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0. Introduction

It is the objective of this paper to derive a functional analytic approach to
interpolation in the algebra C(E) of continuous real valued functions defined
on a compact metric space E. We will study a class of interpolation
projectors on C(E) whose null spaces are determined by their precision sets.
The basic tool is the Stone characterization of closed ideals in the algebra
C(E). We will establish algebraic properties of interpolation projectors by
showing that products and Boolean sums of commutative interpolation
projectors are again interpolation projectors determined by their precision
sets. Furthermore, we will indicate the use of the functional analytic method
of parametric extension [2] to the construction of interpolation projectors on
product spaces.

1. Closed ideals

Let E be a compact metric space. A linear subspace J of C(E) is an ideal if
for any feJ and g €C(E) the product fg is again an element of J. To
describe ideals we introduce for any closed subset T of E the function set

C(EIIT) = \f€C(E): flr =0).

It is easily seen that C(E||T) is an ideal of C(E) which is in addition closed
with respect to the norm topology of C(E). Moreover, the following relations
are true:

(1 C(E||Q) = C(E),
(2) C(E|IE) = 10;,
A3) T, < T, « C(E|T) = C(E|IT,).

(89]
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It is the content of the basic theorem of M. H. Stone that every closed ideal
J of C(F) is of the form C(E||T) for some closed subset T of E. In the
following we present the main ideas of the proof of this result (see also
Semadeni {6] and Stone [8]).

Let V be a closed linear subspace of C(E). Then Z (V) denotes the set of
common zeros of all feV. Obviously, Z(V) is closed and the following
relations are easily established:

4) Weh=2WV)cZ),

(5) Z(,0})) = E,

(6) | z(c)=0.

In particular, we have for any closed subset T of E:
() Z(C(EIT) =T.

If V is a closed subspace of C(E) and Z{(V) is its zero set we have the
inclusion

@®) V < C(EIZ(V)).
We will show that for closed ideals J the sharper relation
J = C(EIZW))
holds. ,
PROPOSIT!ON' 1. Let J be a closed ideal in C(E). Then we have
|f1ed for all fed.

For a proof of Proposition 1 which is based on the binomial series we
refer to Stone [8], p. 54. Note that

sup if, g} = (f+g+1f—4/2,
infif, g} =(f+g-1f—4gD/2.
It follows that a closed ideal J in C(E) is also-a vector lattice, i.e.,
sup {f, g}, inf{f, g} eJ (f,g€J).
ProrosiTiON 2. Let V be a nonvoid subset of C(E) such that

sup \f, g}, inflf, g} eV for all f,g€eV.

Then a sufficient condition for a function f € C(E) to be in the closure V™ of V
is that, whatever the points x, y in E and whatever the positive number &, there
exists a function f., in V such that

If(X)=fo() <&, S-S0 <e.
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For a proof of Proposition 2 we refer to Stone [8], p. 35, and Semadeni
[6], p. 115.

Proposition 1 is due to Stone [8]. It is used in combination with
Proposition 2 to characterize closed ideals in C(E). For the case of compact
metric spaces we include a simplified proof of this result (see Stone [8] and
Semadeni [6], p. 119).

THEOREM 1 (Stone). Let J be a closed ideal with zero set Z(J). Then the
relation

©) CENZW)=J
is true.

Proof. 1t follows from the definition of Z(J) and C(E||Z(J)) that
(10) J = C(EIZ ().

In view of Proposition 1 we may apply Proposition 2 to V= J. Assume now
f€C(E|Z(J)). Consider first the case x, yeZ(J). Then f,, :=0¢€J satisfies

So)=f(x), f,0=S.

Next suppose xe€Z(J) and yeE—Z(J). Then there is a function I'yeJ
satisfying I',(y) = 1. The function f,, defined by

fxy(z) = ry(z)f(y) (Z EE)
is in J and satisfies

fxy(x) = f(x)r fxy(y) = f(y)

Finally we consider the case x, ye E—Z(J). We introduce the functions ¢,
and ¢, by setting

¢1(2) =d(z, Yd(z, x)+d(z, y),
©,(2) =d(z, x)/(d(z, x)+d(z;y)) (z€E)

where d is the distance of E. ¢, and ¢, are in C(E) and possess the
interpolation properties

pr(x)=1, ¢,(y) =0,
02(x) =0, @(y)=1.
Then we define f,, eJ by
Jo@ =X T D+ W22 T,(2) (z€J).

The function f,, €J again satisfies

fx_v(x) = f(X), j:xy(y) = f(y)
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Thus, Proposition 2 is applicable. It follows that
(1 C(E|lZ() cJ

since J =J~. This completes the proof of Theorem 1.

2. Interpolation projectors

Let P be a bounded linear projector on C(E). Then ker (P) is a closed linear
subspace of C(E) and we may consider the zero set Z (ker(P)) of ker(P). For
projectors this set has an interesting interpretation.

ProprosiTioN 3. Let P be a bounded linear projector on C(E) such that
Z (ker (P)) # @. Moreover, let prec(P) denote the set of all interpolation points
of P, ie.,

(12) prec(P) = {z€E: P(f)(z) = f(2) for all [ €C(E)}.
Then the relation

(13) prec(P) = Z (ker (P))

holds.

Proof. Let I designate the identity operator on C(E). Since P? = P, we
have

(14) ker(P) = ran(I — P).
Thus, we can conclude
Z(ker(P) = Z(ran(I - P))
= {z€E: ¢g(z) =0 for all g eran(l — P)}
=1-€E: f(2)=P(f)(z) =0 for all feC(E)}

whence (13) follows.

The set prec(P) is called the precision set of P. It was introduced by
Gordon and Wixom [5].

As a guiding example we consider the projector of polynomial Lagrange
interpolation in C[0, 1]. We have

P.(N(x) =Y f(x)1n(x)
i=1

with 0<x; <x,<...<x,<1 and
Ij.n(x) = W,,(X)/(W,(Xj) (X—.Yj)) (j = l, ceny n),

w,(x) =(x=x)(x—=Xx3)...(x—Xx,).
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It is evident that
prec(P,) = 'x,. ..., x,}.

Moreover, P,(1) =1 and ker(P,) is the closed ideal of functions in C[O0, 1]
which vanish at x,, ..., x,. These properties lead to the abstract concept of
interpolation projector.

A bounded projector P on C(E) is called interpolation projector iff

(15) P(l)=1,

(16) ker(P) is an ideal in C(E).

Note that ker(P) is automatically closed. I is a trivial interpolation projector
while 0 =I—1 is not an interpolation projector.

Remark. Besides polynomial Lagrange interpolation the method of bro-
ken-line interpolation yields another important example of interpolation
projector. This interpolation method is used to construct the Schauder hat
function system which is an interpolating basis for C[0, 1]. For a systematic
discussion of interpolating bases in C(E) and related interpolation projectors
we refer to Semadeni [7].

ProrosITION 4. Any interpolation projector P has a nonvoid precision set
prec(P).

Proof. Assume prec(P) = Q. Taking into account (16), (13) and Theorem
1 we obtain

ker (P) = C(E||Z (ker (P))) = C(E)
which implies P = 0. This contradicts P(1) = 1.

ProposiTION 5. Let P be an interpolation projector. Then the remainder
projector I —P is not an interpolation projector.

Proof. This follows from
(I-P)(1)=0.
As an additional consequence we have
prec(/I-P)= O
for any interpolation projector.

It is well known that the product PQ and the Boolean sum P ®Q
= P+ Q— PQ of two commutative projectors are again projectors. Moreover,
the relations
(17) ker (PQ) = ker(P)+ker (Q),

(18) ker(P ® Q) = ker(P) nker(Q)

hold in this case.
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THEOREM 2. Let P and Q be commutative interpolation projectors. Then
the product PQ is again an interpolation projector satisfying
(19) prec(PQ) = prec(P) n prec(Q).
. Proof. It is obvious that
PQ(1)=1.

Moreover, it follows from (17) that ker (PQ) is an ideal. By Theorem 1 and
(13) we have

ker (P) = C(E||prec(P)),
ker (Q) = C(E||prec(Q)),
ker (PQ) = C(E||prec(PQ)).

Taking into account (17) we obtain
C (El|prec(PQ)) = C(E||prec(P))+ C (E||prec(Q))
which implies
Z(C(Ellprec(PQ))) = prec(P) N prec(Q).
Since by Proposition 3
prec(PQ) = Z (ker (PQ))
the proof is complete.

THEOREM 3. The Boolean sum P @ Q of the commutative interpolation
projectors P and Q is again an interpolation projector with

(20) prec(P @ Q) = prec(P) L prec(Q).
Proof. 1t is easily seen that
P®Q()=1.

Relation (18) implies that ker(P ® Q) is a closed ideal. Thus, P@ Q is an
interpolation projector. To establish (20) we apply Theorem 1 and Proposi-
tion 3. We have in view of (18), (13)

C(E|lprec(P ® Q)) = ker (P & Q) = ker(P) nker(Q)
= C(Ellprec(P)) n C(El|prec(Q)),

le.,

(1) C (Ellprec(P @ Q)) = C (E||prec(P)) N C(E||prec(Q)).
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Using relation (7) we get

prec(P @ Q) = prec(P) L prec(Q)

which completes the proof of Theorem 3.

ProposITION 6. Let P and Q be commutative interpolation projectors
satisfying prec(P) = prec(Q). Then P and Q are identical.

Proof. Note first that
ker (P) = ker(Q)
in view of
ker (P) = C(E||prec(P)) = ker(Q).
This implies

Qf = QP(f), Pf=PO(f)

for all f eC(E). Since PQ = QP it follows P = Q.

We note that Theorem 2 and Theorem 3 can be used to construct new
interpolation projectors. Let L be a set of commutative interpolation projec-
tors. It follows from Theorem 2 that

L ={PQ: P,Q€elL}

is again a set of commutative interpolation _pfojectors such that
(22) Lsr.
Applying Theorem 3 it follows that
L'= P®Q: P,Qel’]

is also a set of commutative interpolation projectors satisfying
(23) L<=L".
This process leads to the recursive construction [1]:

L:=L", L.,:=L (keN).
Note that
(24) L=L, cL,=...<L, <...
Thus
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is a set of commutative interpolation projectors generated from L. It follows
from the relations (22), (23), and (24) that L is closed with respect to product
and Boolean sum operations, i.e.,

PO, P®Q <L for all P,Qe€L.

In view of Proposition 5 L can not be complemented, i.e, PeL does not
imply I—Pel. This is an important difference to Boolean algebras of
commutative projectors ([1]). For a more complete discussion we refer to

[31.

3. Parametric extensions of interpolation projectors

In this section we will show that the abstract method of parametric extension
([2], [4]) is appropriate for the construction of new interpolation projectors.
Let E = X x Y be the cartesian product of the compact metric spaces X, Y.
For feC(X xY), xeX, and yeY we consider the functions

JP=f(x,)eC(), f=f(,yeC(X).

Let A be a bounded linear operator on C(X) and B be a bounded linear
operator on C(Y). We define the bivariate functions '

A'(N)(x, ) =ACN(x),  B"(N)x,y) =By
with feC(X xY) and x€X, yeY. It was shown in [2] that
A'(f), B (f)eC(X xY) (feC(XxY)).

Moreover, A’ and B” are bounded linear operators on C(X x Y) which are
called parametric extensions of A respectively B. They possess the following
properties
(A, +A4,) =A1+ 45, (A A) = A1 A, (cA) =cA,
(B,+8B,)"=B{+B;, (BB,)”=B{B;, (¢cB)" =cB".
Moreover, the parametric extensions A" and B” commute, i.e.,
A'B" =B"A".

It follows from these relations that the parametric extensions P’ and Q" of
the bounded linear projectors P and Q are also bounded linear projectors on
C(X xY) which commute. Thus, the product operator P'Q” and the Boolean
sum operator P’ Q" are bounded linear projectors.

THEOREM 4. Let P be an interpolation projector on C(X) and Q be an
interpolation projector on C(Y). Then the parametric extensions P’ and Q" are



INTERPOLATION PROJECTORS AND CLOSED IDEALS 97

interpolation projectors with precision sets
prec(P’) = prec(P) x Y, prec(Q”) = X xprec(Q).

We omit the easy proof which follows from the properties of the method
of parametric extension.

It follows from Theorem 4 and the properties of the parametric exten-
sions that Theorem 2 is applicable to P’ and Q"”. Thus, P'Q” is an
interpolation projector with precision set

prec (P’ Q") = prec(P) x prec(Q).

For the special case of polynomial Lagrange interpolation the interpolation
projector P’ Q" describes polynomial tensor product interpolation:

PQ'(N)x =2 X f0 y)lm(¥) a0
i=1j=1
In the same way Theorem 3 is applicable to P’ and Q".'Thus, P®Q" is an
interpolation projector with precision set

prec(P' @ Q") = prec(P) x Y u X x prec(Q).

For the case of polynomial Lagrange interpolation the interpolation projec-
tor P ® Q" describes polynomial blending interpolation ([4]):

Pl@Q”(f)(xa y) = Z f(x;, y) li,m(x)+ Z f(xa y])l,n(y)
i=1 i=1

- Z Z f(xi’ yj) Ii.m(x)l',m(y)-

i=1j=1
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