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1. Inequalities of Szegd and Markov

For real trigonometric polynomials van der Corput and Schaake [2] were
the first to state explicitly the following extension of Bernstein’s inequality
[1] which was implicit in an earlier inequality due to Szegdé [7].

THEOREM 1. If T is a real trigonometric polynomial of degree n and
|T(t)] <1 for real t then

(1) nTE*+T ()2 <n? t real.
Proof. We may suppose that t =0, T'(0) = 0, and
IT) : = max|T(s)| <1.

Let B, —m <2nf < n, be defined by
T(0) = sinnf.

At the points t;:=(2j—1)n/(2n)— B the trigonometric polynomial
v:=sinn(- +p)— T of degree n has the property sign v(t;) =(—1)*"'. Hence
v has exactly one zero in each interval (¢, t;,,), and the inequalities

' to <0 <ty, v(to)) <0=0(0) <v(ty)
imply v'(0) > 0. Because of T'(0) = 0,

(2 0 < T'(0) = ncosnf—v'(0) < ncosnf = n(1—T(0)?)"/2.

Since ||T]| < 1 was arbitrary, (2) is still valid if ||T]| = 1. That concludes the
proof of Theorem 1. =

In 1889 A. Markov [5] published his famous inequality concerning the
derivatives of algebraic polynomials.
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THEOREM 2. If P is an algebraic polynomial of degree n and |P(x)| <1 in
—1<x<1, then in the same interval

3) |P'(x)| < n?.

Proof. We first consider real polynomials P. By the substitution x
=cost, 0 <t < n, we associate with P the real trigonometric polynomial
T(t) = P(cost) where

T'(t) = —sint P'(cost),

@ T’ (t) = —cost P’'(cost)+sin?t P”(cost).
We know by Theorem 1 that ||T|| < n, ||IT”|| < n*. If x = +1 and thus t =0
or t =m, (4) leads to (3). ,

Let P’ attain its maximal or minimal value at an interior point x of the
interval [ —1, 1]. Hence P”(x) = 0. The application of Theorem 1 for T’ and
the relations (4) then imply

n* > n? || = T ()2 +n T'(8)? = x* P' ()2 +n2(1—x) P’ (x)? > P'(x)?

which establishes (3).

If P has complex coefficients we proceed in the following well-known
way: Let x be a fixed number in [—1, 1]. We may assume that P’(x) is real,
otherwise we multiply P with a proper complex number of absolute value 1.
Then, by (3) applied to Re P, we get (3) because of

[P'(x)l = |(Re P)'(x)|. =

2. The inequality of Zygmund for weighted L -norms

Recently G. G. Lorentz ([4], Theorem 2) established a new form of Bern-
stein’s inequality which is expressed by means of the Hardy-Littlewood-
Polya order relation “<” on [0, 2rn]. In particular, he gave a short and
elegant proof of Zygmund's inequality

2n 2n
&) . fIT'@)Pdt < n? [|T(@)Pdt, 1<p<o
0 0

for trigonometric polynomials T of degree n. We will modify Lorentz’s
proof and earlier ideas of E. M. Stein [6] in order to prove a slightly more
general version of Zygmund’s and Lorentz’s resulits.

THEOREM 3. Let w be an integrable nonnegative function on [0, 2r]. Let q
be a positive integer and 1 < p < 00. Then, for trigonometric polynomials T of
degree n with real or complex coefficients,
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2n 2x
(6) [w(s) | T ()" ds < n*max [ w(9)|T(s+y)"ds
0 ye¥gn 0

where
Y= {dk—1+(=1))n/dn| k=1, ..., 2n}.

Proof. For a complex number § # 0 we put sign 8 := |B|/B. We choose a
number h, 0 < h < nt/2n, and a positive number M and define the trigonome-
tric polynomial Q of degree < n by

2x 2h
Q(t):= [ w(s)sign(T'(s)) T(s+t)ds+M |sinn(s+t—h)ds.
0 0
Let y=y(M, h)e[0, 2rn) be such that |Q(y) =/|Qll. Using Bernstein’s
inequality or (1) for Q at t =0, Q'(0) < n||Q|| = n|Q(y)|, we get
2% 2k

f w(s)|T’ (s)|ds+ Mn jcosn(s—h)ds =Q'(0) <niQ)
0

0
2n 2h

<n [w(s)|T(s+y)lds+Mn {|sinn(s+y—h)|ds
0 0

and thus

2z 2x
W) fw®IT (s)lds < n [w(s)|T(s+y)lds.
0 0
If M =00, h—0 such that Mh — oo the cluster points of y(M, h) are
contained in Y;,. Hence (7) is valid for some yeY,,.
Let p > 1. We apply (7) for the weight function W:= w|T'|P~! and use
the Holder inequality

2z 2x 2%
[ FGds < ([ |FI"ds)' ( | |G|? ds)"/»
0 (V] 0

for r:=pf(p—1), F:=w'"|T|P"!, G:=w'?|T(- +)| for a proper yeY,,.
This leads to the relations
2n. 2z
fwEIT (s)Pds = [ W()IT ()l ds
0 0
2x 2x

<n [ W()|T(s+y)ds =n | F(s)G(s)ds
0 0

2x 2x
< n( [ w(s)IT O ds)r ([ w(s)| T(s+ )P ds)'’?
0 (1]

which implies (6) for g =1.
For g4 =2, 3, ... one obtains (6) by induction. =
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3. Special cases of Theorem 3
3.1. Lorentz’s version of Bernstein’s inequality

For two integrable functions f and g on I := [0, 2n] the Hardy-Littlewood-
Pdlya order relation f <g means that for each measurable set A < I there is
another set B I of equal measure with the property (,|flds < [zlglds.
Recently Lorentz ([4], Theorem 2) proved that

8) TO <nT, q=1,2,...

for each trigonometric polynomial of degree n. He pointed out that Zyg-
mund’s inequality (5) is an immediate consequence of (8). His inequality (8)
follows from our slightly more general Theorem 3 if we set p =1 and w(s):
=1 for seA, w(s):= 0 elsewhere.

3.2. An inequality of Duffin and Schaeffer

If we apply Theorem 3 for p =1 at a fixed point x €[0, 2n) for the weight
function w(s):=1/h if x < s < x+h, w(s):= 0 elsewhere, and if h > 0 tends
to zero, we get the following inequality which is an extension of [3], Lemma
IV:

(9) |T®(x)| € n*max|T(x+y), qg=1,2,...

erqn
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