite
element method (FEM) defined by .#,. Clearly, the FEM is an algorithm
which uses the finite element information (FEI) given by (2.7).

Why should one use the finite element method? The FEM has a long
and noble history, with roots stretching back to Galerkin [13] and Courant
[9]. Moreover, the FEM is easily implemented. Formula (2.9) may be
expressed as the solution of an n xn linear system. The coefficient matrix of
this system is banded, with a bandwidth that is independent of n (although it
does depend on k). Hence, the coefficients of (2.8) may be found in time
which is proportional to n.

However, the FEM was derived by an ad hoc criterion (i.e, the
projection of the weak solution into a spline space). Our basic goal is to find
e-approximations as cheaply as possible. What does the one have to do with
the other?

To answer this question, we must decide how to measure the error of
the FEM. In order to do this, we recall two results for the FEM. As above,
we write u = Sf for the actual solution and u, = ¢,(N,f) for the approxi-
mate solution produced by the FEM using .#,. The first result is that the
FEM gives a best approximation in .%,. That is,

(2.10) ISf = @ (Ny Iy = llu—ully = inf Jlu—slly.

se.Sf’n
The second result is a bound on the H!(I)-error in approximating the
solution. That is, if ue H"*2(I) for some r > —1, then there exists a positive
constants C, depending only on k and r, such that

(2.11) llu—unll; < Cn™*|lull, 2,
where
(2.12) u = min {k, r+1}.

This bound may be expressed in terms of f, rather than u, by using the “shift
theorem,” which states that if fe H"(I), then u = Sfe H *2(I); moreover,
there exists a positive constant C, depending only on r, such that

(2.13) CTHISS w2 <N AU < CUSA 4 2

Then (2.1112.13) yield that for any r = —1, there is a positive constant C
such that for every positive integer n,

(2.14) ISf = @a(N. NIl S Cn7*lIfll,  VSfeH ().
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The estimate (2.14) may be rephrased as follows. Let
(2.15) F={feH(D: |Ifll, <1}

denote the unit ball of H"(I). The error e(¢p,, N,) of the finie element
method is defined to be

(2.16) (@, N, = S}l;gllsf—fp..(N,.f)llx-
Then
(2.17) e(@n, Np) < Cn™*.

We now ask whether this estimate is sharp, and whether we can find an
algorithm using finite element information which is better than the finite
element method, in the sense of having smaller error. Here, we define the
error of an arbitrary algorithm ¢ using N, by (2.16), except that now ¢, is
replaced by ¢; that is,

(2.18) e(p, Ny =Sflg>||3f—w(N,.f)I|1-
Recall (from Section 1) that the radius of information
(2.19) r(N,) =infe(g, N,)

?

denotes the minimal error over all algorithms using the finite element
information N,. We then have the following result from Werschulz [33]:

THEOREM 2.1. (1) The error of the FEM is given by
e(p,, N)=60(n*" a n- o,
where p = min {k, r+1}.
(2) The radius of FEI is given by
rIND=0(@n Y a n—ow.
Remark 2.1. We briefly describe a linear algorithm ¢? using the finite
element information N, such that e(e}, N,) =r(N,), i.e, having minimal

error among all algorithms using FEL. Let S*: H'(I)— H'(I) denote the
Hilbert space adjoint of §, i.e,

(59, v} =g, S*v), VgeH (I), VveH'(]).
Recalling that s; is the ith basis function for &,, we let

t;=88%s; (1<j<n).

w(x) = ) a;t;(x),
=1
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where the coefficients a,, ..., &, are chosen so that

Buy,s)=(f,s) (@ <i<n).

Since u¥ depends on f only through the finite element information N,, we
write u¥ = @¥(N, f). The algorithm ¢} is called the spline algorithm using
N,. From the results of Traub and WozZniakowski [28], Chapter 4, this
spline algorithm ¢} has minimal error among all algorithms using N,. =

Hence, we conclude from Theorem 2.1 that the FEM makes (almost)
optimal use of its information iff kK > r+ 1, i.e, we have a condition which is
necessary and sufficient to insure that the FEM is the best method using
FEI. We now ask whether there is any information which is better than finite
element information. Recalling that r(n) measures the nth minimal radius of
information, this question is answered by the following result (see Werschulz
[32] and [33] for details):

THEOREM 2.2. The n-th minimal radius of information is given by

rm=0n""Y) a5 n—oo.w

Hence we see that finite element information always yields the smallest
possible error.

Of course, all of the previous discussion is based on the assumption that
finite element information is available. That is, we have assumed that the

inner products (f, s;) = j‘ f(x)s;(x)dx (for 1 < i < n) can be calculated for any
I

feF. This is often an unrealistic assumption. It is often more reasonable to
assume that f(x) can be evaluated for any feF and at any xe[0, 1]. Of
course, this assumption itself is built on the more basic assumption that f(x)
is defined for any feF and any point xe[0, 1]. By the Sobolev imbedding
theorem (Adams [1]) and the fact that the class F of all rnght-hand sides f is
the unit ball of H"(I), we must now assume that

(2.20) r>1,

since otherwise f(x) will not be defined for every f and x.

If we allow the evaluation of any right-hand side at any point in its
domain, one can then approximate the integrals required by the FEM wvia a
quadrature rule. We describe such a finite element method with quadrature
based on the spline space .#, described above. Recall that the interval I has
been subdivided into equal subintervals I,, ..., I;. On each subinterval I;, let
Xy js ---» % j and @y ;, ..., wy ; Tespectively denote the nodes and weights of a
Gauss quadrature rule, so that

k

(2.21) fwx)dx = ¥ a;;w(x;)),
i=1

I
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with equality if w is polynomial of degree 2k —1. We now rewrite the set of
nodes as {x;, ..., x,} (with 0 <x; <... < x, <1) and the set of weights as
{wy, ..., w,}, with w; being the weight corresponding to the node x;. For
each i, define the linear functional A, approximating the inner product
('! S‘) b)’

(2.22) L(f)= Z wjf(xj) S; (xj)-
i=1
Note that we can compute A,(f), ..., 4,(f) from the standard information
S (xy)
(2.23) N.f = :
S (x,)

(The information N, i5 called “standard” information, because it is more
usual to assume that we can evaluate a function at a point than it is to
assume that we can evaluate more general linear functionals, such as inner
products with finite element basis functions.)

We are now able to define an algorithm, using the standard information
N,, for approximating the weak solution Sf of the boundary-value problem
with right-hand side f. For each n, this approximation i, has the form

(2.29) i,(x) =Y a;s,(x),

i=1
the coefficients «,, ..., a, being chosen so that
(2.25) B(i,, s) = 4(f) (I<i<n).

That is, we replace the integrals appearing in the definition of the FEM by
quadratures. Note that i, depends of f only through the standard informa-
tion N,. We indicate this fact by writing &, = &,(N, f). The algorithm &, is
referred to as the finite element method with quadrature (FEMQ) defined
by &,.

How good is the FEMQ? For the sake of exposition, we restrict our
attention to the case where

(2.26) k>r+1.

The results in Chapter 4.1 of Ciarlet [7] may be used to see that there is a
positive constant C such that for every positive integer n,

(2.27) IS/~ BN NN < Cr7"lifll, Y feH ().
That is, the error of the FEMQ satisfies
(2.28) e(@n, N) < Cn™
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This estimate indicates that the FEMQ may be worse than the FEM

based on the same spline space. That is, since k > r+ 1, the error of the FEM
is @(n~"*Y); this should be compared to the O(n~") estimate of the
FEMQ’s error given by (2.28). Can this degradation in error (when going
from the FEM to the FEMQ) be avoided? The answer, as found in
Werschulz [32] is “no.” More precisely, let

(2.29) Fim) =inf{r(N): x,, ..., x,el}

denote the n-th minimal radius of standard information. That is, F(n) 1s the
minimal error among all algorithms using standard information consisting of
function evaluations at any n points in the interval I. We then have

THEOREM 2.3. The n-th minimal radius of standard information is
Frm=@n"") g n—-w. =

This tells us that (2.28) is a sharp estimate of the error of the FEMQ.
Moreover, although the FEMQ is a linear algorithm, this result shows that it
has almost minimal error among all algorithms using standard information.
Moreover, the loss when going from the FEM to the FEMQ is due to the
fact that standard information is weaker than finite element, information; that
is, the minimal error among all algorithms using standard information is
greater than the minimal error among all algorithms using FEL

We now seek to translate these results concerning minimal error into
results which say when the FEM is (almost) an optimal algorithm; that is, we
seek to determine when the cost of using the FEM for g-approximation
equals the problem complexity COMP(g) (at least to within a constant
factor). In order to do this, we let

(2.30) FEM(g) = inf {cost(¢,): ¢,.is a FEM using FEI
N, such that e(p,, N,) <&}

denote the minimal cost of using the FEM to compute an g-approximation.
We then have the following result from Werschulz [33]:

THEOREM 24.
(1) COMP(g) =0 Y*1) a5 £-0.
(2) FEM(=©E""™ as -6—0, where uy=min{k,r+1}. n

These results may be viewed in two different lights. If we take an
optimistic viewpoint, we see that the FEM is optimal (to within a constant)
for all r satisfying r < k— 1. That is, if we choose k large, then the FEM is
nearly optimal for a wide range of r. Moreover, the FEM itself does not
depend on r. Such results are important, since it may be difficult to
determine the exact smoothness of a given right-hand side f.
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If we choose a pessimistic viewpoint, we can say that the FEM is not
optimal whenever we know that r > k—1. In this case, the spline algorithm
@t using finite element information N, (with n sufficiently large) is an
optimal algorithm for this problem. More precisely, let

(2.31) SPLINE(¢) = inf (cost(@®): ¢* is a spline algorithm using FEI N,
such that e(ey, N,) <e&}.

That is, SPLINE(¢) is the minimal cost of finding an g-approximation with
the spline algorithm using FEI. Then Theorem 2.4 and the results of Section
1 yield that

(232)  SPLINE(e) = O (COMP(g)) = @ (e "*D) as -0,

Moreover, if we let denote the penalty for using the FEM (rather than an
optimal algorithm), we see that

" (2.33) pen(e) = O as e—0,
where
2.34 o1
(234) Tk or+’
so that
(2.35) lim pen(e) = + 0.
. e—0

Hence, the asymptotic penalty for using the FEM instead of an optimal
algorithm when k i1s too small is unbounded.

3. Elliptic boundary value problems

In the previous section, we discussed the situation of a simple two-point
boundary value problem. In this section, we describe how these results may
be extended to general elliptic problems in several dimensions. The results
are all taken from Werschulz [34]). The notation used is the standard
notation for multi-indices and for Sobolev spaces, inner products, and norms,
found in Ciarlet [7]. As before, fractional- and negative-order Sobolev spaces
are defined by Hilbert-space interpolation and duality, respectively.

Let Q < RV be a bounded, simply connected, C* region. Define the
uniformly strongly elliptic operator

L= Y (=1)D(a,Dv),

lal.18] < m

with real coefficients a,;€ C*(£) such that a,3 = dg,. In order to have
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appropriate boundary conditions, let

el <q;
where b;, e C*(0Q) are real-valued and

0<g¢o<...€Gm-1 £ 2m-1.

We assume that {B;}7 is a normal family of operators which covers L on
0Q. To make the boundary-value problem be self-adjoint, we let

m* = min {j: q; = m},
and require that

lagretuv{2m—1—-gq}m L =1{0,...,m—1}.

J=m*
, (See Chapter 3 of Babuska and Aziz [4] and Chapter 5 of Oden and Reddy
[20] for further definitions and illustrative examples.)

We are interested in solving the elliptic boundary-value problem:
For fe H (), where r > —m, find u: € — R such that

(1) Lu=f in &
(2) Bju=0 on d2 (O<j<m-1).
Let

(3.1)

HZ(Q) = {ve H"(Q): Bjv =0 (0 <j < m*—1)}

denote the space of H™(2)-functions satisfying the essential boundary con-
ditions. We define a symmetric, continuous bilinear form B on HE(f2) by

Bv,w)= Y [a,3D*vD%w.
lal,|Bl $m 2

We assume that B is weakly HE(€2)coercive (see p. 310 of Oden and
Reddy [20]). Since B is symmetric, this means that there exists a positive
constant y such that

For any nonzero ve HE (£2), there exists nonzero we HE (£2) such that
(3.2) |B (v, w)| 2 |0l |Wllm-

We now define the variational boundary problem as follows. Let r > —m.
We wish to solve the following problem:

For fe H"(Q), find u = Sf € HF () such that
(3.3) Bu,v)=(f,v)=[fo Yve HZ (D).
Q
From the Generalized Lax—Milgram Theorem (Theorem 5.2.1 of Babuska

and Aziz [4]), S: H (Q)— HF (L) is a well-defined bounded linear transfor-
mation.
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As in the previous section, we assume that we know information
consisting of the values of a finite number of linear functionals of any right-
hand side f. Once again, it is often assumed that this information is of the
form

(f’ sl)
(3.4) N,f= : ,
(/. sa)
where {sy, ..., s,} is a basis for a finite element subspace #, of HE(£2) having

dimension n and degree k. We assume that the family {¥,}%, of finite
element subspaces is guasi-uniform (Oden and Reddy [20], p. 272). Of course,
since the region Q is C®, we must make an additional assumption about the
boundary elements to guarantee that ¥, < HF (£2) in the situation where (3.1)
is not a Neumann problem. (For instance, we may use curved elements as in
Ciarlet and Raviart [8])

We now seek to approximate, for a right-hand side f, the solution §f of
the problem (3.1). This approximation u, will be found by requiring that
u,e¥, (so that u, has the form (2.8)) satisfy

(35) B(um si) = (f’ si) (1 i< n)-

Since u, depends on f only through the information N,f, we write u,
= @,(N,f). The algorithm ¢, is once again called the finite element method
(FEM) using the finite element information (FEI) N, which is defined by .#,.

We may now ask whether or not the FEM is optimal for this problem.
In order to do this, we must first decide how to measure the error. Following
the ideas of the previous section, let us measure the error of an algorithm ¢
using information N by

(3.6) e(p, N)= Sflg_)”Sf—‘P(Nf)”l-
Here, F is the unit ball of H (), ie.,
(3.7) F={feH(Q): |fll, <1},

where r must be chosen so that
(3.8) r=—m.

Note that we are now measuring error in the Sobolev l-norm. In what
follows, we will require that

(3.9 0<l<m and k=2m-1-1I

(See Remark 3.1 of Werschulz [33] for further discussion.)
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Standard results (see Babuska and Aziz [4] or Oden and Reddy [20] for
details) yield a bound on the error of the FEM of the form

(3.10) e(@n N,) < Cn~®rm= 0N,
where
(3.11) p=min{k+1—m, m+r}.

Once again, we ask whether the estimate (3.10) is sharp, and whether we can
find an algorithm using FEI whose error is smaller than that of the FEM.
The answer is given by the following result from Werschulz [34]:

THEOREM 3.1. The error of the FEM is given by
e(@p, Np) =@ (n™#*™"9%) a5 n— oo,
where u is given by (3.11). The radius of FEI is given by
rN)=O(n ¥y g5 now. =

Remark 3.1. As in Section 2, the spline algorithm ¢} is a linear
algorithm using the finite element information N, which has minimal error
among all algorithms using FEI. (See Traub and Wozniakowski [28] Chap-
ter 4, for details.) =

Hence, we conclude from Theorem 3.1 that the FEM makes (almost)
optimal use of its information iff k> 2m—1+r. As before, we now ask
whether there is any information which is better than finite element informa-
tion. The answer to this question is given by the [ollowing result from
Werschulz [34]:

THEOREM 3.2. The n-th minimal radius of information is given by
r(N) _ @(n—(r+2m—[)/N) as n— .

Once again, finite element information always yields the smallest pos-
sible error.

As before, we translate the results on minimal-error algorithms into
results on complexity. As in the previous section, we let COMP (¢) denote the
(intrinsic) e-complexity of the problem; FEM(¢) denotes the complexity of
using the FEM to find an e-approximation. We then have the following
result from Werschulz [34]:

THEOREM 3.3. (1) COMP(g) = @ (¢ Mr+2m~D) g5 ¢ - 0.

(2) FEM(e)=@( Mw*tm=Dy g5 £—0, where py=minlk+1—-m, m
+r}. [

Viewed in an optimistic light, this result says that the FEM is optimal
(to within a constant) for all r satisfying r < k+1—2m. The pessimistic
interpretation of this result is that the FEM is non-optimal whenever r > k



476 A. G. WERSCHULZ

+1-2m. In this latter case, one can show (as in the previous section) that
the asymptotic penalty for using the FEM, rather than the spline algorithm
using the same finite element information as the FEM uses, is unbounded.

4. The Fredholm problem of the second kind

In the two previous sections, we dealt with boundary-value problems for
elliptic differential equations. In this section, we consider an integral equa-
tion, namely the Fredholm problem of the second kind. There is a vast
literature dealing with the numerical solution of these problems. See, e.g., the
books Anderssen et al. [2], Atkinson [3], Baker [5], Delves and Walsh [10],
Golberg [15], and te Riele [22], as well as the survey article Ikebe [17].

The complexity results in this section are all taken from Werschulz [35].
Although we will describe these results in a Hilbert space setting (i.e., error is
measured in the L,-norm), the results of Werschulz [35] are established in an
L,-setting, where pe(l, o). These results in Werschulz [35] include, as a
special case, the results of Emel’yanov and ITin [12], which appear to be the
first results on optimal algorithms for the Fredholm problem of the second
kind.

Let I denote the unit interval [0, 1] and let r be a non-negative integer.
Let k: I xI >R be a function such that 3k is continuous for 0 <j <r,
where & denotes the jth partial derivative with the ith variable. Define a
linear operator K: L,(I)— L,(I) by

(4.1) (Kv)(x) = [k(x, y)v(y)dy.
1

Then K is compact. We also assume that 1 is not an eigenvalue of K. Set
[ ]

4.2 L=I-K.

Then L is an invertible bounded linear operator on L,(I), ie, L has a
bounded inverse on L,(I).
We are interested in solving the Fredholm problem of the second kind:

For fe H'(I), find u = Sf e L,(I) such that
4.3) Lu={.

By the remarks above, S: H"(I) — L, (/) is a well-defined bounded linear
transformation.

As always, we only know (for each f), information consisting of the
values of a finite number of linear functionals at f. It is often assumed that
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this information is of the form

(fr sl)
(4.4) Nf=Y & |

(f’ Sﬂ)

where |s,, ..., s,! is a basis for a finite element subspace ¥, of L,(I) having
dimension n and degree k. That is, we subdivide the interval I into equal
subintervals; then S, is the space of functions whose restriction to each of the
subintervals is a polynomial of degree k. Note that the only difference between
%, as defined here and as defined in Section 2 is that interelement continuity

was imposed in Section 2, but that no such requirement is made in this
section. -

For a right-hand side f, we seek to approximate the solution Sf of
problem (4.3). An approximation u, will be chosen by requiring that u, €.%,
(so that once again, u, has the form (2.8)) and that

(4.5) (Lu,, s)=(f,s) (<i<n).

Since u, depends on f through the information N, f, we write u, = ¢,(N, f).
Once again, the algorithm ¢, is called the finite element method (FEM) using
the finite element information (FEI) N, which is defined by .¥,.

Does the FEM make optimal use of finite element information? Is FEI
optimal information? In order to answer these questions, we must once again
specify how to measure the error of an algorithm. Let us agree to measure
the error of an algorithm ¢ using information N by

4.6) e(¢, N) = suplISf— o (Nl
JeFf

where F is once again the unit ball of H"(), i.e,
4.7) F={feH: lfl, <1}.

That is, we measure error in the norm of L,(f) = H°(I).
We then have the following results of Werschulz [35]:

THEOREM 4.1. (1) The error of the FEM is given by
e(@,, NJ=©0((n™*) as n—oo,

where p = min{k+1, r}.
(2) The radius of FEI is given by

r(N)=60((n"") as n—oo.
(3) The n-th minimal radius of information is given by

r)=On') a n—-oo. =
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Thus we see that the FEM makes (almost) optimal use of its informa-
tion iff k = r—1. However, FEI is always optimal information (at least to
within a constant factor). Furthermore, there exists a linear algorithm using
FEI, called the spline algorithm, which has minimal error among all algo-
rithms using FEl. From this, we see that the spline algorithm using finite
element information N, has (almost) minimal error among all algorithms
using information involving n linear functionals.

Of course, the previous discussion has based on the assumption that the
inner products required by the FEM are available. That 1s, we assume that
for any feF and for any finite element basis function s;, we are able to

compute jf(x)si (x)dx, Oiten, this is not the case. As in Section 2, it is more
I

common to assume that we can evaluate f(x) for any fe F and at any xel.
Of course, we must assume that r > 1 in order for f(x) to be defined; since r
is a non-negative integer, this means that we now must assume that r > 1.

If we now allow the evaluation of f(x) for any f and any x, we can then
describe a finite element method with quadrature for this problem. The
details are almost the same as those in Section 2, except that we now require
the points x, ..., x, of evaluation to be the nodes of a piecewise (k + 1)-point
Gauss quadrature rule. Thus we once again have an approximation 4; of the
linear functional (-, s;) (which is now exact for piecewise polynomials of
degree 2k+1). As before, we can compute 4,(f), ..., 4,(f) from the standard
information

f(x1)
(4.8) N.f=|

S(x,)

Since we are going to replace integrals by quadratures in the right-hand
side, there i1s one further place where this replacement can be done. Recall
that the approximation produced by the FEM has the form (2.8), i.e,, a linear
combination of the finite element basis functions. The vector a of weights is
found by solving a linear system of the form Ga = §, where 8; =(/, s;) and
G;; = (Ls;, s;). So far, we have decided to replace f§ by B, where B, = A,(f). In
practice, the inner products appearing in the coefficient matrix G would also
be replaced by quadratures (using the same nodes and weights as those used
in approximating the inner products on the right-hand side). This leads to a
new bilinear form B, such that

4.9 B,(v, w) = (Lv, w).

We are now ready to define a finite element method with quadrature.
For a right-hand side f, an approximation i, €.¥, is chosen such that

(4.10) B,(@d,, s) = A4(f) (1<i<n).



INFORMATION BASED COMPLEXITY AND OPERATOR EQUATIONS 479

Since ii, depends on f through the standard information N,, we write i,

= $,(N, f). The algorithm @, is said to be the finite element method with
quadrature (FEMQ) defined by %,.

How good is the FEMQ? From Werschulz [35], we find
THEOREM 4.2. The error of the FEMQ satisfies

e(¢,, N)=©n"* as n— oo,

where p=minlk+1,r}. ®»

Thus the FEMQ is as good as the FEM. Moreover, when k 2= r—1, the
FEMQ has almost minimal error.

Finally, we translate these minimal-error results into results on complex-
ity. As before, COMP (¢) denotes the intrinsic e-<complexity of the Fredholm
problem, while FEM{¢) and FEMQ(¢) denote the complexity of using the
FEM and the FEMQ (respectively) to find an e-approximation. We then
have the following result from Werschulz [35]:

Tueorem 4.3. Let p=min{k+1, r}. Then:

(1) COMP(e) =@ (e" ") as ¢ - 0.

(2) FEM(e) = O (e~ ') as ¢ =+ 0.

(3) FEMQ(() =@ ) as e—0. =

As in the previous sections, this theorem can be viewed in either an
optimistic or a pessimistic light. The good news is that both the FEM and
the FEMQ are optimal (again, to within a constant) whenever r < k+ L.
However, the bad news is that the FEM and FEMQ are non-optimal
whenever r > k+1. When r > k+1, one can once again show that the.
asymptotic penalty for using FEM or FEMQ, rather than the spline algo-
rithm using FEI (which is optimal) is unbounded.

S. Ill-posed problems

In this section, we consider the case of an ill-posed problem. We report the
results which will appear in Werschulz [36]. We are given normed linear
spaces F; and F, (where F, is infinite-dimensional), as well as an unbounded
linear operator

S:DcF,—F,,

D being the domain of the operator. In the worst-case setting, our goal is to
approximate Sf for all f in a given class F, of problem elements. In what
follows, we will take F, to be the set of all elements of D whose norm is at
most one

Fo={feD: |fii<1}.
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As we have noted in previous sections of this paper, we do not really
“know” the problem elements f when trying to determine Sf. Instead, our sole
knowledge Nf of f is generally given by the values of n functionals at f, i.e,

A (f)
Nf=|" :
2 (f)
Thus, information is an operator
N: Fo—R".

Such information is used by an algorithm, which is a mapping
@ Dcp_"FZv

where D, denotes the domain of ¢. We wish @(Nf) to be defined for any
problem element f € Fy, and so we require that N(Fo) = D,. We measure the
quality of an algorithm ¢ using information N by its (worst-case) error

e(p, N) = sup ||Sf— o (Nf)Il.
JeFg
In what follows, we asume (for simplicity) that N is continuous linear

information, ie. that the functionals A,,..., 4, of which N consists are
continuous linear functionals. We then have

THEOREM 5.1. There is no algorithm using linear continuous information
whose error is finite. That is, for any continuous linear information N and for
any algorithm ¢ using N,

e(p, N)=0. =

Actually, things are even worse than this. In Werschulz [36], we show
that the class of permissible functionals of which the information consists can
be extended to include non-continuous linear functionals, linear functionals
chosen adaptively, and certain classes of nonlinear functionals.

Hence, there is no hope for solving such problems in the worst case.
However, they can sometimes be solved in an average-case setting, as studied
in (e.g.) Wasilkowski and Wozniakowski [31].

Once again, we are given a linear unbounded solution operator

S:DCFl_’Fz,

where F, and F, are now separable Hilbert spaces. However, we now
assume that S is a closed linear operator. In addition, we are now given a
complete Gaussian measure p (with zero mean element and covariance
operator S,), defined on the Borel field 4 (F,), which is the o-field generated
by the open subsets of F,. (See Kuo [19] and Skorohod [26] for details and
further background material concerning measures on Hilbert spaces.)
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In what follows, we assume that the domain D of the solution operator
is of full measure, i.e., that

u(D) = 1.

This is a reasonable assumption, since we are interested in average behavior
over the domain D of the solution operator S, ie, we require g to be a
probability measure over D.

We now consider information and algorithms for solving such ill-posed
problems in the average setting. As before, information N of cardinality at
most n will be a bounded linear operator

N: F,—-R";

that is, we only consider linear continuous information. Thus, we only
consider information operators having the form

s 1)
Nf = : VfeF,
(f, f»
where f,, ..., f, are elements of F,. An algorithm ¢ using N is then a
mapping
¢: N(Fy) = F,

such that ||@(N)||* is u-measurable. Given an algorithm ¢ using N, its
(average) error ¢*“(¢) 1s then defined to be

(@, N) = [[ISf— o (NI u(d]'>.

Clearly, the error of any algorithm is well-defined; it may be infinite.

Given information N, we seek the minimal average error among all
algorithms using that information. This is given by the average radius of
information

r**(N) = inf {&"* (¢, N): ¢ using N}.
An algorithm ¢* using N is said to be an optimal (average) error algorithm
using N if
eave((p*’ N) — rd\l(:(N)
For such inlormation N, we now construct the spline algorithm, which
will be a linear algorithm of central importance. We assume without loss of

generality that card N = n, so that f{, ..., f, are linearly independent. Hence,
we may also assume without any loss of generality that

S, )= TS Hu@)=46; A <i, j<n).
Fy

31 — Banach Center 21
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Define P: F, — F, by
=1 .

Pf is said to be the spline interpolating fe F,. Since PfeS./*(F)) = D, the
spline algorithm ¢@* given by

o* (NJ) = SBf = . (1) S5,

is well-defined lor every fe F,. Of course, ¢* is a linear dlgorithm using N.
We then have
THEOREM 5.2. The spline algorithm ¢* is an optimal error algorithm.
Moreover,

(9%, Ny = r(N) = [IS/II” u(df)— 3 1ISS, HI*]">.
D i=1
Hence

PNy <o i [ISMI2u(d) <. w

This theorem may be rephrased as follows. Let us say that S is bounded
on the average if

JUSFII? pdf) < oo.

Then, for any information N, the average radius of information r(N) is finite if
and only if S is.bounded on the average. In other words, there are no finite-
error algorithms unless S is bounded on the average. Furthermore, when this
occurs, we see that-the radius is finite, and that the spline algorithm is an
optimal error algorithm which is linear.

Assuming that S is bounded on the average, we can determine nth
optimal information in terms of the spectrum of the operator (SS}/3)*(SS1/%).
The spline algorithm using that information is an nth minimal error algo-
rithm. For further information, see Werschulz [36].

6. Summary, open problems, and future directions

In the previous sections, we discussed how information-based complexity has
been applied to the e-approximation of certain differential and integral
equations. For well-posed problems, we found that if the degree of the spline
space i1s properly chosen, depending on the smoothness of the right-hand side
f and the order of the operator L, then the classical FEM is optimal.
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Although the implementation of the FEM is not trivial, much work has been
done on this area, and this problem is well-understood. When the FEM was
non-optimal, we found that the fault lay with the fact that the FEM used its
information in a non-optimal manner. In fact, one could always find a
method, using the same fnite element information that the FEM used, which
was optimal. On the other hand, we found that for ill-posed problems, there
is no algorithm with finite error in the worst-case. However, for the average
case, we found that the problem is solvable, provided the solution operator is
bounded on the average.

What else can we expect from the application of this approach to the
solution of differential and integral equations? In this section, we describe a
few possible areas of attack. The list is by no means intended to be
exhaustive.

The first thing Yo note is that for the operator equations Lu = f
considered in this paper, the norms used to measure both the smoothness of
a right-hand side f and the error in the approximation of u were Hilbert
Sobolev norms. These are by no means the only norms of interest. For
instance, we might need a good pointwise approximation of u, so that an L
error estimate is required. Analogously, the smoothness of f might be
measured by a non-Hilbert Sobolev norm. Hence, we are interested in
determining the e-complexity of Lu = f, where f is in the unit ball of one
Sobolev space, and the error is measured in the norm of another Sobolev
space. In particular, it is important to know under what circumstances the
FEM is optimal for such problems.

The reader has probably noticed a certain similarly in the resuits of the
previous sections. Of course, Section 2 is merely a special case of Section 3;
however, no such easy relation exists between the partial differential equation
in Section 3 and the integral equation in Section 4. Is there a common
framework which ties these areas together? I so, is there a common
explanation of the resuits of Section 3 and 4? What further results can one
obtain from this common viewpoint?

Note that all of the results of this paper were expressed using @-
notation. Except for the case of simple model problems, we do not known
the value of the @-constants. The important problem of determining these
constants (or even of determining explicit bounds for them) should be
investigated. We suspect that this problem will be quite difficult.

The next item of interest is to consider nonlinear problems, such as

(5.1) —u’(x)=f(x,u(x), u'(x)) for O<x<l

(subject to some boundary conditions). Under what conditions on f can we
find an e-approximation for positive ¢?2 When is the FEM an optimal
algorithm? If the FEM is non-optimal, can we find an easily-implemented
algorithm that is optimal?
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The results reported in this paper depend highly on the fact that these
problems admit “shift theorems” which relate smoothness in f and smooth-
ness in u. For example, the fact that shift theorems hold for certain elliptic
problems (see Babuska and Aziz [4], Chapter 3 and Oden and Reddy [20],
Chapter 8) was used in establishing the results described in this paper. There
are a number of situations (such as problems with shocks) in which shift
theorems do not hold. What does the information-based approach have to
say about such problems?

Finally, note that all of the results of this paper were given in terms of a
worst-case setting, under the assumption that the information was free of
error. One should also determine the situation for an average-case setting (in
which the worst-case error is replaced by an average-case error), as well as
an asymptotic setting (in which we are interested in optimizing the rate of
convergence for a fixed right-hand side). Furthermore, since it is generally
unrealistic to assume that the information is error-ifree, it will be important
to determine what happens when the information is contaminated by error.
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