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This is an introduction and review of the first results concerning algebraic and unitary
equivalence in the noncommutative ergodic theory of infinite particle quantum systems.

1. Introduction

DEerFINITION. C*-dynamical system is a pair (U, a,) where U is a C*-
algebra and «, is a strongly continuous one—parameter group of * —
automorphisms of 2. Two such systems (%, o) and (2, «,) are called
(algebraically) equivalent iff there is * — isomorphism y: 2 — U such that
Yot = o Y.

One can easily obtain a large number of examples of equivalence
between different C*-dynamical systems. The simplest examples may be
described as follows: let ¢#* and €'#" be unitary groups in Hilbert spaces #
and . If H and H' are unitarily equivalent then there exists a unitary
W: # — #" such that y(B) = WBW* establishes the algebraic equivalence
between (#(#), o) and (B(H#), ;) where B () is the C*-algebra of all
bounded linear operators in # and «(B) = et Be~ it 'We shall call this
type of algebraic equivalence the unitary equivalence.

Surely enough such examples will have no concern with interacting
infinite particle systems. The situation here is quite the same as in classical
ergodic theory: many deep theories (which are in a sense finite-dimensional)
and no approaches to the systems of statistical mechanics (except of course
the free ones). So the famous “ergodic problem” in statistical mechanics from
the mathematical point of view has no example to support the so called
“ergodic hypothesis” in spite of some recent speculations.

There are two different classes of translation invariant equilibrium states
in quantum statistical mechanics: ground states and KMS (temperature)
states. One can consider the problem of unitary equivalence for the GNS
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representations w.r.t. these states. For ground states, in ﬁlany cases one can
obtain spectral information about GNS Hamiltonian Hgyg, which heavily
supports the hypothesis of asymptotic completeness: Hgys is unitarily equi-
valent to the direct sum of free systems. It seems interesting to elaborate the
classical ground state dynamics: this can be defined e.g. for oscillators in the
sites of ‘a crystall lattice if in the initial moment we excite a finite number of
them.

Contrary to the case of quantum and classical translation invariant
KMS states there no results in this direction. We note also that the related
problem of convergence to the equilibrium can be treated by the same
technical means (e.g. perturbation series) as the problem of deriving Boltz-
mann or Landau equation. For the latter more simple problem there is no
mathematical proof even on the formal level, i.e. term-by-term in the
perturbation theory series, see [10].

Here we consider only the non-translation invariant case. Heuristically
this means that particles interact only if they are in some fixed domain Q
and move freely outside 2. We note that on the formal level (term-by-term in-
perturbation theory) some of our results are contained (and in fact are
among the most important results) in the classical monographs by Friedrichs
(1], Ch. 3 § 9-15, and Hepp [2], Th. 2.8. Actually we have succeeded in the
proof of convergence of these series, [3].

2. The main constructions

CAR-algebra. Let A = A(I>(Z")) be the CAR-algebra over 12(Z), ie.
CAR-algebra generated by a(f), f €l?(Z"), where the anticommutation rela-
tions are fullfilled

" a(f)alg)+a(@)a(f) = a*(f) a*(g)+a*(g)a* (/) = 0,
a*(f)a(g)+alg)a*(f) =(/, 91
and we assume that (f, g) is antilinear in g.
Free dynamics. Let h be a selfadjoint operator in / 2A(Z"). Then we define
2 @ (a(f) = a(e™ ).

This uniquely defines a C*-dynamical system (2, a,). An equivalent defini-
tions is

A3) o (a(f) =e4™a(f)er™
where in the Fock representation
(4) dr(h) = HO = Z cxy a: ay’ cxy = (h(sxs 6)7)

Further on we assume that h = —A4+ul, 4 is the lattice laplacian.
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Perturbed dynamics. Let V = V* be a finite sum of terms
a*(fy)...a*(fmalgy)...a(gs)
where f;, g; have finite support. Then a; can be formally defined by
al (A) =M de ™™, H=H,+eV '

and non-formally by the series

G o (4 =a(4)
+Y G f...f  [w, D), [a,(V), ... [, (1), 0 (A)]...]] dt, .. .dt,
n=1 0<t) <...<ty<t
which can easiely be proved to converge for any finite t.

Méoller morphisms. y (direct) and 7 (inverse]J if they exist are defined by

y(A4) = s—lima¥,(,(A)),

t—a

7(A4) = s—limoa_, (af (A)).

t—®

From the equation
d, . . .
E(')’t (A)) =ifa_ (V), 7:(4)]
where 7,(4) = a_, (o) (4)) we get the series

6 %A=4

[ o]

+Y G [...f  [e-, V).l (1), A].. ]dt, ... dt,.

n=1 0<ty <...<t,<t

The main convergence result

.THEOREM..If v =3, m+n is even, ¢ is sufficiently small then for any A of
the form
A= a*(hl).;.a*(hp)a(hp+1)...a(hp+q)

where h; have finite support the series (6) for t = oo and the similar series for
y(A) = y, (A) are absolutely convergent. Otherwise speaking y(A) and 7(A) are
analytic in ¢ in a small neibourghood of 0. This statement is uniform in h;, i.e.
holds for |e¢| <&, where &, does not depend on h;.

For a proof see [3].
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3. Algebraic equivalence

From the main convergence result easily follows the existence of direct and
inverse Mdller morphysms. It is evident that

=y =1
and
ay = ya.

This gives the desired equivalence between (2, o) and (2, /).

For any C*-algebra 2 let us denote by * the set of states on A and
for any morphism a: A; — 2, of C*-algebras let us denote by a*: A} — AF
the dual morphism. '

Ergodic and mixing properties

We can reduce the problem of convergence to equilibrium or different mixing
properties for a) to the similar problem for the free dynamics «,. E.g. we
have the following

CoROLLARY. If w and ' are states on U then

@) o > o
t— o

@)*(y*w) - y* o'

t—

4. Unitary equivalence

Let w, be the unique B-KMS state wr.t. a, and w, — the unique B-KMS
state wr.t. af (see [4]). Then by Theorem 2 of [5] wy (y(A)) = wo(A).
Let us denote by (#,,, ., , 2,,) the cyclic GNS representation w.r.t.

wy and let exp(itH,,) be the unitary group implemented by a/ in this
representation. Similarly let ¥, , n,,, ©,,, H,, be the same objects for
Wg, %-.

CoroLLAry 1. H,,, and H,, are unitarily equivalent.

For a proof see [3]. It is quite easy due to above remark. For the
ground states the situation is more complicated.

DeriniTiON. We say that V does not polarize the vacuum if for all
monomials in V we have m > 0 (therefore n > 0).

The following Corollaries 2 and 3 were proved by Botvich and Aizen-
stadt in their Candidate Theses.
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Let Hy =drI'(h) be the free Hamiltonian in the Fock representation
(#,n, Q) of A

CoroLLARY 2. If V does not polarize the vacuum Q then H, and. Hy+V
are unitarily equivalent in #.

~ Proof. We shall prove the existence of u and #, the direct and inverse
Moller morphisms in #. E.g. if A* = a*(f})...a*(f,) then (we write Hy+V
instead of Hy+¢V)

UA*Q = lim e "™ Mo 4x

t—®
= lim(y, A*)e
= lim(y, A*) Q = (yA*) Q.

—itH(Hpy+V) itH
077700

CoroLLARY 3. If u > 0 (i.e. there is a mass gap) and V does polarize the
vacuum then Hy+V is unitarily equivalent to H,—¢ey1 for some ¢y .

Proof. By standard perturbation theory of isolated eigenvalues ther is an
eigenvector Q, of Hy+ V that

(H0+ V)QV = EVQV-

Any vector of the Fock space is cyclic w.r.t. 9 so the Fock space is the
closure of the linear span of the vectors

a*(f))...a*(fda(fas1) ... a(fosm) Qv
where
a*(f) = ya*(f).
Let us prove that

d(f)QV =0.

In. fact,
ol o a(f)Qy 2a(f)Qy

but also
e 2 a() Q|| = lle

So the Fock space is spanned by a*(f;)...a*(f) Qy.
We define a linear operator U by

Ua*(fy)...a*(f)2=a*(f)...a* (fI Q.

—il(H0+ V)

a(@"f) ll = lla(eé™f) Q|| -0
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U is unitary since a* (f) satisfy the same CAR relations as a* (f). Then
SNy (£,)...a*(f) Q
=" ax(f). L (£ 2y
=" (a* (fy)...a* (f))e " TV
= e "Vy(e""o(a* (f))...a* (f))e ""0)Q,
=e "V ax(ethf)...a* (e f) Q,
= UMM ax(£)...a*(f) Q

or
it(Ho+V) it(Ho—ey
e' 0 U= Ue'( 0~f ).

One can give another characterization of U. Let us denote P, and P, the
orthogonal projections onto 2 and , respectively. Then by Theorem 2.5 of

[2]

. —it(Ho+V) itH —itHy it(Hg+V)
Py=lime "% e 0Pje "% 0 =

t—+aw
Moreover, P, is analytic in ¢. In other words y can be lifted up to be an *-
automorphism of the weak closure ' = A(#) of W So y is unitarily
implementable. Moreover yA is analytic in ¢ for all A from a dense (in the
weak topology) subset of 4 () or UF is analytic in ¢ for all F from a dense
subset of .
The same question in the situation when there is no mass gap is open.

2

Remark. These results can be easily translated to the case when we take
L,(R") instead of 12(Z") and V has sufficiently smooth kernel with bounded
support (i.e. the case dealt with Hepp’s book [2]).

S. Particle in a gas

Now, there are a lot of equivalence results for the case where instead of CAR
algebra A we consider the tensor product AR MM, where M, is the C*-
algebra of 2 x2 matriceés and ® can be understood in the usual sense or in
the sense of superalgebras. This may be called the spin interacting with the
fermi-gas. The results will be published in [6] and elsewhere.

Now we describe the result by Domnenkov about the interaction in a
bounded region of a Schrodinger particle on Z¥ with the free fermi-gas. We
consider two C*-dynamical systems (U ® Com, «,) and (A ® Com, o;) where
Com is the C*-algebra of compact operators in [2(Z"). The free dynamics a,
is implemented by the Hamiltonian '

Hy,®1+1Q®Hh
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where H, acts in the Fock space # as (12(Z") and h = —4 acts in 12(2").
The dynamics &) is implemented by

Hy®@1+1Q@h+VRV’
where Ve is of the type considered earlier and V' eCom is of the’ type
Y (fi, ') f; where f;€l*(Z") have finite support. In [7] the equivalence of

i=1

these two C*-dynamical systems is proved. It is rather interesting that, due
to the presence of the compact tensor component, the proof of the corres-
ponding convergence result is essentially simpler.

The above results can be applied to problems concerning finite open:
systems, see [11].

The proof of equivalence of some translation invariant systems (specifi-
cally a particle translation invariantly interacting with the ideal gas) is of
ultimate importance. Together with infinite vacuum renormalization we have
been ‘mass renormalization. Up to now only analogues of direct Méller
morphisms have been constructed (i.e. Haag—Ruelle scattering theory), see
[8], [9]. Of interest is also the lattice fermi-gas with translation invariant
interaction without vacuum polarization and mass renormalization, i.e. when
n,mz22.
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